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Adaptive use of interaction torque 
during arm reaching movement 
from the optimal control viewpoint
Van Hoan Vu1,2, Brice Isableu3 & Bastien Berret1,2

The study aimed at investigating the extent to which the brain adaptively exploits or compensates 
interaction torque (IT) during movement control in various velocity and load conditions. Participants 
performed arm pointing movements toward a horizontal plane without a prescribed reach endpoint 
at slow, neutral and rapid speeds and with/without load attached to the forearm. Experimental 
results indicated that IT overall contributed to net torque (NT) to assist the movement, and that such 
contribution increased with limb inertia and instructed speed and led to hand trajectory variations. 
We interpreted these results within the (inverse) optimal control framework, assuming that the 
empirical arm trajectories derive from the minimization of a certain, possibly composite, cost function. 
Results indicated that mixing kinematic, energetic and dynamic costs was necessary to replicate 
the participants’ adaptive behavior at both kinematic and dynamic levels. Furthermore, the larger 
contribution of IT to NT was associated with an overall decrease of the kinematic cost contribution and 
an increase of its dynamic/energetic counterparts. Altogether, these results suggest that the adaptive 
use of IT might be tightly linked to the optimization of a composite cost which implicitly favors more the 
kinematic or kinetic aspects of movement depending on load and speed.

Human movement control is a complex process partly due to the non-linearity induced by the pluri-articulated 
nature of the skeletal system. Motion in the body structure leads to the emergence of interaction torque (IT) 
between segments (e.g. action of the forearm onto the upper-arm) but also within a segment (e.g. among the 
3 main degrees of freedom of the shoulder joint for the upper-arm in 3D). Such coupled nonlinear dynam-
ics implies that motion at one degree of freedom (DoF) may induce significant motion at the other ones. This 
property requires the central nervous system (CNS) to rely on effective computational and neural principles for 
accurately controlling movement even for simple daily living tasks such as putting a cup of teaon a desk. Coping 
with IT is therefore a critical issue for the CNS and adaptively using it may contribute to motor efficiency by 
lowering the overall amount of muscle torque (MT) required to achieve a given task. In contrast, its inadequate 
use or inefficient exploitation may amplify sensorimotor noise throughout the kinematic chain or lead to greater 
energy expenditure. Interestingly, a large body of evidence has suggested that the CNS has ability to estimate and 
anticipate IT via internal models of the limbs’ dynamics (e.g. ref. 1) (but see ref. 2 for an alternative view based 
on equilibrium-point theory). In this study, we will rely on the internal model hypothesis and hypothesize that 
the CNS has some form of knowledge about IT at the motor planning stage. In this view, we may devise two 
extreme options but the solution used by the brain can conceivably lie in-between. On the one hand, the “com-
pensation” hypothesis assumes that IT is totally canceled itself out during motor planning3–9. On the other hand, 
the “exploitation” hypothesis assumes the brain utilizes IT as much as possible to generate motion at other DoFs 
without dedicated muscle effort at those DoFs10–18. Arguably, the extent to which the CNS actually exploits IT 
should be reflected in the adaptability of arm trajectories with respect to speed and load changes as IT strongly 
depends on such factors. Hence the purpose of this study was twofold: (i) evaluate whether the CNS adaptively 
exploits (or compensates) IT during unrestrained 3D arm movements, and (ii) identify normative principles that 
may account for how the CNS copes with IT during motor planning.

To this aim, we investigated a free 3D arm pointing task and modeled it using optimal control theory. The 
rationale of our approach was as follows. First, to let emerge motor strategies revealing IT exploitation or com-
pensation strategies, subjects were asked to perform movement without a prescribed reach endpoint. Precisely, we 
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considered unconstrained 3D arm pointing movements to a horizontal planar target. This laboratory task can be 
thought as similar to pushing a door to open it or to the cup of tea example given above; in these tasks, there is no 
unique final hand position for their achievement19,20. The present task nonetheless imposes accuracy constraints 
forcing the participants to spatially control their end-effector along the vertical direction in order to reach the 
goal (i.e. the plane here). Therefore, participants had to take into account IT during planning or execution to per-
form the task successfully just as in classical point-to-point reaching paradigms. Considering 3D motion was also 
critical since it fundamentally differs from 2D motion in that IT does not only exist between segments but also 
within a segment in 3D. Second, to better characterize the role of IT, we varied both the inertia (addition of a load 
to the forearm) and the speed (slow/fast verbal instructions) as the shape and magnitude of IT critically depends 
on those factors. We predicted that, if IT is exploited (even partially), the inter/within-segment ITs should con-
tribute more significantly to trajectory and torque profile formation when inertia and/or motion speed are large. 
Alternatively, if IT is compensated, such modifications should have non-significant effect on the arm trajectories, 
except that the MTs should be adjusted to cancel the larger ITs. Third, we aimed at accounting for the empirical 
pointing strategies via inverse optimal control with composite cost functions21–23. Optimal control theory is an 
appealing framework to apprehend human motion as it points out possible high-level principles underlying arm 
movement formation in a concise and normative way24–26. Here, kinematic costs are necessarily associated with 
a “compensation” strategy because they ignore IT during motor planning while energetic and dynamic costs may 
fall within the “exploitation” category as they take into account IT at the planning stage. To the best of our knowl-
edge, it is the first time that the role of IT on 3D human motion is interpreted from the (inverse) optimal control 
viewpoint. We hypothesized that any adaptive compensation/exploitation trade-off of IT could be associated to 
the minimization of composite cost mixing kinematic, dynamic or energetic quantities.

Results
Kinematic analysis.  Hand kinematics.  The task is illustrated in Fig. 1 for a representative participant where 
the initial posture, hand paths, final positions and the planar target are represented. The same participant will 
be illustrated throughout the paper to facilitate qualitative comparisons between figures. The complete hand 
kinematics is depicted in Fig. 2 (top panel) for this representative participant. Overall, classical patterns seen 
in point-to-point reaching movements were observed. The movement was mainly along the AP and vertical 
directions, with typical sigmoidal patterns, and the velocity was bell-shaped for all speeds. Although the reach 
endpoint was not imposed in this free-endpoint task, we thus observed quite classical hand kinematic patterns. A 
quantitative analysis using data from all the participants is given hereafter.

Figure 1.  Illustration of the experimental paradigm. Fixed initial arm position and horizontal target plane 
were tested, therefore defining a free reach-endpoint motor task. A 4-DoF model of arm was examined (3 DoFs 
at the shoulder and 1 DoF at the elbow). Three speed and two load conditions were tested. At the two bottom 
panels displayed the arm posture at the initial time with no load (left) and with a load (right) approximately 
attached to the center of mass of the forearm. The average fingertip trajectories of a representative subject were 
drawn in thick, thin and dotted lines for the three speeds (slow, natural, fast, denoted by S, N, F) respectively. 
The two top panels display the reach endpoint positions across trials for this subject for the three speed 
condition, and no-load (left) and load (right) conditions. The 95% confidence ellipses of the reach endpoints are 
drawn. Note that along the antero-posterior (AP axis), the position of reach endpoint positions tended to get 
closer to the shoulder position when movement speed increased or when the load was attached to the forearm.
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Movement duration (MD).  Movement durations for the two experimental blocks (i.e. no-load and with-load), 
averaged across all subjects, are presented in Table 1. For the former block, the values (mean ±​ std) corresponding 
to the three speed conditions (i.e. S, N, F) were respectively 0.85 ±​ 0.15, 0.49 ±​ 0.07, 0.32 ±​ 0.06 s. Those values 
were respectively 0.84 ±​ 0.14, 0.52 ±​ 0.08, 0.35 ±​ 0.07 s for the latter block. Two-way repeated measures ANOVAs 

Figure 2.  Hand, joint and torque profiles for the representative subject of Fig. 1. For the hand kinematics, 
displacements along the AP, ML and vertical axes are depicted as well as the Cartesian hand velocity (average 
and standard deviation shown as a shaded area) for the 3 speeds and two load conditions (black is for no-load 
and red for with-load). For the joint kinematics, the angular displacements for the 4 degrees of freedom are 
depicted. For the joint torques, we depicted the net torque acting at each degree of freedom.
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showed no speed ×​ load interaction for MD (p =​ 0.55). However, significant differences were found across speed 
conditions (p <​ 0.001, F(2, 18) =​ 101.1, η = .0 91p

2 ), but not between load conditions (p =​ 0.13). This result, there-
fore, implied that the speed-related requirements (i.e. distinguishable within each load condition but consistent 
between two load conditions) were fulfilled by all subjects during the experiment.

