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Abstract: Information fusion combining inertial navigation and radio frequency (RF) technologies,
is commonly applied in indoor positioning systems (IPSs) to obtain more accurate tracking results.
The performance of the inertial navigation system (INS) subsystem is affected by sensor drift over
time and the RF-based subsystem aims to correct the position estimate using a fusion filter. However,
the inherent sensor drift is usually not corrected during fusion, which leads to increasingly erroneous
estimates over a short period of time. Among the inertial sensor drifts, gyroscope drift has the most
significant impact in determining the correct orientation and accurate tracking. A gyroscope drift
correction approach is proposed in this study and is incorporated in an INS and ultra-wideband (UWB)
fusion IPS where only distance measurements from UWB subsystem are used. The drift correction
approach is based on turn detection to account for the fact that gyroscope drift is accumulated during
a turn. Practical pedestrian tracking experiments are conducted to demonstrate the accuracy of
the drift correction approach. With the gyroscope drift corrected, the fusion IPS is able to provide
more accurate tracking performance and achieve up to 64.52% mean position error reduction when
compared to the INS only tracking result.

Keywords: inertial navigation system; ultra-wideband; information fusion; drift correction;
pedestrian tracking

1. Introduction

Accurate and reliable indoor positioning and tracking is a key enabler for a number of
location-based services including navigation, elderly healthcare, emergency responder, etc. [1].
The performance of global positioning systems deteriorates severely in indoor environment and
urban canyon due to signal attenuation [2]. The underlying principle of trilateration inspired the
implementation of indoor positioning systems (IPSs) utilizing different wireless technologies including
Wi-Fi, Bluetooth, radio frequency identification (RFID) and ultra-wideband (UWB). With wireless anchor
nodes installed at known indoor positions, the distance between a mobile node with unknown position
and each anchor node is calculated based on the wireless signal propagation time, i.e., time-of-flight (ToF).
The position of the mobile node is then solved by combining the distance measurements and anchor
locations by trilateration [3]. Despite the achieved positioning and tracking performance, the major
drawback of wireless technology-based IPS is the requirement of installed infrastructure in the indoor
environment. The number of required anchor nodes varies depending on the coverage of the IPS and
the required accuracy [4–6].

Self-contained inertial navigation system (INS) [7] is an alternative solution utilizing an inertial
measurement unit (IMU) for position tracking with the advantage that no infrastructure is required.
The IMU typically consists of components including accelerometer, gyroscope and magnetometer.
Starting from a known location, INS keeps track of the location of the IMU by continuously accumulating
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the displacement. The traveled distance is calculated using accelerometer data and the moving direction
is obtained from magnetometer or gyroscope. Magnetometer is vulnerable to unknown magnetic
disturbance which may very likely exist in indoor environments, whereas gyroscope is less influenced by
environmental uncertainties. Smartphones are gaining popularity in recent years as an ideal platform to
develop self-contained IPS for pedestrians [7–9] with the advances of microelectro–mechanical systems.
Typically, a developed IPS combining accelerometer and gyroscope is able to provide accurate location
tracking up to 100 m and the accuracy deteriorates significantly over time afterwards mainly due to
sensor drift [10]. The drift in accelerometer data may lead to more than 10 m error within one minute
when estimating traveled distance using double integration without correction [11]. Step-based
pedestrian dead reckoning (PDR) is less influenced by accelerometer drift, but the performance is
heavily affected by gyroscope drift. Although tactical grade gyroscope is able to keep a low drift over
time at 1.8◦ per hour [12], the consumer grade gyroscope in off-the-shelf devices will accumulate drift
quickly and may have more than 10◦ drift after 90 s [10].

In order to enhance the performance of INS-based IPS, fusion algorithms employing Kalman filter
(KF), extended Kalman filter (EKF) and particle filter (PF) are proposed [13] to complement INS with
wireless technologies. The UWB technology is extensively studied recently since it is able to provide
precise distance measurement between two UWB-enabled nodes with error in the order of centimeters
for distances up to 100 m in ideal cases [14]. The distance is calculated based on ToF by implementing
a two-way ranging algorithm [15]. A number of works design INS and UWB fusion IPSs (FIPSs) for
more reliable tracking performance [16–18].

There are two main issues observed in most FIPSs. First, the INS and UWB FIPS requires that the
UWB subsystem is able to provide a position estimation independently, which inevitably requires at
least four UWB anchor nodes to obtain a 3D position. Given the fact that UWB nodes are much more
expensive than other wireless nodes/devices, the deployment cost for a large-scale INS and UWB FIPS
will be prohibitively high. Second, the gyroscope drift is not corrected in the INS subsystem. When the
gyroscope drift becomes significant over a long tracking period, the overall tracking performance of
the FIPS will also deteriorate significantly.

