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Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and
development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional require-
ments of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the
potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health,
and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides
that possess important functions related to the newborn’s development and health. Some of the health benefits attributed to milk
oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This
review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards
the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of
those bioactive compounds have been also addressed.

1. Introduction: Role of Milk in Human Health

Milk, as the first food for mammals, supplies all the energy
and nutrients needed for the proper growth and development
of the neonate. For all mammalians, the consumption of
milk ends at the weaning period with the exception of
humans that continue consuming milk throughout their
life. Milk and derived dairy products are considered an
important constituent of a balanced diet. Moreover, it is a
source of many bioactive components, such as high-quality
proteins, lipids, carbohydrates, lactose, vitamins, minerals,
enzymes, hormones, immunoglobulins, and growth factors,
among others. These components not only help meeting
human nutritional requirements, but also play a relevant
role in preventing various disorders such as hypertension

and cardiovascular diseases [1], obesity [2], osteoporosis [3],
dental caries [4], poor gastrointestinal health [5], colorectal
cancer [6], ageing [7], and others [8].

Milk proteins supply nitrogen and amino acids to young
mammals and possess multiple physiological properties in
the intact form. Moreover, studies carried out in the past
decades have demonstrated the role of these proteins as
a source of biologically active peptides. Bioactive peptides
are inactive within the sequence of the parent protein but,
once released by in vitro processing conditions or by in vivo
gastrointestinal digestion, are capable of acting as regulatory
compounds exerting a positive impact on body functions and
ultimately promoting health benefits to the consumer [9].

Human milk is undoubtedly the most complete source of
nourishment for the newborn. Breastfed infants have been
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Table 1: Commercial milk products containing peptides with proven antihypertensive activity.

Commercial name Obtention process Protein source Active sequence(s) Publication
number [reference]

Peptide C12 Hydrolysis with trypsin 𝛼s1-Casein FFVAPFPEVFGK JP62270533 [31]
Biozate Hydrolysis with trypsin Whey proteins Whey peptides US6998259 [157]

Lowpept Hydrolysis with pepsin 𝛼s1-Casein RYLGY, AYFYPEL WO2005012355
[158]

Calpis Fermentation 𝛽-Casein VPP, IPP US5449661A
[37, 38]

Evolus Fermentation 𝛽-Casein VPP, IPP US6972282 [159]

shown to be less susceptible to diseases (i.e., diarrhea and
respiratory diseases) than those that were not breastfed. This
protective effect, which was previously attributed to human
milk antibodies, is today strongly correlatedwith the presence
of complex oligosaccharides (OS), the third most abundant
component of human milk [10]. Human milk is composed
of OS in concentrations varying according to different stages
of lactation: 20–23 g/L in colostrum and 12–14 g/L in mature
milk [11], being even more abundant than proteins (12 g/L)
[12]. Human milk oligosaccharides (HMO) are complex
sugars having 3 to 20 monosaccharide units [13] that are not
digestible by human enzymes [14]. These compounds have
important functions related to the newborn’s development
and health at local and systemic levels, including prebiotic
probifidogenic effects and antiadherence of pathogenic bac-
teria [15], brain development [16], and immunomodulatory
properties [17], among others.

In the last fifty years, chronic disorders have become the
leading cause of morbidity and mortality in industrialized
countries, with increasing incidence also observed in devel-
oping countries. Chronic disorders include cardiovascular
and neurological diseases, stroke, cancers, immune disor-
der and chronic respiratory disease, obesity, diabetes, and
metabolic syndrome [18]. In Europe, 87% of all deaths occur
due to chronic diseases and the number of people affected
is expected to rise considerably over the next few decades.
The majority of chronic diseases are caused by risk factors
which are mostly preventable. Diet and lifestyle are two
environmental factors that strongly affect these diseases; thus
modifications of these habits are becoming a new strategy for
disease prevention/treatment.

The aim of this paper is to review the recent literature on
the physiological effects of proteins, peptides, and oligosac-
charides with special emphasis on animal and human trials.
Other aspects such as the limited availability of in vivo studies
demonstrating the biological activities of OS frombovine and
caprine milk and the current challenges associated with the
recovery and commercial production of these compounds
have also been addressed.

2. Impact of Milk Proteins and Peptides on
the 21st Century Diseases

2.1. Milk-Derived Peptides against Cardiovascular Diseases.
Cardiovascular diseases (CVD) have become the leading

cause of morbidity and mortality worldwide, representing
an important medical and public health issue [19]. Although
earlier studies associated the consumption of wholemilk with
higher incidence of CVD, it has been demonstrated that milk
contains a plethora of bioactive substances which may con-
tribute to the prevention of most of the risk factors of CVD
[20]. Recently, bioactive milk peptides have gained interest
because of their notable antihypertensive, antioxidant, anti-
inflammatory, and hypocholesterolaemic effects. In this sec-
tion, the most current scientific information regarding in
vitro and in vivo studies on the role of milk proteins-derived
peptides on CVD is summarized and discussed.