Finger endpoint variability (Za and Zp).  The finger constant and variable errors along the vertical axis (Za for 
accuracy and Zp for precision) were averaged across all subjects and displayed in Table 1. It is noteworthy that 
the pointing accuracy along the horizontal axes (AP and ML) were not examined because no prescribed reach 
endpoint was introduced regarding to the final position of the fingertip on the horizontal plane. Therefore there 
was no constant error in this plane. Regarding the goal of the task (thus along the vertical axis), Zp values slightly 
increased while Za values slightly decreased as movement speed increased, regardless of the load condition. 
However, two-way repeated measures ANOVAs analyses showed no significant load ×​ speed interaction or 
load/speed variation for Za error (pload×xspeed =​ 0.13, pload =​ 0.83, pspeed =​ 0.46) and for Zp error (pload×speed =​ 0.37, 
pload =​ 0.44, pspeed =​ 0.08), thus indicating equal accuracy/precision achievement despite different speed/load 
movement conditions. In order to evaluate whether the change of speed/load conditions affected the shape of 
arm trajectories, the following analyses focuses on other relevant and classical kinematic parameters.

Reach endpoint analyses.  One main variable of the task is the reach endpoint location as it was left free to the 
participants. We first qualitatively examined the effect of speed and load variations on the reach endpoint posi-
tion. To this aim, the projection of reach endpoints onto the transversal plane (composed of ML and AP axes) is 
presented in the top panels of Fig. 1 for the representative subject. A visual inspection suggests that the distribu-
tion of reach endpoints (displayed as 95% confidence ellipses) varies with respect to the different speed and load 
conditions. Specifically, the subject executed movement trajectories whose endpoint got closer to the shoulder’s 
vertical projection along the AP axis when movement sped up. A similar shift of the reach endpoint toward the 
shoulder location was observed when adding a load to the forearm. Similar analyses were systematically con-
ducted for all subjects. The normalized reach endpoint index (REAP, see Materials and Methods for its definition), 
averaged across all subjects is displayed in Table 1. Results showed that the reach endpoint index systematically 
decreased when movement speed increased and when the load was attached to the arm. This index was 
[76.3 ±​ 7.9%, 74.2 ±​ 9.3%, 73.6 ±​ 9.3%] for the no-load condition and [74.4 ±​ 8.2%, 72.0 ±​ 8.9%, 71.3 ±​ 9.6%] for 
the with-load condition, respectively. Two-way repeated measures ANOVAs showed no significant speed ×​ load 
interaction (p =​ 0.83) but a significant change of REAP with respect to speed (p <​ 0.001, F(2, 18) =​ 12.2, η = .0 57p

2 ) 
and load (p <​ 0.05, F(1, 9) =​ 5.2, η = .0 36p

2 ) changes. This analysis proved that the final hand position, which was 
freely chosen in this task, changed as a function of speed and load across subjects: subjects tended to point closer 
to their body when speed or forearm inertia increased.

Curvature index analysis.  The averaged curvature indexes are reported in Table 1 for the load and speed condi-
tions. For the no-load condition, the index obtained values of 0.18 ±​ 0.03, 0.17 ±​ 0.03, 0.16 ±​ 0.03 for the S, N and 
F speeds respectively. These values were equal to 0.18 ±​ 0.03, 0.17 ±​ 0.03, 0.16 ±​ 0.04 respectively for the load 
condition. Two-way repeated measures ANOVAs revealed no significant speed ×​ load interaction (p =​ 0.07) and 
no significant effect of load (p =​ 0.78) but a significant change of curvature index under speed variations 
(p <​ 0.001, F(2, 18) =​ 13.3, η = .0 59p

2 ). Therefore, hand paths tended to become straighter with speed 
increments.

Joint kinematics.  Like the hand kinematics, the joint kinematics was also illustrated for the representative sub-
ject in Fig. 2 (middle panel). It is visible that the movements were executed mainly around the shoulder ulnar/
radial axis while smaller displacements were observed for the other remaining axes. The magnitude of these 
angular displacements were analyzed for all subjects and the results are displayed in Table 1. Two-way repeated 
measures ANOVAs showed no significant speed ×​ load interaction and no significant effect of load and speed for 
shoulder internal/external, elevation/depression, elbow extension/flexion but a significant change for the 

No load With load

S N F S N F

MD (s) 0.85 ±​ 0.15 0.49 ±​ 0.07 0.32 ±​ 0.06 0.84 ±​ 0.14 0.52 ±​ 0.08 0.35 ±​ 0.07

Shinternal/external (°) 11.3 ±​ 6.6 12.5 ±​ 6.3 14.1 ±​ 6.3 11.2 ±​ 5.5 12.7 ±​ 5.8 12.2 ±​ 6.2

Shelevation/depression (°) 10.3 ±​ 7.0 11.4 ±​ 6.3 11.8 ±​ 6.5 9.9 ±​ 5.3 10.6 ±​ 5.2 11.2 ±​ 5.2

Shulnar/radial (°) 96.4 ±​ 16.1 98.8 ±​ 15.9 100.5 ±​ 16.1 97.0 ±​ 15.1 99.5 ±​ 14.9 101.7 ±​ 16.1

Elextension/flexion (°) 14.7 ±​ 8.6 14.6 ±​ 7.6 14.7 ±​ 6.9 13.1 ±​ 8.6 12.4 ±​ 8.7 12.9 ±​ 8.2

REAP (%) 76.3 ±​ 7.9 74.2 ±​ 9.3 73.6 ±​ 9.3 74.4 ±​ 8.2 72.0 ±​ 8.9 71.3 ±​ 9.6

Cur 0.18 ±​ 0.03 0.17 ±​ 0.03 0.16 ±​ 0.03 0.18 ±​ 0.03 0.17 ±​ 0.03 0.16 ±​ 0.04

Za (cm) 0.8 ±​ 0.7 0.7 ±​ 0.7 0.6 ±​ 0.4 0.7 ±​ 0.6 0.6 ±​ 0.6 0.6 ±​ 0.5

Zp (cm) 0.7 ±​ 0.2 0.8 ±​ 0.3 0.9 ±​ 0.5 0.7 ±​ 0.2 0.8 ±​ 0.3 0.8 ±​ 0.3

Table 1.   Main kinematic movement parameters (mean ± std across subjects) for the three speed (S, N, F) 
and two load (no load, with load) conditions.
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shoulder ulnar/radial angle under speed variations (p <​ 0.001, F(2, 18) =​ 27.8, η = .0 81p
2 ). The extent of the rota-

tions around this major axis for the task depended on speed but not load.
In summary, the speed and load dependencies of the reach endpoint and curvature indexes suggested that 

the CNS may adapt its motor control strategy to best suit the new task constraints. In order to better uncover the 
possible causes underlying this adaptation, an analysis at the dynamic level is performed hereafter.

Dynamic analysis.  Qualitative analysis of torque profiles.  For the sake of illustration, net torque (NT) pro-
files are shown in Fig. 1 for all conditions of speed and load (bottom panels) for the representative subject. The 
four torque profiles corresponding to the internal/external, elevation/depression, ulnar/radial DoFs of the shoul-
der and the extension/flexion DoF of the elbow are depicted. Overall, net torque profiles marked clear differences 
with respect to load or speed variations. The magnitude of net torques typically increased when the load was 
added or when speed was augmented by a verbal instruction. The patterns were similar to that of an acceleration 
in most cases, except for the elbow extension/flexion in fast speed. In terms of magnitude, the torques at the elbow 
joint appeared to be considerably smaller than those produced at the shoulder joint. Within the shoulder joint 
itself, the torque profiles of the three coupled DoFs were quite complex. Although kinematic analyses showed 
less involvement of shoulder internal/external and elevation/depression axes in the formation of arm trajectories 
compared to the shoulder ulnar/radial axis (Table 1), one could however observe quite large torques at the two 
former axes. Maximum magnitude was about 10 N.m and measured at fast speed (F).

For a more detailed analysis of the composition of net torques, a focus on normal speed (N) is presented in 
Fig. 3 in the two experimental load conditions (no-load/with-load) and for the same representative subject. Other 
speeds are not illustrated here for clarity but the effect of speed will be treated in the subsequent quantitative and 
statistical analyses. Specifically, at the prominent axis for the task (i.e. shoulder ulnar/radial), the dynamic muscle 
torque (defined as muscle torque without the gravity component, denoted as dMT) and the interaction torque 
(IT) both contributed to the net torque (NT) in the same direction, thus producing quite large NT here. On the 
contrary, for the other axes (e.g. shoulder internal/external and elevation/depression), the dMT was most of the 
time opposed to both IT and NT; meanwhile, IT was observed to vary in the same direction with the NT.

A finer examination however revealed few factors that may be responsible for the speed/load-dependent arm 
kinematics found above. Indeed, in terms of magnitude, while the maximal value of NT at the shoulder ulnar/
radial axis in the load condition was pretty similar to that of the no-load condition (4 Nm), the difference in the 
NT for the two load conditions was much larger at the shoulder internal/external and elevation/depression axes. 
Interestingly, it is noteworthy that the motion of the internal/external and elevation/depression DoFs of the shoul-
der joint should have high impacts on the location of the final reach endpoint within the planar target (and maybe 
curvature too). Therefore, these differences on mean torque profiles, especially at the first two shoulder rotation 
axes, could possibly account for the speed/load-dependent changes of reach endpoint/curvature observed above.