The motivation of the paper is to address the two issues with a cost-effective approach to enable
large-scale deployment of INS and UWB FIPS. It is observed that the heading orientation obtained from
gyroscope is stable when the pedestrian is walking in a straight line and the drift accumulates when a
turn is made. In this paper, a turn detection-based gyroscope drift correction approach is proposed and
incorporated with an INS and UWB FIPS, where only distance measurements from UWB subsystem
are used [19]. The contributions of the paper are listed as follows:

1. A novel gyroscope drift estimation algorithm is proposed by only utilizing heading orientations
and location estimations from sensor fusion system, which can be readily applied to and
integrated with other systems using different sensing hardware and algorithms (further discussed
in Section 2);

2. The number of required UWB anchors in the fusion system can be significantly reduced by fusing
only distance measurements from arbitrary number of available anchors. Conventional use of
UWB in other published approaches requires that every possible location in the deployment
area is covered by at least four UWB anchors. The total number of UWB anchors subsequently
increases significantly for larger deployment area. When only fusing distance measurements,
large area can be easily covered by significantly fewer anchors.

3. Practical pedestrian tracking is designed and conducted to verify the proposed approach.
The results demonstrate that the FIPS is able to achieve better tracking performance with
gyroscope drift corrected.

The remainder of the paper is organized as follows: Section 2 introduces preliminaries and related
works in INS and UWB FIPS and gyroscope drift correction. The proposed INS and UWB FIPS and
gyroscope drift correction approach is described in Section 3. Experimental evaluations as well as
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discussion regarding the performance of the proposed IPS are presented in Section 4. Section 5 presents
the conclusions.

2. Preliminaries and Related Works

PDR is commonly used in pedestrian tracking as a self-contained IPS and step-based PDR is able
to minimize the influence of accelerometer drift by only identifying peaks in acceleration. In scenarios
where a smart device is used as the development platform, the situation where a pedestrian holds the
smart device in front of the body is commonly considered [7–9]. In this holding position, the device
is relatively stable along the axis vertical to the ground during walking. Therefore, a simplification
can be made assuming that the vertical axis component of the position is constant. The state update
function in step-based PDR, where the state S is represented with 3-axis coordinates [x, y, z] in a defined
Cartesian coordinate system, is presented in:

St =


xt

yt

zc

 =


xt−1

yt−1

zc

+ Lt·


cosθt

sinθt

0

. (1)

The symbol t (t > 0), Lt and θ denotes the step index, the step length and orientation of the step,
respectively and subscript c for z-axis coordinates indicates that the location along z-axis is a constant.
Starting from a known initial position, i.e., S0 = [x0, y0, zc], PDR iteratively updates the location of the
pedestrian by estimating the length and orientation of each step.

A PDR approach is developed in our previous work [10] and is employed as the INS subsystem in
the FIPS in this paper. The step length is modeled proportional to the square root of step frequency as
shown in:

Lt = cs·
√

fs, (2)

with unit in meter, where fs is the step frequency and cs is a constant scaling factor. The step orientation
is obtained from the yaw component of gyroscope data, which indicates the heading angle of the
pedestrian as the θ in Equation (1), by finding the average of yaw data within the interval of a detected
step. More details can be referred in [10].

Sensor drift over time will deteriorate the performance of PDR-based IPS and information
fusion combining wireless technologies is an effective approach to mitigate performance deterioration.
UWB technology is increasingly employed in FIPS for enabling accurate distance measurements
between UWB nodes. Typically, the INS and UWB subsystems generate location estimation of the
pedestrian separately. The two locations are subsequently fused for a final estimation. An unbiased
finite impulse response filter is designed in [16] to correct the difference between the INS-measured
position and UWB-measured position. By using anti-magnetic ring to eliminate the outliers from
the UWB distance measurements, a double-state adaptive KF is proposed in [17] to improve the
positioning accuracy during information fusion. The feature of independent position estimation in
UWB subsystem, achieved by trilateration using the distances measured between UWB anchor nodes
and the pedestrian, inevitably requires that at least 4 UWB anchor nodes are available to provide
valid distance measurements for every possible location. In a complex indoor environment where the
coverage of a UWB anchor is limited, the total number of required anchors will increase significantly in
order to cover the entire indoor space. Alternatively, the distance measurements can be used directly
in information fusion using PF [19] and the approach works for arbitrary number of anchor nodes.
The FIPS developed in this paper also directly uses distance measurements to ensure that the IPS can
be readily extended to cover larger area with optimal cost-effectiveness.

Despite the fact that UWB-enabled nodes are able to measure distances up to 100 m with errors
in the order of centimeters in ideal cases, the error may rise up to more than 1.5 m when the direct
line-of-sight between UWB nodes is obstructed [19]. The non-line-of-sight (NLOS) condition between
UWB nodes is the main source of distance measurement error and existing works have proposed
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several analytical models, including linear [20], polynomial [21], Gaussian [22] and univariate skew-t
distributions [23], for error mitigation. Extensive UWB distance measurement campaigns and error
profiling experiments are conducted in [14] and a distance measurement error model combining a
Gaussian and a gamma distribution is proposed. As formulated in:

f(ε) =
1

σ
√

2π
·e−

(ε−µ)2

2σ2 +λ·e−λε·
(λε)k−1

Γ(k)
+c0, (3)

where ε denotes the distance error, the first term is a Gaussian distribution with mean and Standard
Deviation (SD) represented by µ and σ, the second term is a gamma distribution defined by parameters
λ and k, and the last constant term c0 is equal to 3% of the Gaussian–gamma combined model’s
peak [14].