2.1.1. Milk Peptides with Antihypertensive Activity. Epidemi-
ological studies suggest that the dietary intake of milk and
dairy foods is related to decreased risk of hypertension [21].
In addition to their high mineral content (e.g., calcium,
potassium, and magnesium) that can lower blood pressure
[22], other milk components, such as proteins and their
hydrolyzed products, have been also linked to the antihy-
pertensive effect of milk and dairy products. Angiotensin-
converting enzyme (ACE) is a multifunctional enzyme that
acts as one of the main regulators of blood pressure.
Thus, ACE inhibition is currently considered as one of the
best strategies for hypertension treatment. Most biologically
active peptides generated from milk proteins have demon-
strated ACE inhibitory activity. In the last two decades,
antihypertensive effects of some of these peptides have been
evaluated in spontaneously hypertensive rats (SHR) and
hypertensive humans, and the peptide sequences, doses, and
maximum decreases of systolic blood pressure (SBP) have
been summarized in several reviews [23–25].The hydrolyzate
obtained by the action of pepsin on casein, containing the
𝛼s1-casein-derived peptides RYLGY and AYFYPEL, has been
patented and commercialized under the name of Lowpept
by its antihypertensive properties demonstrated in both
SHR [26] and hypertensive humans [27] (Table 1). Pepsin
has been also used to hydrolyze whey protein lactoferrin,
with the release of peptides containing ACE activity and
ACE-dependent vasoconstriction inhibitory properties [28].
Antihypertensive effects in SHR after short-term and long-
term treatments have been also observed for those peptides
[29, 30]. Trypsin is another gastrointestinal enzyme used to
release the antihypertensive peptide 𝛼s1-casein peptide f(23–
34) from casein during the manufacture of the commercial
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ingredient peptide C12 [31, 32] (Table 1). In addition to the use
of gastric and pancreatic enzymes, alone or in combination,
to produce antihypertensive peptides, the use of food-grade
enzymes derived frommicroorganisms has become common
for the release of peptides with demonstrated SBP lowering
effects in SHR [33–36].

Milk fermentation is another strategy to produce anti-
hypertensive peptides by the proteolytic action of lactic acid
bacteria on milk proteins. The most representative peptides
are those derived from 𝛽-casein and identified in sour
milk fermented by Lactobacillus helveticus and Saccharomyces
cerevisiae (Calpis, Table 1). These tripeptides, with sequences
VPP and IPP, have demonstrated an ability to exert potent
decreasing effects on the SBP of SHR [37, 38]. A number
of clinical trials have been conducted to confirm their anti-
hypertensive properties in humans although controversial
results have been found. Three meta-analyses performed
with the published data of 17 [39], 12 [40], and 28 [41]
clinical trials have reported an average decrease in SBP of
5.1, 4.8mm, and 1.7mm of Hg, respectively. However, no
effects were found in Dutch and Danish subjects consuming
fermented milk containing peptides VPP and IPP [42, 43]. A
recent meta-analysis including 18 trials has reported higher
antihypertensive effects for these two tripeptides in Asian
than in Caucasian people [44]. Those findings suggest that
genetics and/or dietary patterns might exert an important
influence on the antihypertensive effects of peptides IPP
and VPP. Similarly, the age has been described as another
major influencing factor [45]. With the evidence presented
to date, the European Food Safety Authority (EFSA) Panel
on Dietetic Products, Nutrition and Allergies (NDA) [46]
concluded that there are no sufficient data to establish a
cause/effect relationship between the consumption of pep-
tides VPP and IPP and the control of hypertension, and
further studies are thus required. Other peptides derived
from 𝛽-casein during milk fermentation with Enterococcus
faecalis, in which sequences are LHLPLP and HLPLP, have
also shown antihypertensive effects in SHR [47]. In recent
studies, fermentedmilkwith Lactococcus lactisNRRLB-50571
and NRRLB-50572 has presented important SBP, diastolic
blood pressure (DBP), and heart rate-lowering effects in SHR
[48, 49] although the peptides responsible for the activity
have not been identified.

Accumulating evidence built in animal and clinical stud-
ies is currently available on the antihypertensive activity of
milk-derived peptides. However, much work is still needed.
Identification of the active form reaching the target organs
and elucidation of its bioavailability after oral ingestion and
its complete mechanism of action are two of the main aspects
required to be deeply investigated in the future to support
health claims.