Interestingly, note that the magnitude of IT increased clearly with the addition of the load (as expected) and 
that it reached quite large compared to the other torques (dMT, NT). Moreover, IT appeared to vary systemati-
cally in the same direction than NT (i.e. assisting the motion), thereby explaining what dMT were relatively small 
in general. Therefore, from these plots, it seems possible that the CNS may take into account the presence of IT 
to facilitate and assist movement. In order to clarify this hypothesis, we next quantitatively examined the impact 
of IT on NT in terms of ITg and ITl indexes (see Materials and Methods for their definitions), which are indexes 
designed to assess the degree of contribution of IT to NT.

Torque profile quantitative analyses.  Global interaction torque index (ITg).  The ITg indexes, averaged across all 
subjects for both speed/load experimental conditions, are shown in Fig. 4. In terms of load effect, it is visible that 
the ITg indexes were larger in the load condition than in the no-load condition, regardless of motion speed. 
Precisely, the ITg indexes shifted from [0.51 ±​ 0.21, 0.73 ±​ 0.19, 0.80 ±​ 0.16] for the no-load condition to 
[0.64 ±​ 0.22, 0.85 ±​ 0.13, 0.95 ±​ 0.12] for the load condition with respect to S, N, F speeds, respectively. In terms 
of speed effect, the ITg indexes of both load conditions increased whenever the movement was sped up. Two-way 
repeated measures ANOVAs on ITg yielded no significant speed ×​ load interaction (p =​ 0.56) but significant 
effects of load (p <​ 0.001, F(1, 9) =​ 89.1, η = .0 90p

2 ) and speed (p <​ 0.001, F(2, 18) =​ 41.2, η = .0 86p
2 ), indicating 

that IT were exploited to a greater extent whenever the load and the movement speed were increased. Moreover, 
it is noteworthy that ITg values were always positive (>​0.5) while they could theoretically be negative as well. 
Altogether, these results implied that in general IT assisted the movement and that, importantly, this contribution 
of IT to the movement was strengthened with load or speed augmentations (which increase overall IT 
magnitudes).

Interaction torque contribution characteristics.  Spatial investigation: local interaction torque indexes (ITl).  In 
order to better understand the mechanism the CNS may rely on to adaptively use IT at different DoFs, we inves-
tigated the local IT contribution index (ITl) for every rotation axis involved in the limb’s movement. The averaged 
ITl indexes for both load and speed conditions are given in Fig. 5. Like ITg index, we observed that the ITl index 
was also speed and load dependent. Indeed, for most DoFs (except the elbow extension/flexion axis), two-way 
repeated measures ANOVAs on ITl indexes showed no significant speed ×​ load interaction but a significant 
increase of ITl (puln/rad <​ 0.01, Fuln/rad (1, 9) =​ 19.2, η = .0 68p

2 ; pele/dep <​ 0.001, Fele/dep (1, 9) =​ 20.2, η = .0 69p
2 ; 

pint/ext <​ 0.001, Fint/ext (1, 9) =​ 41.4, η = .0 82p
2 ) when the load was attached to the arm or when the movement sped 

up (puln/rad <​ 0.001, Fuln/rad (2, 18) =​ 11.6, η = .0 56p
2 ; pele/dep <​ 0.001, Fele/dep (2, 18) =​ 30.7, η = .0 77p

2 ; pint/ext <​ 0.001, 
Fint/ext (2, 18) =​ 14.9, η = .0 62p

2 ). Finer analysis showed that IT was utilized to assist movement at several DoFs but 
to different extents. Indeed, for the two load conditions, the IT indexes of elbow extension/flexion axis were 
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always smaller than those of shoulder-related ones. Between the three coupled rotation axes of the shoulder joint, 
the IT indexes of shoulder internal/external and elevation/depression axes were considerably larger than those of 
shoulder ulnar/radial axis irrespective of speed/load conditions. Given that these three axes belong to a same 
joint, these results revealed the complexity of IT contribution.

Temporal investigation: interaction torque index analysis across bins.  The binned global IT indexes, averaged 
across all subjects, are illustrated in Fig. 6. It is visible that the pattern of IT indexes over the four bins for the two 

Figure 3.  Torque profiles (averaged across trials) of the representative subject at N speed for the no-load 
(top panel) and load (bottom panel) conditions. From left to right, the four torque profiles are for the shoulder 
internal/external, elevation/depression, ulnar/radial and elbow extension/flexion DoFs, respectively. The 
dynamic muscle torque (defined as muscle torque deprived of gravity torque, denoted by dMT), interaction 
torque (denoted by IT) and net torque (denoted by NT) are plotted.
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load conditions remains relatively consistent across all movement speed conditions. At normal speed (N) for 
example, the IT indexes of four bins clearly changed in a manner that is reminiscent of the bell shape of the hand 
velocity profile. Indeed, when the subjects started or terminated motion (bin 1 or bin 4), the IT index obtained the 
relatively small values of [0.50 ±​ 0.31, 0.59 ±​ 0.18] for the no-load condition and of [0.68 ±​ 0.20, 0.59 ±​ 0.22] for 
the load condition. Around the peak of velocity (i.e. bin 2 or bin 3), the IT index increased considerably and 
reached [0.96 ±​ 0.2, 0.87 ±​ 0.19] for the no-load and [1.07 ±​ 0.11, 0.99 ±​ 0.08] for the load conditions respectively. 
This may not be a surprise given that IT magnitude depends on speed and accelerations, which are greater during 
the course of a reaching movement than near the initiation or termination phases. A main effect of speed on IT 
index was also present for each of the four bins. Two-way repeated measures ANOVAs on IT index showed no 
significant speed ×​ load interaction but a significant effect of speed for all bins (pbin1 <​ 0.001, Fbin1(2, 18) =​ 13.1, 
η = .0 59p

2 ; pbin2 <​ 0.001, Fbin2(2, 18) =​ 20.1, η = .0 69p
2 ; pbin3 <​ 0.001, Fbin3(2, 18) =​ 12.2, η = .0 57p

2  and pbin4 <​ 0.001, 
Fbin4(2, 18) =​ 11.1, η = .0 55p

2 ). In terms of load effect, the binned IT indexes were generally consistent with the 
above results. Indeed, the IT indexes in the load condition were always significantly larger than those in the 
no-load condition for the first three bins (pbin1 <​ 0.001, Fbin1(1, 9) =​ 39.6, η = .0 81p

2 ; pbin2 <​ 0.01, Fbin2(1, 9) =​ 18.2, 
η = .0 66p

2 ; pbin3 <​ 0.01, Fbin3(1, 9) =​ 13.6, η = .0 60p
2 ) but no significant difference was found for the fourth bin 

(pbin4 =​ 0.13).

Nature of interaction torque: velocity- versus acceleration-based IT index.  The averaged IT indexes across all 
subjects taken separately for the two interaction torque components (Tacc and Tvel) are reported in Fig. 7 (see the 
Materials and Methods section for their definitions). Overall, the IT indexes of the two torque components were 
quite similar, suggesting that IT originating from velocities and accelerations are both used during the movement. 
Indeed, both IT indexes increased whenever movement speed increased. In terms of load effect, we also observed 
an upward shift of IT index for both Tacc and Tvel. Two-way repeated measures ANOVAs showed no significant 
speed ×​ load interaction (pTacc =​ 0.85, pTvel =​ 0.48) but significant main effects of speed/load conditions for both 
Tacc (pspeed <​ 0.001, Fspeed(2, 18) =​ 14.9, η = .0 62p

2 ; pload <​ 0.001, Fload(1, 9) =​ 95.4, η = .0 91p
2 ) and Tvel (pspeed <​ 0.001, 

Fspeed(2, 18) =​ 34.3, η = .0 79p
2 ; pload <​ 0.001, Fload (1, 9) =​ 21.9, η = .0 71p

2 ). Finer analysis revealed that the IT 
indexes of Tacc were always larger than those of Tvel regardless of speed/load conditions but their difference 
remained approximately constant with respect to the change of speed/load. Nonetheless, it is remarkable that the 
IT indexes of both Tacc and Tvel were always positive, thereby implying that in all cases both Tacc and Tvel contrib-
uted positively to NT and that, overall, IT assisted the movement.

In summary, the above empirical results revealed a significant effect of speed and load on both the kinematics 
and dynamics of the motor behaviors during the free 3D arm pointing movements we considered here. This effect 
seems to originate from the unequal influence of IT on NT when speed or/and load are modified. Next, to inter-
pret and propose principles to explain the above kinematic and kinetic adaption of reach strategies to load and 
speed variations, inverse optimal control simulation results are presented. Inverse optimal control is dedicated 
to automatically characterize the cost with respect to which empirical trajectories are assumed to be optimal. In 
other words, this is done to characterize the best-fitting composite cost for the experimental motion data under 
investigation.