Apart from the distance measurement error modeling in UWB subsystem, the error modeling of
INS subsystem should also be investigated to enhance the performance of the overall FIPS. In step-based
PDR, the error of step length estimation can be modeled with a Gaussian distribution [19]. The error of
step orientation, on the other hand, is modeled with a Gaussian random walk when the gyroscope
data are the angular rotation rate [23] or a Gaussian distribution when heading angle is obtained from
gyroscope [24]. An autoregressive and autoregressive moving-average model is built to model the
gyroscope random drift with the help of Allan variance [25]. The determined error models for INS
errors can be incorporated in FIPS using KF/EKF.

It is observed that the step orientation obtained from gyroscope is stable when the pedestrian is
walking in a straight line, i.e., the difference between angle samples along the straight walk is relatively
small. Gyroscope drift is accumulated when the pedestrian makes a turn. For instance, considering
the case when a pedestrian is walking straight at 0◦ initially and continues walking straight at 60◦ after
a 60◦ turn, the gyroscope may report a heading angle at 65◦ after the turn. The value of drift in this
paper is defined as the difference between the ground truth direction and the reported direction by
gyroscope. Therefore, in the example, a −5◦ drift is accumulated during the turn and will continue to
affect the tracking performance afterwards. The observation suggests that gyroscope drift correction
can be more scrutinized in situations where a turn is made. In [26], two UWB networks are built and
installed in two corners (places where a turn is made) of a rectangular path (5 m × 25 m). Each UWB
network has a supporting region of a sphere of 4-m radius and tries to correct the gyroscope drift when
the pedestrian passes through the UWB network using KF. The main drawback of this approach is that
a large number of UWB anchor nodes are required with a total number of 15 nodes (8 nodes for one
network and 7 for the other). A turn detection and heading correction approach is proposed in [27] by
using pelvic rotation and zero-velocity update. The approach relies on waist mounted IMU sampling
pelvic rotation data and thus has limited applicability.

In this paper, a turn detection and gyroscope drift correction approach in an INS and UWB FIPS
is proposed. Distance measurements from UWB subsystem are used in the fusion, and the number
of required UWB anchor nodes can be significantly reduced. The turn detection and drift correction
only rely on the step orientations and estimated locations of the INS subsystem and the fused output.
Therefore, the developed approach is applicable to a range of IPSs using different data sources and
hardware platforms.

3. Proposed Approach

This section consists of four parts. First, a PF-based INS and UWB FIPS is described where
only distance measurements from UWB subsystem are used. Second, a turn detection method is
detailed in Section 3.2. Third, the turn-based gyroscope drift estimation approach, which calculates
the gyroscope drift based on information fusion, is presented. Lastly, the FIPS with gyroscope drift
correction incorporating the components in Sections 3.1–3.3 is proposed.
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3.1. Distance Measurements Based INS and UWB Fusion

In this study, a PF algorithm is used to fuse the INS and UWB subsystems using only distance
measurements from the UWB subsystem. PF is a powerful tool addressing Bayesian state estimation
problems characterized by a state update function and an observation function. The distribution of the
additive noise can be arbitrary since PF uses a group of particles to estimate the posterior distribution
of the system state. In an INS and UWB FIPS, the state update function corrupted by noise can be
formulated as in

St =


xt

yt

zc

 =


xt−1

yt−1

zc

+ (Lt +ψt)·


cos(θt + δt)

sin(θt + δt)

0

, (4)

by introducing additive noise associated with the step length and step orientation estimation process
in Equation (1), denoted by ψ and δ, respectively. Each available anchor node makes an observation as
the distance between the anchor node and the pedestrian. The observation function is shown in

Di
t =

∣∣∣Ai
− St

∣∣∣+ εt, (5)

measuring the Euclidean distance, Di
t, between the location of the anchor, Ai = [xi

a, yi
a, zi

a] and St.
The distance is subject to additive noise, i.e., ε, corresponding to the measurement error in the UWB
subsystem, and the distribution model of the error shown in Equation (3) is used in this study.

Given that a total number of It anchor nodes are available at step index t, the PF algorithm
iteratively estimates the system state based on Di

t distance measurements, {Di
t, i = 1 . . . It}. Particles

are sampled from a proposal distribution where the state update function is commonly used [13].
The weight of a particle, ω, can then be assigned according to

ωmi
t ∝ ω

mi
t−1·√(D

i
t

∣∣∣∣∣∣sm
t ), (6)

as the conditional probability of obtaining a measurement of Di
t when the particle state is sm

t , multiplied
by the corresponding particle weight in the previous iteration. With the total number of particles
defined as M, the superscript of weight, i.e., mi, represents the mth particle corresponding to the ith
distance measurement.