2.1.2. Antioxidant and Anti-Inflammatory Milk-Derived Pep-
tides. Oxidative stress is one of the main responsible factors
for the initiation or evolution of CVD. The search of natural
antioxidants providing additional benefits to the endogenous
antioxidant defense system is gaining interest [50]. Among
food-derived peptides with antioxidant properties without

harm side effects, those derived from milk proteins are most
frequently studied. The majority of the studies carried out
to characterize antioxidant peptides derived from casein and
whey proteins have only used in vitro chemical assays [51, 52].
However, their limited similarity to physiological conditions
makes the in vitro assays very restrictive, and reported effects
need to be confirmed by animal models and/or human
trials. Nevertheless, to date, just few in vivo trials have been
carried out to demonstrate the antioxidant effects of milk-
derived peptides related to benefits on cardiovascular health.
Zommara et al. [53] reported the antiperoxidative action of
fermented milk on rats fed a vitamin-E deficient diet. The
consumption of fermented milk by healthy subjects has been
also demonstrated to lower the levels of oxidized low-density
lipoprotein, isoprostanes, and the glutathione redox ratio.
Improvements of total plasma antioxidant activity and of
the resistance of the lipoprotein fraction to oxidation have
resulted in enhanced antiatherogenicity [54].The compounds
responsible for the observed effects have not been identified
yet, although milk peptides liberated during fermentation
process might have a crucial role. Thus, further studies
focused on evaluating the potential of milk-derived peptides
as antioxidant at cardiovascular level should be of great
relevance.

Chronic inflammation is another responsible factor for
the development of CVD. The downregulation of cytokines
involved in the inflammation-associated endothelial dys-
function by food components, including peptides, may delay
or alleviate inflammation, thus exerting favorable effects
against CVD [55]. A recent study using lipopolysaccharide-
(LPS-) stimulated mouse macrophages has reported the
ability of a yak casein hydrolyzate to reduce the secretion
of proinflammatory cytokines and the production of nitric
oxide and to scavenge free radicals, suggesting a potential role
as preventive agent against inflammation related disorders
[56]. To date, only one human trial has been conducted
to demonstrate the anti-inflammatory properties of milk
peptides. This study reported an improvement in the vas-
cular function through modulation of the glucose levels
and inflammation and oxidative stress biomarkers after the
consumption of the commercial whey derived peptide NOP-
47 by healthy individuals [57]. This finding opens a new
door towards searching of new milk-derived peptides with
antioxidant and anti-inflammatory activity.

2.1.3. Hypocholesterolaemic Milk Peptides. Blood lipids are
represented in various forms including total cholesterol,
triglycerides, lipoproteins (high-density lipoproteins orHDL,
low-density lipoproteins or LDL, and very-low-density
lipoproteins or VLDL), and free fatty acids. An inappropriate
ratio of these lipids is one of the most important risk factors
for developing CVD. Therefore, CVD therapy/prevention
strategies focus on reaching an optimal lipid balance in
order to achieve a positive cardiovascular health. Those
therapies aim at increasing the physiological levels of desir-
able lipids (e.g., HDL cholesterol) while reducing the others
associated with atherogenic functions (e.g., LDL choles-
terol, triglycerides). Milk proteins, mainly whey proteins
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and derived hydrolyzates or peptides, have been reported
to exert hypocholesterolaemic effects in different animal
models. The ingestion of whey protein was correlated with
a significant reduction of total cholesterol levels in rats fed
with cholesterol-free and cholesterol-enriched diets [58, 59].
Nagaoka et al. [60] have reported similar effects for a 𝛽-
lactoglobulin tryptic hydrolyzate administered to rats fed
with a diet rich in cholesterol. The hydrolyzate reduced total
cholesterol and increased HDL cholesterol and fecal steroid
excretion.The fragment f(71–75) of this whey protein, known
as lactostatin, with sequence IIAEK, has been reported as
the main factor responsible for the observed effects [60].
𝛽-Lactotensin, another 𝛽-lactoglobulin peptide, released by
chymotrypsin hydrolysis, decreased total cholesterol, LDL,
and VLDL cholesterol content in mice fed with a cholesterol-
enriched diet [61]. Although themechanismof action of those
peptides has not been completely elucidated, preliminary
results suggest a key role played by the amino acid compo-
sition [50]. Further studies are clearly needed to corroborate
those results. The exact mode of this hypocholesterolaemic
action needs to be determined in clinical trials.

2.2. Milk-Derived Hydrolyzates and Peptides on Intestinal
Health. The gastrointestinal tract (GIT) serves as a special-
ized interface between the body and the external environ-
ment. The GIT is strategically covered by a monolayer of
specially designed epithelial cells continually exposed to a
high concentration of food components and substances along
the gut luminal surface. Hence, the modulator effect of the
diet on GIT functions has been accepted as essential for
maintaining and improving the general health of the host
[62]. Interestingly, more than 70% of the current “food for
specified health uses products” (FOSHU) are related to GIT
functions [63].