Optimal control results.  Arm kinematics predicted by composite and elementary costs.  We applied direct 
optimal control (DOC) separately to the three elementary cost functions under consideration (see Table 2) for all 
subjects to check whether each of them could account for the experimental observations. These simulated optimal 

Figure 4.  Global interaction torque indexes (ITg), averaged across all subjects, and displayed for the three 
speed and two load conditions (with standard errors indicated by error bars). It is visible that the ITg index 
increased whenever movements sped up or a load was attached to the arm. In addition, its values were always 
positive, thus indicating that the IT positively contributed to the NT to some extent. Note that horizontal 
bars with stars indicate the results of post-hoc analysis for the speed condition. One, two, three stars stand for 
p <​ 0.05, p <​ 0.01 and p <​ 0.001 respectively.
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Figure 5.  Local interaction torque indexes (ITl), averaged across all the subjects, displayed for the three 
speed and two load conditions. From left to right: ITl of elbow extension/flexion, shoulder ulnar/radial, 
elevation/depression, internal/external, respectively. Noticeably, compared with shoulder-related DoFs, the ITl 
indexes at the elbow extension/flexion were considerably smaller. Between the three DoFs at the shoulder, the 
ITl indexes of shoulder ulnar/radial were smaller than the others. Statistical analyses showed significant effects 
of speed/load on the ITl index for these three DoFs, as indicated by horizontal bars

Figure 6.  Bin analysis of interaction torque exploitation. From left to right: average interaction torque 
indexes (across subjects) for bin 1, bin 2, bin 3 and bin4 respectively. Note that these four bins were defined by 
dividing movement duration into a series of 4 intervals based on the acceleration profile (see Methods). Note 
that IT index values were smaller for bins 1 and 4, while it was larger for middle bins (2 and 3). For each bin, 
statistical significance of post-hoc tests is reported.

Figure 7.  Component analysis of interaction torque exploitation. The IT indexes, averaged across subjects, 
are displayed for the three speed and two load conditions for the two components of IT. Left: velocity-related 
component (ITvel); Right: acceleration-related component (ITacc). It is visible that ITacc was always greater than 
ITvel. Statistical analyses showed significant effects of speed and load on the IT index for both IT components.
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trajectories were used to compute errors in terms of angular displacements (EJoint) and Cartesian displacements 
(ECart), which were then used as reference values for comparisons with the performance of the composite cost 
obtained from the inverse optimal control (IOC) procedure, as illustrated in Fig. 8. The Cartesian error ECart of the 
composite and kinematic costs were equal to 5.5 ±​ 3.2 cm and 6.2 ±​ 3.4 cm respectively. These errors were clearly 
smaller than those of the dynamic cost (ECart =​ 11.4 ±​ 5.3 cm) and even much smaller than those of the energetic 
cost (ECart =​ 15.5 ±​ 4.7 cm). Repeated measures one-way ANOVAs showed significant differences between the 
composite/kinematic costs and the dynamic/energetic costs (p <​ 0.001, F(3, 177) =​ 79.6, η = .0 57p

2 ) but no signif-
icant difference between the kinematic and composite cost (p =​ 1.0) when pooling all experimental conditions 
together. Similar conclusions were reached for the joint space errors (EJoint). Like the Cartesian errors, the angular 
errors (EJoint) of the composite and kinematic costs were quite small compared to those of the dynamic/energetic 
costs. Repeated measures one-way ANOVAs for EJoint errors also showed significant differences between the com-
posite/kinematic costs and the dynamic/energetic costs (p <​ 0.001, F(3, 177) =​ 125.8, η = .0 68p

2 ) but the differ-
ence between the kinematic and composite cost was not significant (p =​ 1.0). Altogether, one can conclude that 
both composite and kinematic costs performed better than the dynamic/energetic costs at replicating the main 
kinematic features of the recorded data. Therefore, pure energetic and dynamic costs can be ruled out as they are 
clearly unable to predict accurately some basic features of the task (e.g. hand path), and the composite and kine-
matic costs appear as the only candidates to account for the experimental trajectories at this point. In order to 
distinguish between these two costs, we further examined their performances in dynamic space. In particular, we 
investigated whether the IT index and its speed/load dependencies were replicated by such models.

Arm dynamics predicted by composite and kinematic costs.  For the sake of illustration, the dynamic strategies 
predicted by the identified composite and kinematic costs at normal speed (N) are shown in Fig. 9 in the no-load 
condition for the representative subject. It is visible that the two costs predicted quite different toque profiles 
if one considers the interplay between torques. Indeed, for the kinematic cost, large magnitudes of dMTs were 
required mainly to cancel out the perturbations caused by ITs, especially at the first two DoFs (i.e. shoulder inter-
nal/external and shoulder elevation/depression, about 3 Nm). Moreover, it happened that IT was opposed to NT, 
especially for the 2nd DoF. On the other hand, for the composite cost, smaller dMTs were required to perform the 
task and, clearly, this was achieved by letting IT contribute to NT on certain time periods. To assess the consist-
ency of this observation, we further quantified their performance in terms of IT index as presented below.

We first calculated the absolute reconstruction error of IT index (EIT) for both composite and kinematic costs. 
Their EIT value was averaged across speeds, loads and then across subjects and displayed in the right panel of 
Fig. 10. Importantly, the composite cost predicted the IT index much better than the kinematic costs. Indeed, the 
(mean ±​ std) EIT values of the composite cost were equal to 0.18 ±​ 0.16, nearly eight times smaller than those of 

Criterion Cost function References

Kinematic (Angle jerk) ∫ θ= = ∑ = ⃛C C dtKine
T

i i1 0 1
4 2 53

Energetic (Absolute work) ∫ θ τ= = ∑ = C C dtEner
T

i i i2 0 1
4 54,55

Dynamic (Torque change) ∫ τ= = ∑ = C C dtDyna
T

i i3 0 1
4 2 56,57

Table 2.   Definition and references for the cost functions used in the current study.

Figure 8.  Reconstruction errors in joint space (EJoint, left panel) and Cartesian space (ECart, right panel) 
for the best-fitting composite cost and each of the three cost elements taken separately. Error values were 
averaged across speeds, loads and then across subjects (with standard errors indicated by error bars). Noticeably, 
in terms of both joint and Cartesian errors, the composite (Comp) and kinematic (Kine) costs performed better 
than the dynamic (Dyna) and energetic (Ener) costs.
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the kinematic cost (EIT =​ 1.49 ±​ 0.53). Given that the empirical IT indexes (ITg) always obtained positive values 
larger than 0.5, the predicted IT index of the kinematic cost was considerably discrepant from the recorded data. 
Indeed, the kinematic cost exhibited such large EIT errors because it often produced trajectories whose IT indexes 
were negative (opposite to the real ones) irrespective of speed/load conditions. Repeated measures one-way 
ANOVAs for EIT showed significant difference between the composite cost and the kinematic cost (p <​ 0.001,  
F(1, 59) =​ 420, η = .0 87p

2 ).

Figure 9.  Torque profiles predicted by the identified composite cost (top panels) and the kinematic cost 
(bottom panels) for the representative subject at N speed and in no load condition. It is visible that the 
composite cost tends to let ITs contribute to NTs in order to get smaller dMTs while it is the opposite for the 
kinematic cost.
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Furthermore, we tested if the composite cost better reproduced the speed/load dependencies of IT indexes 
than the kinematic cost. To this aim, the prediction of slope obtained from a linear regression of IT index against 
speed/load variables was investigated. The left and middle panels of Fig. 10 show the errors EK speed

 and EKload
. In 

terms of speed effect, it is visible that the optimization of a composite cost predicted the speed-dependent change 
of IT indexes better than the kinematic cost. Indeed, the EK speed

 error was 0.13 ±​ 0.09 for the composite cost, which 
was nearly twice smaller than for the kinematic cost (EK speed

 =​ 0.25 ±​ 0.15). Repeated measures one-way ANOVAs 
for EK speed

 showed significant difference between the composite and kinematic costs (p <​ 0.01, F(1, 19) =​ 8.8, 
η = .0 32p

2 ). In terms of load effect, the difference between the composite and kinematic cost was even larger. 
Compared with the composite cost, the kinematic cost replicated quite poorly load-dependent variations 
(EKload

 =​ 0.61 ±​ 0.38, i.e. nearly seven times larger than the error for the composite cost). Again, repeated meas-
ures one-way ANOVAs for EKload

 revealed that the composite and kinematic costs differed significantly (p <​ 0.001, 
F(1, 9) =​ 20.7, η = .0 67p

2 ). Overall, our results therefore revealed that the composite cost could capture reasonably 
well both the adaptive kinematic and dynamic characteristics of the reach strategies while the kinematic cost 
clearly failed to explain the reach strategies in torque space.