The pseudocode of the PF-based fusion algorithm is summarized in Algorithm 1.
During initialization, the initial position estimate is set to the known starting position as well
as the whole particle set with M particles. K UWB anchor nodes are installed in the target environment.
The iterative processing flow of the algorithm is triggered upon the detection of a step with step length
and orientation estimated by the INS subsystem. Since the current position may not be covered by
any UWB anchor node, it is always first checked whether UWB measurement is available. If not,
the estimated position, as well as the particle set, is updated directly by the INS subsystem according to
Equation (1). If a subset of It anchor nodes are available, Di

t distance measurement(s) will be generated,
where i = 1...It and It ≤ K. The measurement(s) from UWB subsystem is(are) fused by the PF algorithm.
For each available distance measurement, a subset of particle weights is generated correspondingly.
Therefore, It subset(s) of particle weights will be generated each containing M weights. Each subset
of the weights is normalized separately first before summing up, in order to avoid the unbalanced
weight ranges across different subsets. The final weight of each particle is calculated as the sum of all
the subset(s). The normalized final weight set is used both in calculating the position estimation as
the weighted sum of the particle set and in resampling the particle set where Systematic Resampling
algorithm [28] is employed.

The PF fusion algorithm is flexible as it is able to accommodate arbitrary number of UWB
anchor nodes and only fuses available distance measurement(s) at any given step. When no distance
measurement is available, the algorithm falls back to PDR and solely rely on the INS subsystem.
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By employing the fusion algorithm, there is no constraint on the required number of UWB anchor
nodes in the developed IPS.

Algorithm 1 Inertial navigation system (INS) and ultra-wideband (UWB) fusion algorithm.

1. Initialization:
2. initialize position estimate S̃0 and the particle set {sm

0 = [xm
0 , ym

0 , zm
0 ]T, (m = 1 . . . M)} with known position

Sinit = [x0, y0, zc]T

3. K UWB anchors are installed at {Ak = [xk
a, yk

a, zk
a], k = 1 . . . K}

4. Update:
5. at step index t
6. obtain step length Lt and orientation θt from INS subsystem
7. if no UWB measurement is available, i.e., It = 0
8. update S̃t−1 to S̃t according to Equation (1), i.e., no additive noise
9. update particle set {sm

t−1, (m = 1 . . . M)} to {sm
t , (m = 1 . . . M)} according to Equation (1), i.e., no additive noise

10. else
11. obtain Di

t UWB distance measurements {Di
t, i = 1 . . . It} and corresponding anchor locations {Ai, i = 1 . . . It},

which are available for the current step (It ≤ K)
12. update particle set {sm

t−1, (m = 1 . . . M)} to {sm
t , (m = 1 . . . M)} according to Equation (4)

13. for each Di
t with anchor position Ai (i = 1 . . . It)

14. for each particle sm
t (m = 1 . . . M)

15. assign particle weight ωmi
t according to Equation (3), (5) and (6)

16. end for

17. normalize {ωmi
t , (m = 1 . . . M)} such that

M∑
m=1

ωmi
t = 1

18. end for

19. weight of each particle ωm
t =

It∑
i=1

ωmi
t

20. normalize {ωm
t , (m = 1 . . . M)} such that

M∑
m=1

ωm
t = 1

21. generate position estimate S̃t =
M∑

m=1
ωm

t ·s
m
t

22. Resample {sm
t , (m = 1 . . . M)}, using Systematic resampling given {ωm

t , (m = 1 . . . M)}
23. go to Update when a new step is detected at index t+1
24. end if

3.2. Turn Detection

The turn detection approach proposed in this paper relies on the heading orientation of walking.
In a step-detection-based IPS, the system is able to keep track of the step orientation history. Despite
that the INS and UWB FIPS described in Section 3.1 does not generate a step orientation in position
update directly, the step orientation can be derived from the fused position estimation set, {S̃t}.
The approach detects the walking pattern where the pedestrian keeps a straight walk both before and
after making a turn, which is common in indoor environments including office space, laboratories and
corridors. The behavior of straight walk is characterized by step-orientation data where the values of
the orientation angles are close to each other.

The detailed processing flow of the turn detection approach is as follows: The IPS keeps track
of a moving window of step orientations with window size P, i.e., the step orientations of the most
recent P steps represented by {Op, p = 1...P}. With a straight walk detection window size represented as
Q, the first Q samples and last Q samples of the step orientation window are extracted for straight
walk detection (P > 2Q). The heading angle ranges of the two sample windows, denoted by RA1 and
RA2, as well as the average heading angle, denoted by AA1 and AA2, are then calculated. Due to the
value range of gyroscope data, the ambiguity issue between the lower and upper bound of gyroscope
data needs to be addressed [10] when calculating heading angle range and average heading angle.
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For instance, considering the output heading angle of a gyroscope is (−180◦, 180◦), the heading angle
range between −179◦ and 178◦ is 3◦ instead of the numeric range 357◦. Similarly, the average heading
angle is 179.5◦ instead of the numeric average −0.5◦. A straight walk is identified when the heading
angle range of the sample window is within a defined threshold, THS. In this paper, THS is set to
5◦—based on analysis of the heading orientation data obtained from gyroscope when a pedestrian
is walking straight to account for minor fluctuations. A turn is detected when both RA1 and RA2
is less than THS and the heading angle difference between AA1 and AA2 is greater than a defined
threshold, THT. The value of THT corresponds to the minimum degree of turn to be detected in ideal
case. In practice, the setting of the threshold should also take into consideration possible gyroscope
drift and fluctuation. The pseudocode of the turn detection approach is summarized in Algorithm 2.
The turn detection algorithm is applied to step orientation samples from both the INS subsystem
and fused output. A gyroscope drift estimation is triggered only when a turn is detected for both
orientation samples.