Dairy proteins, hydrolyzates, and peptides have been
demonstrated to transform the dynamics of mucus mainly
via influencing the mucin secretion and expression and the
number of goblet cells. In ex vivo preparations of rat jejunum,
casein hydrolyzates increased mucin secretion [64, 65]. The
𝛽-casein derived peptide 𝛽-casomorphin 7 produced the
same effects which have been suggested to be mediated by
interaction with opioid receptors. Also, this peptide has been
reported to stimulate the expression of mucin Muc2 and
Muc3 genes in rat intestinal DHE cells and MUC5AC gene
in human intestinal HT29-MTX cells [66]. Another 𝛽-casein
fragment, f(94–123), identified in commercial yoghurt, also
had the ability to increase the mucin output and the mRNA
levels of MUC2 and MUC4 genes in HT29-MTX cells [67].
Casein and whey proteins hydrolyzates have been reported
to be a source of peptides with capacity to induce mucin
secretion andMUC5AC gene expression in HT29-MTX cells
[68]. Among these peptides, the 𝛼s1-casein fragments f(143–
149) and f(144–149) and the 𝛽-lactoglobulin fragment f(102–
105) known as 𝛽-lactorphin were suggested as the major
peptides responsible for the observed effects.

A few in vivo studies have also pointed out the regulation
of the protective mucus layer by dairy proteins and products
thereof. Rats fed with a diet based on casein hydrolyzates, as

the exclusive source of nitrogen, were found to enhance their
endogenous nitrogen flow and expression of mucin genes
Muc3 andMuc4 in the small intestine and colon, respectively
[69]. Plaisancié et al. [67] reported the capacity of the 𝛽-
casein fragment f(94–123), once orally ingested by rats, to
upregulate the Muc2, Muc4, rat defensing 5 and lysozyme
mRNA transcripts expression, the goblet cells recounts, and
the number of crypts containing Paneth cells in the rat small
intestine. In the dextran sulphate sodium- (DSS-) induced
model of rat colitis, the studies of Sprong et al. [70] and Faure
et al. [71] demonstrated the gut-protective effects exerted by
a cheese whey protein diet and a diet supplemented with
Thr, Ser, Cys, and Pro residues, respectively. Moreover, this
protection has been reported for a whey protein isolate and𝛼-
lactalbumin hydrolyzate against chemical-induced ulcerative
gastric lesions [72, 73].

Enhancement of the mucosal immune response is also
a dietary modulating strategy of the defense systems pro-
tecting the GIT. Animal models have proved the improve-
ment of the mucosal immunity by promotion of gut-related
immunoglobulin (Ig) levels after ingestion of lactoferrin or
its derived peptides, lactoferricin and lactoferrampin [74, 75].
Likewise, immunomodulatory effects have been reported for
a trypsin casein hydrolyzate in newborn calves [76] and
casein phosphopeptides (CPPs) and peptides released from
Lactobacillus helveticusR389-fermentedmilk inmice [77, 78].
Furthermore, Kitamura and Otani [79] demonstrated that
ingestion by healthy humans of CPPs-enriched cakes induced
an increase in the faecal IgA content, suggesting a positive
effect on mucosal immunity.

Oxidative and inflammatory imbalances are both
involved in the etiology of several human chronic gut-related
disorders such as ulcerative colitis and Crohn’s disease. The
search of natural preventive treatments against these imbal-
ances is being prompted [80, 81]. Whey protein has been
suggested to exert beneficial effects through enhancement
of antioxidant enzymes and downregulation of both oxi-
dative markers and proinflammatory cytokines [82]. These
protective findings were found in animal [83, 84] and humans
trials [85, 86]. The whey-derived peptide caseinomacro-
peptide has been proven to have protective properties in the
2,4,6-trinitrobenzene sulphonic acid (TNBS) and DSS-
induced model of rat ileitis and colitis, through immunomo-
dulation of the regulatory T helper cells activation and inter-
leukin secretions [87, 88]. Turbay et al. [89] demonstrated, in
the TNBS-induced murine colitis model, the anti-inflam-
matory effects exerted by 𝛽-casein hydrolyzates generated
by the cell envelope-associated proteinase of Lactobacillus
delbrueckii ssp. lactis CRL 581. However, peptides released
and responsible for the observed bioactivity have not been
identified yet.

2.3. Milk Proteins and Peptides against Metabolic Disorders.
Diabetes mellitus is considered one of the most common
metabolic disorders and one of the major health problems
worldwide. It affects almost 6% of the world’s population,
with type 2 diabetes representing approximately 90–95% of
the diagnosed cases [90]. Diet and lifestyle interventions
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are the preferred treatment strategies for this metabolic
disorder, with pharmacotherapy being prescribed only if
supervised lifestyle intervention fails [91]. Epidemiological
evidence supports that consumption of milk and dairy foods
is associated with a lower incidence of type 2 diabetes. These
beneficial effects on metabolic and inflammation factors
linked to diabetes and insulin resistance have been also
demonstrated by cell and animal models, being multiple
milk components, such as calcium, medium-chain fatty
acids, linoleic conjugated acid, lactose, citrate, proteins, and
peptides characterized as the main responsible factors for
the observed effects acting through different mechanisms of
action [92].