Cost contribution evaluation.  In order to assess how each elementary cost contributed to the total (composite) 
cost according to speed and load changes, we estimated the influence of each of the kinematic, dynamic and 
energetic components (see Materials and Methods) and the results are reported in Fig. 11. Here, we display only 

Figure 10.  Reconstruction errors for some relevant parameters (EIT, EKspeed, EKmass) for the composite and 
kinematic costs. Error values were averaged across speeds, loads and then across subjects for EIT while averaged 
only across subjects for EKspeed/EKmass. Noticeably, in terms of EIT and EKspeed/EKmass errors, the composite cost 
performed much better than the kinematic cost, yielding to a conclusion that only composite cost could predict 
relatively well the IT index and its speed/mass dependencies as observed in the experimental movement.

Figure 11.  Cost contribution analyses. The contribution of elementary cost to the composite cost, averaged 
across all the subjects, is reported for the three speed and two load conditions. Left: cost contribution of 
kinematic cost; Right: cost contribution of dynamic cost. It is visible that the contribution of kinematic cost 
tended to decreased while those of dynamic cost increased with respect to the increase of movement speed and 
load.
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results of the kinematic and dynamic costs since the three cost contributions sum to 100% by definition. Overall, 
the contribution of the kinematic cost was largely dominant. Specifically, the average contribution (across speed 
and load conditions and subjects) of the kinematic cost was about 67 ±​ 14% while those of energetic and dynamic 
elements were 16 ±​ 11% and 17 ±​ 18% respectively. This result thus confirmed the important role played by the 
kinematic cost during the motor planning process, which is consistent with its role for replicating the kinematics 
of the arm pointing movements.

Further analyses showed that the contribution of each cost with respect to the composite cost varied whenever 
movements sped up or a load was attached to the forearm (even if the combination weights were fixed). 
Particularly, the kinematic contribution tended to decrease while the energetic and dynamic contributions 
increased. Indeed, when the speed increased from slow to natural and then to fast, the kinematic contribution 
reduced on average by [4%, 7%] while the energetic and dynamic contribution increased amount of [0.5%, 1%] 
and [3.5%, 6%] respectively. Two-way repeated measures ANOVAs yielded no significant speed ×​ load interaction 
(pkine =​ 0.73; pener =​ 0.09; pdyna =​ 0.39) but a significant effect of load (pkine <​ 0.05, Fkine(1, 9) =​ 5.9, η = .0 39p

2 ; 
pener <​ 0.05, Fener(1, 9) =​ 6.8, η = .0 43p

2 ; pdyna <​ 0.01, Fdyna(1, 9) =​ 13.9, η = .0 60p
2 ) and speed (pkine <​ 0.001, Fkine 

(2, 18) =​ 12.6, η = .0 58p
2 ; pener <​ 0.05, Fener(2, 18) =​ 2.9, η = .0 25p

2 ; pdyna <​ 0.01, Fdyna(2, 18) =​ 9.3, η = .0 51p
2 ) on 

the contribution values for all variables.
In summary, these results show that the CNS may largely rely upon a kinematic cost to plan motion kinemat-

ics but that dynamic/energetic cost elements are crucial to account for the kinetics of the reach strategies and 
their adaptation to speed and load variations. This interpretation is confirmed by a reduction of the kinematic 
cost contribution which is gradually replaced by a larger contribution of its dynamic and energetic counterparts 
as speed and/or load increase.

Discussion
In the current work, we examined the extent to which the brain adaptively exploits or compensates the interaction 
torque (IT) to assist or resist human arm movements and analyzed where this could originate from. To this aim, a 
free 3D arm pointing task (without predefined reach endpoint) was investigated while varying both limb inertia 
and movement speed, two factors that are known to influence IT. The experimental results showed that IT partly 
contributed to net torque (NT) thereby assisting the movement and that such contribution increased with limb 
inertia and movement speed. This finding might either be due to a lack of explicit compensation for IT or be a 
purposive goal of the CNS in order to exploit IT whenever it is sensible. This question was tackled by assuming 
that the observed trajectories were optimal with respect to a certain optimality criterion, and results showed that 
the present empirical observations were overall compatible with a composite cost trading-off kinematic, energetic 
and dynamic variables and not by any of these costs taken individually. Moreover, the increment of IT-to-NT 
contribution index was associated with a decreased contribution of the kinematic cost to the composite cost. 
This may shed new light on the origin of the adaptive use of IT, which might be related to the optimization of a 
trade-off between motion smoothness (i.e. kinematic) and effort (i.e.energetic/dynamic) that inherently reshapes 
the kinematic and kinetic aspects of a movement depending on speed/load constraints. These results are dis-
cussed in details hereafter.

Load and speed dependent use of interaction torque.  Both load and speed was varied in this study 
in order to clarify the role of IT in motion planning. Indeed, IT critically depends on limb’s inertia and speed 
characteristics. So if IT is an integral part of motion planning, some relevant motion parameters should vary 
significantly with respect to load/speed variations during the considered free pointing task. In the literature, 
several studies varied loads to examine the extent to which the brain tunes motor planning according to inertial 
properties. This was done in a series of works which have shown that motion kinematic parameters such as move-
ment paths, endpoint variability and normalized velocity profiles were load-independent27–31. These findings thus 
argued for a load compensation strategy since no effect of load on the arm trajectories was observed. However, 
this compensation strategy was questioned by other studies32–34 showing that the kinaesthetic perception of limb’s 
position was significantly affected by rotational inertia variables such as the minimum inertia principal axis. 
Therefore, the brain seems to take into account not only the load but also the specific distribution of the masses 
involved in rotational movements and might therefore use it during motor control. This latter idea found support 
in recent studies which showed significant effects of the racket polar moment of inertia on the limb movement 
strategy when examining tennis serve35,36. However, these studies were either limited to the analysis of the kine-
matic aspect of motor tasks or only concentrated on analyzing the effect of load on muscle torque (MT) while the 
effect of load on IT was not thoroughly examined, especially regarding to the contribution of IT to other torques 
(e.g. NT or MT). In the present work, using a quantitative approach to estimate the contribution of IT to NT 
allowed us to establish a more direct link between the limb inertia and the selected motor command defining the 
muscle patterns driving the arm. Interestingly, our results revealed that the brain purposely let IT increasingly 
contribute to NT to assist the movement when the limb inertia was increased via the addition of a load on the 
forearm.

Similar to the load effect, our results showed a significant effect of speed regarding the role of IT in the con-
trol of free arm pointing. Quantitative analyses showed that IT contributed more to NT such that IT assisted 
the movement more when the movement sped up. This finding was interesting given that IT magnitude is also 
known to increase drastically with speed, which was already shown to lead to IT utilization strategies in throwing 
tasks11,12,15–17,37. Further examination of IT at different phases of the movement (Fig. 6) showed that the contribu-
tion of IT to the movement was the highest around the peak of velocity. This finding was coherent with the work 
of18 where the effect of IT was proved to vary with different temporal phases of the movement during a catching 
task. Additionally, the IT indexes related to accelerations (Tacc) and velocities (Tvel) both increased with respect to 
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the movement speed. This finding actually confirms the work of3 which showed that the IT velocity terms have 
the same order of magnitude than the IT acceleration terms for a large range of movement speeds.

We next addressed the question of what principles or rules account for such an adaptive speed/load depend-
ent use of IT. Namely, is it due to a lack of explicit compensation for IT or a goal purposely planned by the CNS 
in order to exploit IT? In the subsequent paragraph, we discuss why the brain could both neglect and utilize IT 
depending on the time instant and DoF, and why discriminating between compensation and exploitation of IT is 
sometimes a challenging task.

Compensation or exploitation of interaction torques, or both?  In the literature, the role of IT (being 
compensated or exploited) has long been debated and our study may help to disentangle some controversial inter-
pretations. The compensation of IT has been proposed to account for the invariant aspects of certain movement 
kinematic parameters such as straight hand paths and bell-shaped speed profiles and extensively investigated in 
several studies of multi-joint limb movement focusing on planar point-to-point reaching tasks2–7. These studies 
argued that the explicit compensation of IT could remove the non-linearity and noise-related errors caused by 
IT in control signals, thereby contributing to stabilize and smooth out the movement. This hypothesis is actually 
compatible with the kinematic-based motor planning principles such as the well-known minimum jerk27 as it 
allows using a simple “scaling law” to accommodate various movement speeds3. The common aspect of these 
studies is that the experimental setup was designed for planar motion involving quite a small number of DoFs 
(usually 2), and usually constrained the arm motion (e.g. via a manipulandum) and imposed a specific predefined 
reference point as a target, which may have affected their control strategies38. In some studies, the setup could 
even lead subjects to freeze themselves the motion at specific DoFs. This was the case in the work of4 where the 
same elbow excursion was always required whereas shoulder excursion could vary, or by the work of7 where the 
experimental setup allowed accomplishing the task by only rotating around 1 DoF while keeping the motion state 
at another DoF either stationary or unchanged. As such, these protocols might have induced an IT compensation 
strategy in the sense that it was somewhat necessary to guarantee the task requirements. Nonetheless, it demon-
strated clearly that the brain has the ability to estimate and accurately compensate for IT when relevant for the 
task.