Algorithm 2 Turn detection algorithm

1. Given a window of P consecutive step orientations, {Op, p = 1...P}
2. Obtain a sub-window of the first Q samples, {OFq ∈ Op, q = 1...Q}
3. Obtain a sub-window of the last Q samples, {OLq ∈ Op, q = 1...Q}
4. Calculate the heading angle range and average heading angle of {OFq, q = 1...Q} as RA1 and AA1
5. Calculate the heading angle range and average heading angle of {OLq, q = 1...Q} as RA2 and AA2
6. Calculate the heading angle difference of {AA1, AA2} as RA
7. if RA1 < THS and RA2 < THS and RA > THT
8. turn detected
9. else
10. turn not detected
11. end if

Unlike turn detection algorithms using data from sensors mounted on specific part of the
body [27] that are only applicable to systems using the same sensors, the proposed turn detection
only relies on moving orientation of the pedestrian, which is an essential information provided by
all IPS. Therefore, it can be readily applied in different IPS with varying hardware setup. Moreover,
the computation operations involved in the turn detection approach is significantly less complex
compared to thresholding the SD of heading orientations.

3.3. Gyroscope Drift Estimation

The gyroscope drift estimation approach aims to find out the accumulated gyroscope drift when
a turn is made. The principle of the correction approach illustrated in Figure 1 is based on an ideal 90◦

turn case and described as follows: It is noted that the proposed approach is able to support arbitrary
turning angle above the threshold value THT. A person walks along the path from position P0 to
P1 passing a turning point T where a 90◦ turn is made. Initially, the gyroscope is drift-free. Certain
amount of drift is accumulated when making the turn and the traveled path tracked by INS is affected
by the drift afterwards, which will lead to the estimated path to be along T to P1’. By applying the INS
and UWB fusion algorithm described in Section 3.1, the tracking path after fusion may be along T to
P1” after the turn. The amount of the accumulated gyroscope drift can be calculated as the difference
between ∠P0TP1’ and ∠P0TP1”. The exact gyroscope drift can be obtained when the fusion algorithm
gives perfect estimation of the position.

In practice, the INS and fused path are not ideally straight during a straight walk and the tracking
path is generated by accumulating line segments, where each segment corresponds to a step update.
A typical case is shown in Figure 2 where a person travels along the path from G0 to G4. The tracking
path consists of 14 segments that correspond to 14 separately estimated step lengths and orientations.



Sensors 2020, 20, 4476 8 of 16

Despite that the person is walking straight before and after the turn, minor fluctuations in step
orientations are visible in the generated path.
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In order to calculate the gyroscope drift, it is important to estimate the turning angle based on
the tracking path. The turning angle estimation approach proposed in this paper combines the turn
detection algorithm described in Section 3.2. The turning angle estimation is triggered when a valid
turn is detected, indicating that the person is walking straight before and after the turn. Using the
same notations introduced in Section 3.2, the turn detection algorithms identifies two sub-windows
corresponding to the step orientations during the straight walking behavior. For instance, given P = 14,
Q = 5 and the tracking path is illustrated in Figure 2, a turn is detected with the two sub-windows
containing orientation samples for G0 to G1 and G3 to G4, respectively. Attempts to extend both
sub-windows to include more remaining samples are made while ensuring the extended sub-windows
correspond to straight walking behavior, i.e., the heading angle range of both sub-windows remains
within THS. The rationale for extending the straight walking window is that the walking orientation
estimated using more step orientation samples will be less sensitive to random noise in gyroscope data.
In the example presented in Figure 2, the sub-window representing path G0 to G1 remains unchanged
and the other sub-window is extended by one more sample to include G2. The implementation of the
sub-window extension scheme also decouples the generated final sub-windows from the parameter
setting of Q. For the illustrated example, setting Q ≤ 5 will all generate the same sub-windows
after extension.

After extending the sub-windows corresponding to straight walking paths, the turning angle
estimation approach relies on the starting and ending position of the paths. For each path, a vector is

formed pointing to the ending point from the starting point of the path, i.e.,
→

G0G1 and
→

G2G4 in Figure 2
as indicated by the dotted lines. The estimated turning angle is then calculated as the angle between
the two vectors. It is noted that the turning angle estimation approach utilizes the estimated positions
only and is also applicable to different types of IPS without any constraint on how the sensors are
mounted. Using the starting and ending position of a straight walking path to estimate the orientation
also smooths the fluctuations in raw orientation data.