During the ingestion of a meal, the presence of nutri-
ents at gastrointestinal level stimulates the secretion of two
incretins hormones, the glucagon-like peptide-1 (GLP-1)
and the glucose-dependent insulinotropic polypeptide (GIP).
Both hormones are implicated in the stimulation of the
insulin secretion from the pancreatic 𝛽-cells, secretion of
gastric and pancreatic enzymes, and modulation of gut
motility and nutrient absorption, allowing the clearance of
the absorbed glucose [93]. Type 2 diabetes is characterized by
different disorders including progressive dysfunction of pan-
creatic cells, insulin resistance, and augmented production of
hepatic glucose [94]. Continuous intravenous administration
of GLP-1 has been demonstrated to normalize blood glucose
levels in diabetic subjects [95]. However, the rapid degrada-
tion of this hormone by the enzyme dipeptidyl peptidase-IV
(DPP-IV) and its consequent inactivation makes this type 2
diabetes treatment strategy impracticable. Currently, specific
DPP-IV inhibitors are thus incorporated to GLP-1 analogues
in new oral therapies against this metabolic disease [96].

Diet supplementation with whey protein is currently
under preclinical and clinical trials as a promising alternative
in the prevention and/or treatment of type 2 diabetes and
related diseases [97, 98]. Several mechanisms of action have
been suggested for whey protein, including the stimulation of
insulin release, improvement of glucose tolerance in diabetic
patients, reduction of body weight, and modulation of gut
hormones such as cholecystokinin, leptin, and GLP-1 [99]. In
the last years, the role of peptides released during the transit
of whey proteins through the GIT on the observed effects
has been hypothesized [100]. Cell culture and animal models
have been used to confirm this hypothesis. A dose-dependent
insulinotropic activity of whey protein hydrolyzates has been
observed in a cell-based coculture using pancreatic BRIN-
BD11 cells and Caco-2 cells monolayers [101]. These authors
also observed that the oral administration of the hydrolyzates
to obese mice evoked an improvement of blood glucose
clearance, reduction of hyperinsulinemia, and restoration
of the pancreatic capacity to secrete insulin in response to
glucose. The main mechanism of action suggested for these
hydrolyzates is the DPP-IV inhibitory activity exerted by
the peptides contained in them [102]. Among the bioac-
tive peptides described to date, sequences derived from 𝛽-
lactoglobulin IPA and IPAVF are the most potent as DPP-
IV inhibitors [103, 104]. Another 𝛽-lactoglobulin fragment
with sequenceVAGTWYhas been also demonstrated to exert
hypoglycemic effects in the oral glucose tolerance test inmice

[105]. Likewise, both in vitro DPP-IV inhibitory and in vivo
hypoglycemic effects have been reported for peptides released
from caseins [106]. Recent in silico studies have shown that
both caseins and whey proteins might serve as precursors
of DPP-IV inhibitory peptides because of the high number
of fragments contained within them that match DPP-IV
inhibitory sequences [107, 108].Thus, this research area holds
a great potential, and currently a number of investigations are
focused on the identification of new milk proteins-derived
peptide with capacity to prevent diabetes and associated
metabolic syndromes.

2.4. Chemopreventive Role of Milk Proteins and Peptides.
Cancer is the second leading cause of mortality worldwide,
and its incidence will continue rising in the next few years in
spite of the important advances achieved in the development
of cancer therapies. It has been estimated that, by 2020,
approximately 15 million new cancer cases will be diagnosed,
and 12 million cancer patients will die [109]. It is well known
that 35% of cancer deaths are attributed to diet and its
food components [110]. However, cell culture and animal
and human trials results have shown that an important
number of food constituents can lower cancer risk and even
sensitize tumor cells against anticancer therapies [111]. In
the last few years, food proteins and derived peptides have
become one of the food components with themost promising
preventive properties against cancer initiation, promotion,
and progression stages [112].

Among the milk proteins, lactoferrin and its derived
peptide lactoferricin are the most studied. For both com-
pounds, their antioxidant, immunomodulatory, and anti-
inflammatory activities are closely linked to their protective
effects against cancer (Table 2). Lactoferrin acts by inducing
apoptosis, inhibiting angiogenesis, and modulating carcino-
gen metabolizing enzymes, in addition to its antioxidant and
immunomodulatory properties [113]. Moreover, lactoferricin
has shown potent anticancer properties in different cell lines,
including breast, colon, fibrosarcoma, leukemia, and oral and
ovarian cancer cells, without harming normal lymphocytes,
fibroblasts, or endothelial or epithelial cells [114]. Also, animal
models have confirmed the beneficial properties of this
milk-derived peptide. The possible mechanism of bovine
lactoferricin in anticarcinogenesis has been shown to be
related to its ability to induce apoptosis. It is its strongly
cationic nature that allows this peptide to target negatively
charged cancer cells with the outer membrane [115]. The
suppressed ability in angiogenesis of bovine lactoferricin
was in vitro and in vivo demonstrated to contribute to its
chemopreventive properties [116]. A significant inhibition of
tumor growth and of liver and lung metastasis was reported
after subcutaneous administration of bovine lactoferricin in
both spontaneous and experimental metastasis mice mod-
els [117]. Similar results were observed after subcutaneous
treatment and repeated injections of this peptide on Meth A
fibrosarcoma xenograftsmice and established neuroblastoma
xenografts, respectively [118, 119].
𝛼-Lactalbumin is a whey protein with anticancer proper-