On the other hand, when examining more complex movement tasks (usually involving more than 3 DoFs) 
and without predefined final configuration of the limb (e.g. overthrowing task11,12,15,16,39), some authors have 
rather argued for the exploitation of IT to assist the movement. Interestingly, this latter idea allowed to explain 
many experimental observations. For instance39, showed that the inability to exploit the passive inter-segmental 
interaction forces was associated with the poor ability to throw fast balls in cerebellar and unskilled subject. 
In a cyclical arm rotation task40, showed that different rotation axes were chosen by different subjects, which 
was interpreted as different levels of IT exploitation depending on individual sensorimotor characteristics (more 
visual or proprioceptive). These findings were actually generalized into the hierarchical control hypothesis11,12 or 
the leading joint hypothesis14 that stressed the role of shoulder as a fundamental motion generator at other joints, 
via inter-segmental interaction acting at distal joints. Common to all these studies was the optimization of per-
formance, which was a clear task objective (e.g. throw a ball at maximal speed will require a subject to effectively 
coordinate torques to gain more acceleration), and the freedom offered by the motor task (relatively weak spatial 
constraints).

The above discussion emphasizes a possible link between the role of IT and the requirements of the task. 
It suggests that (i) the brain can compensate or exploit IT depending on the characteristics of the task and 
(ii) compensation or exploitation may not be a mere property of the motor controller; instead, it could be the 
consequences of higher processes within the brain that are related to the subjective and objective goals of the 
movement. Therefore, if the compensation versus exploitation debate seems to have a task-dependent origin, 
difficulties also arose because the answer could only be about a “partial exploitation” or “partial compensation” in 
general. Indeed, what is not full compensation can be seen as partial exploitation and vice-versa. In most existing 
studies which supported the compensation of IT2–7, subjects failed to perfectly counterbalance the effect of IT. It 
was then argued that this was due to the lack of explicit compensation of IT, or to a partial compensation of IT7. In 
fact, there was still a small contribution of IT to NT. Similarly, in studies supporting IT exploitation, IT was never 
observed to contribute completely to NT, meaning that a part of IT was actually canceled out by MT. In other 
words, the joints (often distal) were not entirely moved by IT, likely because such perfect exploitation would have 
driven the system to states incompatible with the task achievement or have yielded to undesired arm kinematics 
(e.g. more jerky trajectories). Therefore, it seems tricky to conclude whether the brain plans to partially com-
pensate or partially exploit IT, but what is undeniable is that the brain elaborates motor commands such that IT 
contributes to NT whenever it is possible and relevant for the task. We discuss below how this relative exploitation 
versus compensation strategies may arise during motor planning.

Motor planning: a trade-off between kinematic and kinetic factors.  The above issue about IT 
compensation/exploitation is in fact strongly related to the nature of hypothetical cost functions underlying 
motor planning. At a theoretical level, it is clear that the optimization of a kinematic cost would produce maxi-
mally smooth movements that account for the case of a full compensation of IT. In contrast, the optimization of 
dynamic or energetic costs would minimize the magnitude or the work of MT which will result in IT exploitation, 
to the greatest possible extent. In other words, this will improve the efficiency of the motor controller with respect 
to motion effort. Therefore, the question of whether the brain exploits or compensates IT during movement 
planning can be re-approached using optimal control theory and comparing between kinematic versus dynamic 
or energetic cost functions. Indeed, kinematic cost functions cannot exploit IT while cost functions involving 
torque-related variables can exploit IT. In this vein, assessing whether human movement is planned in terms of 
kinematic or dynamic/energetic variables has been tested in several studies41–46. Here, optimizing only energetic 
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or dynamic criteria lead to discrepant arm trajectories in terms of joint and Cartesian displacements, in which 
case it made no sense to further investigate what happened in torque space. In contrast, maximizing smoothness 
in joint space (angel jerk, i.e. kinematic cost) was remarkably efficient to fit the angular and Cartesian displace-
ments but it failed to describe accurately the movement in torque space. The only model that could explain both 
kinematic and kinetic aspects of the reach strategies, and their speed/load dependences, was the composite opti-
mality criterion mixing variables of different nature. This composite cost idea was already advanced and investi-
gated differently in previous studies21–23.

Interestingly, the effectiveness of a composite cost mixing these criteria to replicate the experimental data 
may help to understand why the reach strategies planned by the brain were as observed, in particular for what 
concerns ITs. For instance, one could wonder why the brain did not let IT drive the movement more extensively 
(e.g. at the 1st and 2nd DoF of the shoulder joint). Indeed, less MT would be required at these DoFs, which may 
be dynamically more efficient. However, in this case the arm trajectory would have been very different from the 
empirical one, possibly quite jerky, and the existence of large IT might even be harmful for the anatomical arm 
structure. One could also wonder why the brain did not try to cancel out all ITs to gain movement smoothness 
and stability but also to simplify motor planning. In that case, the brain should totally compensate or even “over-
compensate” for ITs, that is, having both NT and MT opposed to IT at a given DoF. However, the big disadvantage 
would be that large muscle torques are required to do so. Therefore, although motor planning could be simplified 
by neglecting IT effects and subsequently canceling them out during motor execution, the dynamic efficiency 
of the movement would simply be non-optimal. Reconciling all the advantages and disadvantages of these two 
extreme strategies, the empirical and simulation results indicated that the brain may choose an mixed motor 
planning principle combining both kinematic and kinetic variables whose relative contributions to the control 
strategy may be differentially revealed by the task demands. This composite cost may automatically yield the 
adaptive IT compensation/exploitation trade-offs described in the present study.

Limitations.  At this point, it worth stressing some limitations of the present work. First, the superiority 
of the composite cost over the kinematic cost requires 2 additional parameters for each participant. Therefore, 
it is questionable whether the improvement in the fitting is large enough to justify these additional tuning 
parameters. To clarify this point, we computed Akaike Information Criterion (AIC) according to the formula 
AIC =​ n log(RSS/n) +​ k where n is the number of samples, RSS is the residual sum of squares for the predicted 
variable and k is the number of parameters plus one47. An optimal control model predicts a whole movement and, 
therefore, many parameters can be extracted and used to compare simulated and experimental trajectories. Here 
we used a kinematic measure (RE index) and a dynamic measure (IT index) to assess the two models. AIC values 
for the kinematic and composite cost models were respectively 27.0 ±​ 3.9 and 26.6 ±​ 3.1 for RE index. This means 
that there was no obvious need for a composite cost function to account for the experimental hand paths. At this 
level of analysis, using a composite cost was possibly related to overfitting. When looking at the predictions in 
dynamic space (via IT index this time), AIC values were 6.7 ±​ 1.0 and −​15.2 ±​ 2.5 for the kinematic and com-
posite costs respectively. At this level of analysis, using a composite cost with adjustable parameters was therefore 
well justified. Here we relied on two important parameters of the present tasks, however optimal control models 
predict plenty of parameters. These considerations emphasize a key question in motor control: what metric or 
parameters should be used to compare simulated and experimental data in general? While kinematics should 
likely be first predicted before dynamics, it is conceivable that a good model should explain motion in both spaces 
at once.

Second, one should also stress that our formalism might overestimate the role of the kinematic cost in motor 
planning. Indeed, we used deterministic optimal control in which a feedforward motor plan is completely estab-
lished before movement is executed. This complete planning of the trajectory is not strictly required by the opti-
mal feedback control (OFC) formalism that assumes a feedback control law whose characteristics moreover 
depend on the signal-dependent noise present in the nervous system48. In a similar task with redundant targets, 
we have shown in an earlier study that OFC was especially useful to account for inter-trial variability via the 
minimum intervention principle19 (which should explain ellipses in Fig. 1). However, when looking at average 
behaviors, a deterministic modelling was overall consistent with such models22. Signal-dependent noise may 
nevertheless reshape the mean optimal trajectories to some extent. This could affect the kinematic model that 
requires large MT in this deterministic setting. With signal-dependent noise and a variance cost on the endpoint 
it is conceivable that such large MT would be penalized as they would increase motor variability. But variability 
increases with “effort” as noise is multiplicative, which is related to the size of motor command (which could be 
related to the torque change in our simple model). Therefore, a kinematic and variance cost would be reminiscent 
of the composite cost investigated in the present deterministic framework.

Materials and Methods
Ten right-handed subjects (5 men) agreed to participate in the study. All of them were healthy and ignorant of 
the goal of the scientific work. Age, weight and height (mean std) were 27 ±​ 5 years, 67 ±​ 10 kg and 168 ±​ 7.8 cm, 
respectively. All subjects were made aware of the protocol and written inform consents were obtained before 
the study. Experimental protocol and procedures were approved by the Univ. Paris-Sud EA 4532 local Ethics 
Committee and carried out according to the ethical guidelines conforming to the Revised Helsinki Declaration 
of 2000.