When a gyroscope drift estimation is triggered, the turning angles for INS and the fused position
solutions are estimated using the aforementioned estimation approach, represented by TAr

INS and
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TAr
f used, respectively. r is the index for valid turn occurrences. The estimated gyroscope drift during rth

turn, drr, equals to the difference between TAr
f used and TAr

INS, as shown in:

drr = TAr
f used − TAr

INS. (7)

It is noted that the sign of the estimated gyroscope drift is subject to adjustment according to the
polarity of gyroscope data. In a right-handed convention where counter-clockwise rotation results in
positive angular change, the calculated gyroscope drift needs to be negated during a clockwise turn.

Using the presented gyroscope drift estimation algorithm, a delay is observed in estimating
the drift when a turn is detected. As shown in Figure 1, the drift may be present in the gyroscope
data as soon as the turn is made. A few more steps are required to enable the algorithm to estimate
the turning angle for subsequent drift estimation. Despite the delay in gyroscope drift estimation,
the overall localization and tracking performance is not influenced by the delay since the UWB distance
measurements are incorporated in the FIPS.

3.4. Proposed FIPS with Gyroscope Drift Correction

The processing flow of the proposed FIPS with gyroscope drift correction is illustrated in Figure 3,
with components introduced in Sections 3.1–3.3 grouped by a dashed block. Applying the fusion
algorithm presented in Section 3.1, the system keeps track of the most recent P samples of step
orientations and updated positions for both INS subsystem and the fused solutions. The orientation
samples are used for turn detection using the approach described in Section 3.2. When gyroscope drift
estimation is triggered, the positions samples are employed to estimate the gyroscope drift for the
current turn. Since the gyroscope drift is estimated independently for each turn, the accumulated
gyroscope drift, DR, equals to the sum of all drift values calculated for all previously calculated drifts
as shown in:

DR =
R∑

r=1

drr, (8)

where R denotes the total number of drift estimations, and the initial value of DR is zero.
The accumulated gyroscope drift is used to correct the sampled gyroscope data by an addition operation.
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4. Experimental Evaluations

4.1. Proposed FIPS with Gyroscope Drift Correction

The proposed INS and UWB FIPS with gyroscope drift correction is evaluated with practical
pedestrian tracking experiments. The INS subsystem is implemented by a smartphone application [10]
running on an iPhone 7. The smartphone built-in sensors including accelerometer and gyroscope
are sampled at 50 Hz. The sampled acceleration data from accelerometer is used for step detection.
When a step is detected, the timestamp of the sampled data is recorded as the step timestamp and
is used in step length estimation. With the smartphone held in hand in front of the body, the yaw
component of gyroscope data measures the angle turned with respect to an initial reference frame where
the heading angle is zero. More implementation details of the INS subsystem are presented in [10].

For the UWB subsystem, TREK1000 development kit from DecaWave [15] is used. The development
kit consists of multiple EVB1000 UWB nodes configurable to an anchor node or a mobile (tag) node.
The channel frequency and data rate of the UWB communication is configured to 3.993 GHz and
110 kbps, respectively to maximize the covered area of UWB nodes [14]. Under this configuration,
the UWB anchor nodes report distance measurements between the anchor nodes and the mobile node
at 3.57 Hz. Two anchor nodes are used in the experiment. A laptop is connected to a primary anchor
to record the distance measurements from both anchors (the primary anchor has access to distance
measurements from all anchors) as well as timestamping the distance measurements. Since the update
frequency of distance measurements is higher than typical walking frequency, an extra measurement
selection process is implemented in the INS and UWB FIPS. When a step is detected, the timestamp of
the step is used to select the specific distance measurements, with associated timestamps closest to the
step timestamp. As a result, only the selected measurements are used in the fusion process and the
remaining ones are discarded. An EVB100 node configured as a mobile node is attached to the back of
the smartphone. When carried in hand, the height of the mobile node is at 1.3 m (zc in Equation (1)).
The system time of the smartphone and the laptop is synchronized using Network Time Protocol.

The pedestrian tracking experiment is conducted in Room 332 at the Newmarket campus of the
University of Auckland, which is a 10.9 m × 21.0 m laboratory with electrical equipment and rows
of computer desks. The layout of the experiment area is illustrated in Figure 4 in a top-view with
a defined Cartesian coordinate system. The distances shown in the figure are in meters. The solid line
outlines the experiment path with six markers placed on the ground along the path, represented by
stars in the figure. The subject starts at position S, walks along the path towards M5 and return to S.
Considering the path S to M5 to S as one round, the experiment path repeated the path for eight rounds,
covering a total distance of 310.4 m with 48 turns including 16 left turns, 16 right turns and 16 U-turns,
respectively. The markers are used as sample points to calculate position error with the coordinates
labeled in Figure 4. When the subject passes the marker, the timestamp is recorded. The timestamp
is used as a reference to select a position estimation whose associated timestamp is the closest to
the reference. Position error is calculated as the 2D (x- and y-axis) Euclidean distance between the
selected position and the location of the marker. At the same time, heading orientation error is profiled
against the ground truth during straight walking. Two anchors are mounted on tripods and installed
at the locations denoted by triangles in Figure 4. The height of ANC0 and ANC1 is 1.86 m and 1.85 m,
respectively. The ground truth coordinates are measured using a Parallax SF11 laser altimeter [29].
The altimeter measures distance in range 0.1 m to 120 m with 1 cm resolution and ±10 cm accuracy.