ties which has been reported when it forms a complex with
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oleic acid known as “human alpha-lactalbumin made lethal
to tumor cells, HAMLET” or “bovine alpha-lactalbumin
made lethal to tumor cells, BAMLET.” It has been recognized
that both protein and fatty acid are required to show cytotoxic
activity against cancer cells [115]. Treatment of cancer cells
with HAMLET provokes morphological changes typical of
apoptotic cells through caspase activation and causes mito-
chondrial permeability transition resulting in mitochondrial
swelling, loss of mitochondrial membrane potential, and
cytochrome c release [120].These authors also found that this
complex induced autophagic cell death and changes in the
proteasome structure and function. Similar effects resulting
from chromatin condensation and cell shrinkage have been
observed after treatment of cancer cells with the complex
BAMLET. The efficacy of both complexes has been shown to
be influenced by the type of cancer cell line [120]. In the last
years, the therapeutic effects against bladder cancer have been
studied in animal models as preliminary step for BAMLET
use in human trials. It has been demonstrated that intravesical
administration of HAMLET delays tumor progression in a
murine bladder cancer model although no preventive effects
on tumor formation were observed [121].

Intact caseins have not been characterized as chemopre-
ventive proteins but they have been suggested as an important
source of peptides with anticancer properties. CPPs are
able to bind calcium, to inhibit cell proliferation, and to
induce apoptosis of intestinal tumor HT-29 and AZ-97 cells
through activation of voltage-activated calcium channels,
whichmediate the calcium flood according to the depolariza-
tion state of the cell [122]. However, in differentiated epithelial
intestinal cells, a protective effect from programmed cell
death is observed after treatment with these peptides [123].
𝛽-Casomorphin 7 and 𝛽-casomorphin 5, two casein-derived
sequences with opioid properties, have shown antiprolifer-
ative and cell cycle arresting activities on breast and colon
cancer cells [115, 124, 125]. It has been suggested that these
effects are mediated by interaction with specific opioid and
somatostatin receptors although further studies confirming
this mode of action are needed.

3. Impact of Milk Oligosaccharides on
Human Health

Despite the important role of HMO in infant health, the
limited supply of human milk has hindered its use in com-
mercial infant formula [126] and in large-scale clinical trials.
Presumably, the health benefits provided by HMO to infants
could be extended to humans of all ages if alternative sources
of these complex OS are identified [127]. In that view, the
need of finding other sources of human-likeOS has prompted
the identification, characterization, and quantification of
unknown OS present in many other types of milk and their
respective industrial streams [128, 129].

3.1. Alternative Sources of Oligosaccharides: Major Sources
of Nonhuman Milk Oligosaccharides and Their Industrial
Effluents. Increasing interest on plant- and lactose-derived
OS has been observed in the past decade as an alternative

source for complex HMO. Some of these OS include galacto-
OS (GOS), fructo-OS (FOS), and lactulose, among others
[130]. These indigestible OS are considered prebiotics due
to their ability to confer health benefits to the host through
the selective growth and activity of commensal bacteria
[131]. One such example is inulin, an oligofructan with D-
fructofuranosyl 𝛽(1-2) links that cannot be broken down by
human digestive enzymes, thus exerting several intestinal
physiological effects that contribute to the host health. GOS,
commonly produced by transgalactosylation of lactose by
𝛽-galactosidases, are another example of a current available
source of OS for use by the infant formula industry.

Despite the fact that some health promoting effects, such
as improved bifidogenic activity, have been attributed to some
of those OS [131], little similarity has been observed between
commercially available GOS and HMO, except that they are
both built on a lactose core [127]. GOS and FOS are composed
of a simple linear core, being devoid of structures having
high biological activity such as fucose, sialic acid, and N-
acetyl glucosamine. Because GOS and FOS do not possess
the intrinsic structural complexity observed in HMO, it is
expected that domestic farm animals and their processing
streams, such as whey permeate from cheese manufacturing,
can be a source of OS more similar to the ones present in
human milk [132].

World milk production is almost entirely derived from
cattle (83%), buffaloes (13%), goats (2%), sheep (1%), and
camels (0.3%) (http://www.fao.org/agriculture/dairy-gate-
way/milk-production/dairy-animals/en/#.VA95gvldXXs).
Considering that cow milk accounts for 83% of the world
milk production, the enormous interest of the scientific
community to identify, quantify, and characterize the OS
present in cattle milk and their industrial byproducts is
not surprising. A comprehensive review by Urashima et
al. [132] shows that approximately 25 bovine milk OS
(BMO) structures had been characterized before 2011.
The development of advanced analytic techniques, such
as several mass spectrometric methods and hydrophilic
interaction liquid chromatography-high performance liquid
chromatography, has enabled significant improvement in the
identification of new BMO; as many as 40 BMO have been
characterized [133, 134].