Experimental task.  In the present study, we used a “manifold reaching” paradigm quite similar to the exper-
iment described in the work of ref. 23. Briefly, participants sat comfortably on a chair and were asked to perform 
pointing movements with their right (dominant) upper-limb to an horizontal planar target (Fig. 1). Participants 
were asked to stop their motion when their index fingertip was onto the target but without striking it. They started 
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from an initial “L-shape” arm configuration where the elbow was approximately flexed at 90 degrees with an 
upper arm abducted to the horizontal and aligned with the mediolateral direction; this starting posture was real-
ized in practice by asking the participants to put their fingertip at a reference point whose position was adjustable 
in space. In this way, the initial arm joint configuration was kept similar across participants. Free rotations at the 
shoulder and elbow joints were allowed while the wrist joint was constrained by a light bar to freeze its motion 
and simplify subsequent modeling. The trunk was fixed and attached to the chair. The planar target consisted of 
an horizontal foam-made surface positioned just below the participant’s chest on a table (about 17.5 cm below 
the shoulder on average). Participants could reach anywhere on the surface without moving the shoulder and 
the maximal distance they could reach to was limited by their full arm’s length and shoulder’s height with respect 
to the planar target. The size of the foam-made surface was 40 cm in the ML axis and 65 cm in the AP axis and 
placed to the right hemibody. During movement execution, participants were asked to look at a reference point 
placed on the wall in front of them (in the direction of Frankfurt plane). Importantly, no specific instruction 
about the reach endpoint location was given in this task and the participants were free to choose their preferred 
final hand position as long as it lay on the planar target. As such, the task was redundant because an infinity of 
reach endpoints were compatible with task achievement as well as an infinity of final joint configurations. Here 
the goal of the task was to control the fingertip error along the vertical axis and it mostly involved four degrees of 
freedom (DoF) of the arm: three at the shoulder joint and one at the elbow joint (the elbow pronation/supination 
was neglected because of its minor role in a pointing task). Therefore, the set of permissible joint configurations 
lay on a 3-D manifold (4 joint angles minus 1 equation for the plane constraint).

For the purpose of this study, three speed conditions and two load conditions were investigated. We used a 
block design for the load. The three speeds, slow, natural and fast and denoted by S, N and F respectively, were 
randomized across trials to prevent habituation and memorization effects when subjects switched from one speed 
to another. Load conditions were counterbalanced across subjects. At the beginning of each trial, participants 
were verbally instructed about the imposed speed by the experimenter and no feedback was given about their 
actual speed except if it was clearly erroneous. We first recorded a block of 45 trials without load attached to the 
participant’s forearm (no-load condition, 15 trials per speed). In the second block of 45 trials, we attached a load 
approximately to the center of mass of the forearm (load condition). The load was a thick-walled cylindrical tube 
whose inner/outer radius was adjustable with respect to the subject’s forearm size. The tube’s mass was set equal to 
0.4, 0.6 or 0.8 kg, depending on the weight of the subjects whose values were smaller than 56 kg, between 56–65 kg 
or larger than 65 kg, respectively. These individual settings were introduced to adjust the arm dynamics modifica-
tion to the participant’s actual weight. Before the experimenter started to record, participants trained for 30 trials 
familiarize with the pointing task (both no- and with- load conditions). During this process, their performance 
was visually checked by the experimenter who made sure that the initial arm postures were consistent across tri-
als, that the gaze was directed towards the requested location during movement execution, that speed differences 
were clearly marked (i.e. S, N and F) and, finally, that subjects stopped their one-shot movements accurately 
enough on the planar target. Note that adaptation to a load has been previously shown to be very fast in reaching 
studies (a couple of trials49 and hence these training trials were assumed to be enough for the participants to reach 
a stable level of performance before the true experimental recordings began. In summary, for each participant, 15 
trials were tested per experimental condition (no-load/load, S/N/F speeds), such that 90 trials were recorded and 
analyzed per participant. In total, 900 trials were therefore analyzed in this study.

Data Recording.  The motion kinematics was recorded at a frequency of 500 Hz by using a 8-camera optical 
motion capture system (Vicon Inc. Oxford, UK). A total of 13 plug-in-gait markers were attached to specific 
anatomical locations on the dominant arm and other parts of the body as follows: seventh cervical vertebrae, 10th 
thoracic vertebrae, clavicle, sternum, right and left acromion, lateral and medial humeral epicondyles, ulnar and 
radial styloids, 2nd and 5th metacarpal heads and 1st finger tip. Noise was filtered out from the recorded positions 
of the markers by using a 2nd-order Butterworth low-pass filter at 10 Hz. These 3D positions were then analyzed 
at kinematic and dynamic levels using a custom-written software in Matlab (Mathworks, Natick, MA), as detailed 
in the sequel.

Kinematic analysis.  Hand kinematics.  For each trial, the 3D positions of the fingertip marker were numer-
ically differentiated to obtain the endpoint velocity profile. Based on this velocity profile, the movement duration 
was estimated as the largest time interval where the velocity is above 5% of its maximal value. Other hand kine-
matic parameters relevant to the purpose of the present study (e.g. reach endpoint, curvature, vertical accuracy/
precision errors) were then calculated, as follows:

•	 Index of path curvature (Cur). The index Cur was computed as Cur =​ Dmax/Disp where Dmax is the maximal 
deviation of the finger from the straight line connecting the initial to the final finger position during the 
movement and Disp is the length of the latter Euclidean distance.

•	 Reach endpoint (RE). The RE was defined as the 3D coordinates of the fingertip position at the end of the 
reach, namely the anteroposterior (AP, X axis), mediolateral (ML, Y axis) and vertical (Vert, Z axis) coor-
dinates relative to a frame centered at the shoulder joint. In the present study, the Z-coordinate of the RE 
was used to quantify accuracy and precision of the pointing movement (as the target plane was defined by 
an equation Z =​ constant). In contrast, the X- and Y- coordinates of the fingertip were freely chosen by the 
participants, and therefore, were used to assess the reaching strategy selected by the subjects and not pointing 
errors. When relevant, a normalized RE position along the AP axis (REAP) was used in the analyses. It was 
defined as the ratio between the AP coordinate of the RE and its maximum possible value (attained when the 
subject fully extended the arm without moving the trunk).
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•	 Vertical accuracy/precision error calculations (Za and Zp indexes). The constant error (Za) was defined as the 
averaged distance from the final fingertip position to its vertical projection on the planar target, while the 
variable error (Zp) was defined as the standard deviation of reach endpoint positions in the vertical direction 
across trials, within one experimental condition. The examination of Za and Zp allowed verifying the extent 
to which subjects stopped their movements in the vicinity of the target plane as required.

Joint kinematics.  The joint kinematics (e.g. angular displacements, velocities and accelerations) was estimated 
based on a method previously described in refs 23 and 40. Local coordinate systems was built from the markers in 
agreement with the guidelines of the international society of biomechanics (ISB). From the relative orientation of 
the coordinate systems, rotation matrices and then Euler angles (namely internal/external, elevation/depression, 
ulnar/radial at shoulder and extension/flexion at elbow) were calculated. At last, the joint speeds and accelerations 
were evaluated via numerical differentiations.

Dynamic analysis.  In order to examine the effect of load and speed on the dynamics of the reaching behav-
ior, a dynamic model of the arm was introduced to allow estimating the muscle, net, interaction and gravity 
torques. The dynamic model used has also been described in prior works (e.g. ref. 23).

As it is usual, the arm dynamics was described by the following equation:

τ θ θ θ θ θ θ θ= + + + 
¨( ) ( , ) ( ) ( , ), (1)M C G R

where τ denotes the muscle torque,  the inertia matrix (4 ×​ 4 here),  the Coriolis/centripetal torque, and  the 
gravity torque vector. The term θ θ( , )  reflects the residual torques created by soft tissues, which affect muscle 
torque in practice. Here we assumed that  was small compared to the other torques and we thus ignored it in the 
present modeling. The vector θ =​ (θ1, …​θ4)Τ describes the arm’s configuration and time derivatives are indicated 
with a dot (or multiple dots) throughout the paper.
For the purpose of this article, let us define the following quantities:
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where  θdiag( ( )) is the diagonal matrix built from the diagonal terms of the mass matrix. Then, equation 1 can 
be compactly written as

τ τ τ τ= + + , (3)net mus int gra

which is similar to the description given in refs 50 and 51.
To simulate this dynamics in practice, we employed the Featherstone-Newton-Euler algorithm, which is the 

state-of-the-art of rigid body algorithms52. Having efficient algorithms is crucial, not for performing inverse 
dynamics and recovering experimental torque profiles, but for running inverse and direct optimal control simu-
lations as they involve numerous evaluations of the system dynamics.

Direct and Inverse optimal control.  We conducted direct and inverse optimal control investigations along 
the lines of refs 22 and 23. Briefly, this approach involves the definition of a cost function that usually depends 
on the set of control variables (denoted here by u, chosen to be the derivative of joint accelerations, i.e. jerk) and 
the set of controlled variables describing the state of the musculoskeletal system (such as joint angles, velocities 
and accelerations, denoted by x). As such, the definition of the considered optimal control problems is as follows.