Regarding parameter settings which are summarized in Table 1, the additive noises for step
length and orientation estimation in the state update function, Equation (4), are set to zero mean
Gaussian distributions with SD equals to 0.05 and 0.2 [30], respectively. The parameters of the UWB
distance measurement error model, including µ, σ, λ and k in Equation (3), are kept the same as in [14].
Regarding the setting of P and Q parameters, it is first, noted that the value of Q corresponds to the
number of steps required to identify straight walking behavior. In order to cover the straight walking
path before and after making a turn, the overall step orientation sample window size P must be greater
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than 2Q. The value P-2Q corresponds to the number of steps required in making a turn and the two Q
step orientation sample windows correspond to the path before and after the turn. With a selected
P-value, a smaller Q value will only ensure the sampled path before and after the turn corresponds to
straight walking behavior. If the straight walking behavior is not maintained for the remaining samples
(excluding the steps during a turn), the estimated gyroscope drift may be erroneous. It is observed that
3 steps are usually required during a turn. Given the size of the experiment path, Q is set to 6 and
P equals to 15 in this paper. THS is set to 5◦ as described in Section 3.2. Since the minimum turning
angle in the experiment is 90◦, the value of THT is set to 55◦ by subtracting fluctuation margin (5◦)
and possible gyroscope drift (maximum value of about 30◦ [30]) from the minimum turning angle.
The number of particles used in the PF fusion algorithm also follows the settings in [14] and equals
to 2000.
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Table 1. Parameter settings in the proposed indoor positioning system (IPS).

ψt (m) δt (rad) µ (m) σ (m) λ K P Q THS THT M

~N(0, 0.052) ~N(0, 0.22) 0.1 0.055 3.5 2 15 6 5◦ 55◦ 2000

4.2. Results and Discussion

Two independent experiments are conducted, which took 334.1 s and 329.9 s to complete,
respectively. The accuracy of the step detection and traveled distance estimation for the INS subsystem
is reported in Table 2 with respect to actual steps and traveled distance. For the first experiment,
both the step detection rate and traveled distance accuracy are above 93%. The rate drops to 91.15%
and 91.89% for step detection and traveled distance, respectively, in the second experiment and is
mainly caused by undetected steps, which is more likely to happen when the pedestrian is making
a sharp U-turn at either end of the experiment path.

Table 2. Step detection and traveled distance estimation accuracy.

Experiment 1 Experiment 2

Detected steps/actual steps 474/502 453/497
Percentage 94.42% 91.15%

Estimated distance/Actual distance (m) 290.45/310.4 285.22/310.4
Percentage 93.57% 91.89%

Three different algorithms are applied offline to the collected data from INS and UWB subsystem,
which generate three tracking paths to demonstrate the effectiveness of the proposed FIPS with
gyroscope drift correction, including: (a) INS, tracking path directly generated by the INS subsystem;
(b) Fusion, tracking path generated by applying the INS and UWB fusion algorithm; (c) Fusion-Cor,
tracking path generated by the FIPS with gyroscope drift correction.

The tracking paths for the two experiments are presented in Figures 5 and 6, respectively.
The quantified mean position error of each path is summarized in Table 3. In Figure 5a, the INS
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tracking path is clearly affected by gyroscope drift in latter phase of the experiment with path rotated
anti-clockwise, which is annotated with a red arrow in figure. The mean position error is 2.48 m.
By fusing UWB distance measurements obtained from two anchors, the mean position error is reduced
by 60.08% to 0.99 m. By incorporating gyroscope drift correction in fusion, the gyroscope drift estimation
is triggered twice during the tracking period. The estimated drift is −4.95◦ and −2.14◦, respectively and
the final accumulated gyroscope drift is −7.09◦. With drift corrected gyroscope data, the mean position
error is further reduced to 0.88 m, achieving a 64.52% reduction compared to the INS result. Regarding
the second experiment, no significant gyroscope drift is observed, and the accuracy of the INS solution
is mainly affected by undetected steps as shown in Figure 6. The INS subsystem is performing not as
good as in the first experiment, which indicates that the state update model is not accurate enough.
As a result, the Fusion solution also suffers from larger position errors and only achieves a 22.32%
mean position error reduction from 3.27 m to 2.54 m. Since only distance measurements from two
UWB anchors are used in the fusion, the UWB subsystem is unable to obtain a position estimation
for improved correction performance. This is a tradeoff made to have a more cost-effective solution
with fewer number of UWB anchors deployed. Three gyroscope drift estimations are triggered in the
second experiment and the calculated drift for each estimation is 0.03◦, −0.18◦ and −1.08◦, respectively.
The trivial value of drift is verified by the generated tracking path in Figure 6a. Despite the fact that
gyroscope drift is not significant, the FIPS with drift correction manages to reduce the mean position
error to 2.18 m, achieving a 33.33% reduction compared to INS. The cumulative distribution function
(CDF) of position error is further shown in Figure 7 by combining all position error samples in the
two experiments. It is observed from figure that the position error of the proposed approach is more
concentrated on values less than 2 m when compared to the other two results. This result further
strengthens our expectation that information fusion alone is not sufficient and sensor drift correction is
needed to achieve a better tracking accuracy.
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Table 3. Mean position error.