The low concentration of BMO makes it challenging to
identify and characterize these compounds when compared
with HMO. The OS concentration can reach values as high
as 0.7–1.0 g/L in bovine colostrum or can be detected as
just trace amounts in bovine milk [135], being much lower
than the OS concentration in human milk. Caprine milk is
another type of milk, which contains complex OS similar
to HMO. The discovery of the presence of fucosylated and
sialylated OS that are considered as prebiotics and which
have the ability to reduce pathogen adherence to the intestine
wall has opened up translational opportunities to human
health [136]. Approximately 37 caprine milk OS (COS) have
been identified, of which nearly half of them have had their
structural complexity elucidated. Similar to bovinemilk, COS
are present in very small concentrations when comparedwith
HMO. However, they have been found in concentrations of
0.25–0.3 g/L, which is 4-5 times higher than BMO [137].
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From those two alternative sources of HMO-like OS
(BMO and COS), industrial streams arising from cheese
manufacturing and production of whey protein concen-
trates (WPC) and isolates (WPI) have been considered as
a more realistic source of OS for future commercialization
[129, 138]. Considering the enormous worldwide production
of whey (180–190 × 106 tonnes/year; http://www.adpi.org/
Portals/0/PDF/09Conference/TAGEAFFERTSHOLT.pdf)
and the fact that the major industrial application of whey
to produce WPC and WPI generates a new byproduct
containing the target OS, the development of economically
feasible processes to recover these compounds represents a
key step in enabling the large-scale production of OS.

3.2. Biological Activities of Oligosaccharides. While a wide
range of biological functions has been attributed to HMO,
less information is available regarding the biological activities
of BMO and COS. The limited availability of large quantities
of OS with high degree of purity can be inferred by the
limited number of in vivo studieswith those compounds, with
the majority of milk OS biological activities being described
by in vitro studies. Recent reports of some of the biological
activities of HMO, BMO, and COS are reported in Table 3.

3.2.1. Prebiotic Activity. One of the main features of HMO
is that they can only be consumed by very specific bacteria
strains that possess the appropriate set of enzymes to cleave
their complex structure. This prebiotic effect is associated
with improved health outcomes. A prebiotic is “a selectively
fermented ingredient that allows specific changes, both in
the composition and/or in the activity in the gastrointestinal
microflora, conferring benefits upon host well-being and
health” [139]. Because HMO are only partially digested in
the small intestine, they can reach the colon intact where
they selectively stimulate the development of bifidogenic
flora. A recent study has demonstrated the bifidogenic effect
of major fucosylated and sialylated HMO when fed as a
sole source of carbon to 25 major isolates of the human
intestinal microbiota [140]. Most of the Bifidobacteria spp.
and Bacteroides spp. were able to consume those OS and to
produce short chain fatty acids, while common pathogenic
bacteria were not able to grow on those OS. In vitro biological
activities of HMO have been supported by in vivo studies.
One of the newest publications in this topic demonstrated the
ability of 2-fucosyllactose and 3-fucosyllactose to selectively
increase some intestinal bacteria populations like Barnesiella,
the major bacterial genus in mice [141], being this effect
correlated with reduced level of colitis.

Prebiotic activities of COS, recovered from caprine whey,
have been evaluated by in vitro studies [142]. The purified
COS fraction favored the development of Bifidobacterium
spp. and produced short chain fatty acids such as lactic and
propionic acids but presented no inhibition of Staphylococcus
aureus and Escherichia coli grown in human faeces.

3.2.2. Antipathogenic Activity. A second feature of OS is the
ability to reduce pathogen biding to the intestinal mucosa.
The intestinal mucosa is heavily glycosylated and covered

with complex glycans including glycoproteins, glycolipids,
andmucins, among others [143, 144]. Bacteria and viruses are
able to recognize certain types of fucosylated and sialylated
OS and adhere to them [130], therefore acting as anti-infective
agents.Milk OS are also fucosylated and sialylated so bacteria
and viruses, in presence of OS, will attach less to intestinal
cells. The ability of pathogens to bind to specific OS seems
to be intrinsically correlated with their structure. Neutral
OS containing HexNAc block adhesion of pathogens that
cause diarrhea (Vibrio cholerae) and pneumonia (Strepto-
coccus pneumoniae) [15, 145], while neutral fucosylated OS
have been shown to inhibit adhesion of other pathogens
(i.e., Campylobacter jejuni and diarrheagenic E. coli) that
cause gastrointestinal disorders [146]. Acidic OS containing
sialic acid are able to block adhesion of Helicobacter pylori,
which causes peptic ulcers and other gastric diseases [147],
Staphylococcus aureus, and Clostridium botulinum [148].