Direct optimal control (DOC).  The direct optimal control problem corresponding to the cost C(u, x) can be 
formalized as follows: Find the optimal control u and its associated trajectory x satisfying the dynamical system 
equation, connecting an initial resting arm posture to a terminal one such that the endpoint lies on the planar target 
in time T and yielding a minimal value of the cost C(u, x).

We examined three cost functions representing the three main classes of existing costs (i.e. kinematic-oriented, 
energy-oriented and dynamic-oriented respectively, see Table 2). Namely, we considered the integral of squared 
angle jerk (kinematic cost), the work of absolute values of muscle torques (energetic cost) and the integral of 
squared torque change (dynamic cost). This selection was based on the fact that these three costs were all found 
relevant in previous arm reaching studies53–57. We could also have included other optimality criteria based on 
angle acceleration or muscle torque but the acceleration cost yielded the same joint path as the angle jerk and the 
muscle torque predicted irrelevant hand path trajectory for the current task (see ref. 22 for more details). For the 
sake of simplicity and clarity, we thus assumed that the cost function accounting for the experimental trajectories 
could be a composition of the three elementary costs defined above, as follows:

∑α=α
=

C Cu u( , x) ( , x)
(4)i

i i
1

3

where Ci(u, x) (i =​ [1, 2, 3]) are defined precisely in Table 2. The vector α =​ (αi)1≤i≤3 is referred to as the tun-
ing vector whose elements verify αi ≥​ 0. The process of searching a best-fitting composite cost is called inverse 
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optimal control and is summarized below (more details can be found in refs 22, 23 and 58). Note that only two 
parameters were actually free in the above IOC problem due to normalization (the solution of Cα(u, x) is the same 
than λCa(u, x) for any positive λ​).

Inverse optimal control (IOC).  The inverse optimal control problem is stated here as a ≪​bi-level≫​ optimization. 
The lower level simply solves a DOC problem for a given vector a and serves to obtain optimal simulated arm 
trajectories θα

⁎ . The higher level aims at finding the optimal vector α α= ≤ ≤
⁎ ⁎( )i i1 3

 that yields the minimal value 
of an error function comparing the experimental trajectories θmeas with the optimal simulated ones. This function 
was denoted by Φ​ and was defined as θ θ θ θΦ = −α α

⁎ ⁎ t s( , ) max min ( ) ( )meas
t s

meas . It captures the maximum 
deviation from the simulated joint displacements (which depend on the components of α) to the experimental 
path in joint space. We will refer to this as EJoint, which can be expressed in degrees.

In practice, we used the Matlab-based software called GPOPS to solve the DOC (lower level). For the higher 
level and IOC, a derivative-free method called CONDOR was used. For both DOC/IOC processes, the initial/
final angle velocities and angle accelerations were set to zeros while the initial arm posture (i.e. four initial exam-
ined angles) and the movement duration (T) were imported from the motion capture data.

Cost contribution (in %).  We used the formula α α∑ =C C/i i j j j1
3  to evaluate the contribution of cost i to the total 

cost22 (costs are evaluated for the optimal solution). Looking at cost contributions may be useful because elements 
of the vector a are not always easy to interpret: the cost associated with the largest αi might play a minor role on 
trajectory formation depending on the order of magnitude of the other elements of the composite cost. Note that 
from this definition, the 3 cost contributions sum to 100%.

Interaction torque analysis.  Local and global interaction torque indexes.  Formulas to assess the contribu-
tion (either positive/negative) of IT to NT have been established in previous works but they were mainly designed 
for 2-DoF planar arms10,50. Here, the 4-DoF arm model required some modifications and extensions of those 
formulas. A drawback of previous approaches was that they were designed for individual DoFs, making it difficult 
to get a concise picture of the overall interaction torque contribution for such a system with more DoFs. Here we 
wanted to compare the 4 interaction torques and evaluate their involvement in the formation of reach strategies. 
Therefore, we defined two complementary indexes. The first one, called “local IT index” and referred to as ITj

l 
allowed analyzing the contribution of IT to NT at each DoF relatively to the others wherein the subscript j refers 
to the four DoFs under consideration. The second one, called “global IT index” and referred to as ITg, allowed 
revealing the overall contribution of IT to NT. Precisely, the formulas were as follows:

∑=
=

IT IT ,
(5)
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where sgn is the standard signum function.
The rationale was twofold: (i) contribution of IT to the movement at each DoF was assumed to be revealed by 

the amount of time during which IT contributed to the corresponding NT modulated by the absolute magnitude 
of this IT and normalized by the magnitude of the NT and (ii) the role of IT at a prominent DoF for the movement 
under consideration is more important than at other DoFs. In practice, we first adopted the equation  
proposed by10,50 to calculate a sub-index (denoted as sj, for DoF j), which is given in Eq 7. These resulting 
sub-indexes were then combined with the maximal value of NT at each DoF to yield the local IT index for DoF j 
(i.e. ITj

l) as illustrated in Eq 6. By taking into account the magnitude of the corresponding NT, the ITj
l index 

allowed comparing the contribution of IT to NT between different DoFs. The global interaction torque index (i.e. 
ITg) was then defined as a sum of the local ITl indexes of all 4 DoFs involved into movement as illustrated in Eq 5. 
The resultant value reflected the extent to which the IT overall acted with the NT to assist movements (i.e. globally 
supporting the motion if the obtained ITg value was positive) or against the NT to resist movements (i.e. globally 
opposing the motion if the obtained ITg value was negative).

Binned interaction torque indexes.  In the previous formula, the contribution of IT to NT was computed from the 
whole movement duration (from the movement onset t0 to the movement end tf). However, because IT depends 
on speed, these contribution indexes could also depend on the movement phase. In order to evaluate this, we split 
the whole time window into four consecutive intervals (i.e. 4 bins) and quantified the IT index for each bin sepa-
rately (using ITg formula restricted to that bin). Precisely, these four bins were defined from the acceleration pro-
file of finger tip as follows: the 1st interval was specified by the time period starting from t0 to the instant when the 
fingertip acceleration obtained its maximal value (denoted by tmax); the 2nd bin was defined from tmax to the time 
when the fingertip acceleration canceled itself out (crossing the horizontal axis; denoted by tzer); the 3rd interval 
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was estimated from tzer to the instant when the fingertip acceleration reached its minimal value (denoted as tmax); 
finally, the 4th interval was the remaining part of the movement, measured from tmax to the end of the motion tf.

Tacc versus Tvel examination.  As noticeable from Eq. 2, IT is actually composed of two different components (Tacc 
and Tvel) whose formulas are based on angular acceleration and velocity variables, respectively. Therefore, it is 
interesting to assess whether the motor controller exploited separately these two components to assist or resist 
the movement. To this aim, we relied upon ITg formula but restricted IT to either its velocity or acceleration com-
ponent. Precisely, in Eq. 7, we replaced the total IT torque τint by its elements (Tacc and Tvel) to get the respective sj 
values before applying Eqs 5 and 6 to obtain the desired indexes.
Comparison between simulated and experimental movement strategies.  Cartesian error (ECart).  In order to 
evaluate the simulated arm trajectories in Cartesian space, the 3D trajectory of the fingertip was analyzed. More 
precisely, the Cartesian error was estimated as the maximal deviation from the simulated finger trajectory to its 
experimental path and denoted by ECart (this is the Cartesian analog of EJoint).

Absolute IT index error (EIT).  In order to evaluate the extent to which the simulated trajectories accounted for 
IT indexes, the absolute IT index error was computed. It was denoted by EIT and defined as the mean absolute 
difference between simulated and experimental IT indexes across all speed and load conditions (ITg). It was com-
puted for each subject separately.

Relative IT index error: load- and speed-related errors (EKload
 and EK speed

).  To assess the extent to which the 
simulated results could reproduce the load and speed variations of IT index, we compared empirical and simu-
lated slopes of linear regressions of IT indexes (ITg) against the load and speed. For the load condition, the slope 
Kload was computed based on a linear regression of ITg values against the load variable whose values were taken 
equal to zero and the real weight of attached load with respect to the no-load/load conditions for every subject. 
For the speed condition, the slope Kspeed was calculated separately for each load condition and resulted from linear 
regressions of ITg values against the speed variable whose values (corresponding to S, N, F speeds) were imported 
directly from the recorded data (simply taken as the maximal value of recorded velocity profile) for each subject.

Statistical analyses.  Two-way repeated-measures ANOVAs were used to test the effects of load and speed 
on certain pertinent movement parameters. Moreover, in order to assess the predictive performance of each cost 
function with respect to the others, one-way repeated-measures ANOVAs were also used when relevant. Post-hoc 
analyses were conducted with Bonferroni corrections when relevant and a 5% threshold was selected in all cases 
to reject the null hypotheses. Shapiro-Wilk statistics was used to evaluate normality for the parameters under 
investigation. We used SPSS to perform all statistical analyses.
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