INS Fusion Fusion-Cor

Experiment 1 2.48 m 0.99 m 0.88 m
Experiment 2 3.27 m 2.54 m 2.18 m
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The tracking performance is compared to existing works that applied UWB and INS fusion and is
summarized in Table 4, in terms of mean position error, the total traveled distance of the evaluation
experiment, the number of UWB anchors used and path characteristics including the number and type
of the turns made. Regarding mean position error, best performance is seen in [16] and [18] where
the error is within 0.33 m. However, it is noted that the length of the experiment path is relatively
short without repetitive loops and the performance for a longer path is not explored. An experiment
path traveled over 1 km is used in [26] by repeating a rectangular path 19 times and the achieved
mean position error is 1.05 m. The experiment path used in this paper repeats the U-shaped path
16 times and contained significantly more U-turns. The mean position error for the first experiment
outperforms that in [26]. It should be noted that the less accurate tracking performance in the second
experiment is caused by undetected steps and it is more likely to happen when the pedestrian is making
U-turns, which are not included in the evaluation paths in [16] and [26] and only 2 are included in [18].
Moreover, regarding the number of UWB anchors used, the IPS developed in this paper requires only
two anchors and the fusion is based on distance measurements only. It removes the constraint that at
least four anchors are required to obtain a position estimation by trilateration and significantly reduces
the infrastructure requirement of the developed system.

Table 4. Tracking performance comparison.

[16] [18] [26] Proposed

Mean position error (m) 0.30 0.33 1.05 0.81/2.18
Total traveled distance (m) ~30 100 1140 310.4
Number of UWB anchors 5 4 15 2

No. of turns made 3 31 78 48
No. of left turns 3 14 0 16

No. of right turns 0 15 78 16
No. of U-turns 0 2 0 16

The above presented tracking path is mainly focused on verifying the positioning accuracy
improvement of the proposed approach. The accuracy of the calculated gyroscope drift is not obvious
in the generated paths. Therefore, additional tracking paths are generated using step length estimates
and the corrected gyroscope data applying INS-based PDR directly, termed as INS-Correction (INS-Cor).
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The paths are shown in Figure 8a,b for the first and second experiment, respectively. The path for
the first experiment (Figure 5a) is affected by gyroscope drift more significantly. Correspondingly,
the path in Figure 8a verifies that the drift is accurately corrected. The top right segment of the path
follows more closely in the direction of the ground truth path compared to Figure 5a (the segment
annotated with arrow). The quantified mean and standard deviation (SD) of orientation error values
are summarized in Table 5, achieving 55.58% and 19.87% mean error reduction when compared to INS
only PDR for the first and second experiment, respectively.
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Table 5. Orientation error.

INS INS INS-Cor

Experiment 1 Mean 3.94◦ 1.75◦

SD 2.39◦ 1.29◦

Experiment 2 Mean 1.56◦ 1.25◦

SD 1.00◦ 0.85◦

In the experiments, it is noted that the number of occurrences of the gyroscope drift estimation
is significantly smaller than the actual number of turns made by the pedestrian. The reason is that
the gyroscope drift estimation process is triggered only when both the INS subsystem and the fused
solution satisfy the turn detection conditions described in Section 3.2. This may be a limitation of
the proposed approach since the gyroscope drift accumulated during the turns when gyroscope drift
estimation is not triggered is not corrected. Using INS subsystem step orientations only to trigger
the drift estimation process will lead to more turns detected, as can be seen from the tracking path in
Figures 5a and 6a that the path segments before and after each turn are more likely to satisfy the straight
walking requirement in the described turn detection algorithm in Section 3.2. However, if the same
straight walking behavior is not observed in the fusion system, the reference turning angle derived
from the fusion system may not be accurate and will lead to erroneous gyroscope drift correction.
The proposed FIPS takes advantage of the accurate turning angle estimation in information fusion
when the aforementioned straight walking behavior is observed and corrects the gyroscope drift in
INS subsystem to further enhance the positioning and tracking performance.

5. Conclusions

In this paper, an INS and UWB FIPS for pedestrian tracking is proposed. The fusion is based on
UWB distance measurements only and is able to work with minimum number of UWB anchor nodes,
significantly less than other methods proposed in literature. To enhance the INS subsystem affected
by gyroscope drift, a gyroscope drift correction approach based on turn detection is incorporated
in the fusion process. The proposed approaches use generic information of IPS including heading
orientations and position estimations and are applicable to various IPS with different sensor mounting
options. Experimental evaluations by practical pedestrian tracking are conducted to demonstrate
the effectiveness and accuracy of the gyroscope drift correction approach. With the drift corrected,
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the fusion system is able to provide more accurate positioning and tracking estimations compared to
INS-based PDR and UWB distance measurements-based fusion approach.
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