Recent in vitro studies have demonstrated that BMO also
possess antibacterial properties as observed for HMO. BMO
from colostrum permeate proved to be effective in protect-
ing HEp-2 cells from enteropathogenic E. coli, Cronobacter
sakazakii, and Salmonella enterica serovar typhimurium [149].
It has also been demonstrated that BMO can inhibit the
pili-mediated adhesion of Neisseria meningitidis in vitro
[150]. Several studies have demonstrated the inhibition of
the attachment of enteric pathogens such as E. coli and
Campylobacter jejuni and noroviruses with HMO [151]. This
effect has also been demonstrated by in vivo studies in which
isolated HMO were fed to suckling mice before and after
infection with enteropathogenic E. coli. Mice that received
HMO significantly reduced colonization of this species com-
pared with untreated controls [152].

3.2.3. Anti-Inflammatory Activity. OS have been also con-
sidered as anti-inflammatory agents due to their prebiotic
activities and their ability to act as receptors of microorgan-
isms. In vivo studies have demonstrated that COS possess
anti-inflammatory properties towards the development of
experimental colitis in rats. Pretreatment of the rats with
isolated COS reduced the typical signs of induced colitis,
including less anorexia, better body weight gain, and less
macroscopic intestinal lesions, among others [153]. Similar
results were observed by Lara-Villoslada et al. [154], where
COS were shown to play an important role in intestinal
protection and repair after a damage caused by DSS in rats.

4. Future Prospects

Milk has long been recognized as a source of macro- and
micronutrients. Recent identification of many important bio-
logically active substances on milk and its derivatives has
attracted much attention from the scientific community. Not
only are many of these bioactive compounds associated with
growth, but they also confer many health benefits that might
support disease prevention. Milk proteins and peptides are
usually well tolerated and demonstrate oral bioavailability. In
this view, they have the potential to act as health promoting
ingredients and to participate in auxiliary therapies to boost
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Table 3: Biological activities of human, bovine, and goat oligosaccharides.

Microorganisms/animals Molecule used Dose Duration/details Outcome measured Reference
Bifidobacterium spp.,
Bacteroides spp.,
Clostridium spp.,
Lactobacillus spp.,
Enterococcus spp.,
Streptococcus spp.,
Staphylococcus spp.,
Enterobacter spp., and
Escherichia coli

HMO (2-FL, 3-FL,
LDFT, 3-SL and

6-SL)
0.5–2 g/L 48 hrs OS incubation

SCFA quantification,
bacterial growth, and
OS consumption

[140]

Mice HMO (2-FL and
3-FL)

500mM, starting with
5mL, increasing by
2.5mL every 3 d
reaching a daily

amount of 25mL on
day 20

From day 1 to day 20
after birth

Bacterial amount,
colitis signs [141]

Bacteria from human feces Pooled GOS During incubation Bacterial amount [142]

Mice Pooled HMO 15mg/day
One day before and
after infection with

EPEC

Intestinal
colonization of EPEC [152]

HEp-2 cells Pooled BMO from
colostrum

20mg/L of total
carbohydrate in

culture
During incubation Adherence inhibition [149]

Bovine thyroglobulin and
human salivary agglutinin
glycoproteins

Pooled HMO and
BMO 40 g/L During incubation Neisseria meningitidis

Pili attachment [150]

Rats Pooled GOS 500mg/(kg∗d)
2 days before and 6
days after induced

colitis
Colonic damage [153]

HMO: human milk oligosaccharides; FL: fucosyllactose; LDFT: lacto-difucosyl-tetraose; SL: sialyllactose; GOS: galacto-oligosaccharides; BMO: bovine milk
oligosaccharides.

overall success in chronic diseases. However, this research
area is only at its beginning and more peptides with physi-
ological effects are to be discovered in the future. Confirming
the health benefits of these bioactive compounds requires
the design of clinical trials based on metabolomic genomics,
proteomics, transcriptomics, and epigenetic data, in order
to explore new biomarkers related to the observed health
benefits.

While larger data for in vivo biological activities of milk
and peptides is observed, the same is not observed for OS. To
date, few studies have demonstrated the safety and efficacy
of OS supplementation [155, 156]. The reduced number of
biological activities evaluated for BMO and COS reveals the
challenges associated with the production of OS in adequate
quantities and purity needed for clinical trials. The develop-
ment of new synthetic pathways to produce highly purified
OS and of large-scale processes to recover those OS from
their respective industrial streams will likely improve the
elucidation of their biological activities and determine their
safety and efficacy in clinical trials with humans. Moreover,
the development of more environmentally friendly processes
that are also economically feasible not only will enable the

production of a new generation of prebiotics but will address
environmental issues associated with the disposal of OS-
containing waste streams and poor economic viability of our
food industry.
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