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Human cytochrome P450 2B6 
genetic variability in Botswana: 
a case of haplotype diversity and 
convergent phenotypes
Leabaneng Tawe1,2,12, Thato Motshoge3, Pleasure Ramatlho3, Naledi Mutukwa4,  
Charles Waithaka Muthoga2, Ghyslaine Bruna Djeunang Dongho5,6, Axel Martinelli7,8,  
Elias Peloewetse3, Gianluca Russo   5, Isaac Kweku Quaye9 & Giacomo Maria Paganotti2,10,11

Identification of inter-individual variability for drug metabolism through cytochrome P450 2B6 
(CYP2B6) enzyme is important for understanding the differences in clinical responses to malaria 
and HIV. This study evaluates the distribution of CYP2B6 alleles, haplotypes and inferred metabolic 
phenotypes among subjects with different ethnicity in Botswana. A total of 570 subjects were analyzed 
for CYP2B6 polymorphisms at position 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C 
(rs28399499). Samples were collected in three districts of Botswana where the population belongs 
to Bantu (Serowe/Palapye and Chobe) and San-related (Ghanzi) ethnicity. The three districts showed 
different haplotype composition according to the ethnic background but similar metabolic inferred 
phenotypes, with 59.12%, 34.56%, 2.10% and 4.21% of the subjects having, respectively, an extensive, 
intermediate, slow and rapid metabolic profile. The results hint at the possibility of a convergent 
adaptation of detoxifying metabolic phenotypes despite a different haplotype structure due to the 
different genetic background. The main implication is that, while there is substantial homogeneity of 
metabolic inferred phenotypes among the country, the response to drugs metabolized via CYP2B6 
could be individually associated to an increased risk of treatment failure and toxicity. These are 
important facts since Botswana is facing malaria elimination and a very high HIV prevalence.

The human cytochrome P450 2B6 enzyme (CYP2B6) plays a pivotal role in the metabolism of different drugs 
used for malaria treatment (artemisinin derivatives such as artesunate, β-artemether and artemether) and 
for HIV life-long therapy (non-nucleoside reverse-transcriptase inhibitors such as efavirenz and nevirapine). 
CYP2B6 is a highly polymorphic enzyme that affects the therapeutic response including drug interactions in indi-
viduals1,2. Importantly, African populations show a high degree of variation in the CYP2B6 gene3. In Botswana, 
interventions towards the elimination of Plasmodium falciparum malaria have been intensified and HIV has been 
reported at a frequency of 18.5%4. So, a deeper knowledge of the genetic variability of CYP2B6 in the population 
of Botswana is necessary to improve the efficacy of ongoing fight against malaria and HIV.

Currently, the first line treatment for uncomplicated malaria in Botswana is a fixed-dose combination of 
artemether (AM) and lumefantrine (LU)5. After oral administration, AM is rapidly absorbed and metabolized to 
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dihydroartemisinin (DHA) through demethylation, mainly via CYP2B6 enzymes6–8. DHA has a higher antima-
larial activity than AM, and it is inactivated primarily by glucuronidation7,9.

Efavirenz (EFV) and nevirapine (NVP) are the most prescribed drugs in anti-HIV combination treatment in 
resource-limited countries10. There is a considerable literature on EFV and NVP pharmacogenetics and currently 
it has been proposed that personalizing the dosage of these anti-HIV drugs according to the CYP2B6 genotype of 
the patient will be of therapeutic benefit11.

The known single nucleotide polymorphisms (SNPs) within the CYP2B6 locus influencing AM and EFV/NVP 
plasma exposure are: 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C (rs28399499). The polymor-
phisms at position 516 and 983 confer a slow metabolic phenotype, leading to higher drug plasma exposure and 
increased toxicity risk. The variation at position 785 confers rapid drug metabolism, leading to lower drug plasma 
level and potentially poorer therapeutic outcome10. The above-mentioned SNPs, in combination or individually, 
may lead to the following CYP2B6 alleles: *4 (785 A > G only), *6 (516 G > T and 785 A > G), *9 (516 G > T only), 
*16 (785 A > G and 983 T > C), *18 (983 T > C only) (http://cypalleles.ki.se). The metabolic status for a given 
drug is defined as slow, intermediate, extensive or ultra-rapid as a result of the individual’s genetic make up12. 
Furthermore, in the anti-infectious therapy context, the therapeutic outcome based on the individual metabolic 
status for a given drug depends also on the length and frequency of therapy. For example, in the context of the 
short course uncomplicated malaria treatment, a slow AM metabolism induces a lower biotransformation rate 
to the most active metabolite DHA7 leading to a lower efficacy and possibly a longer tail during which malaria 
parasites are exposed to sub-inhibitory drug concentrations, inducing an increased permanence in the selective 
window for drug resistance13,14. Conversely, in the context of chronic EFV- or NVP-based antiretroviral combi-
nation therapy (ARTc), a slow metabolic profile reduces drug clearance leading to higher drug plasma exposure 
and consequent higher toxicity risk. This may cause poorer compliance by the patient with resultant emergence of 
viral resistance possibly related to suboptimal drug exposure10,15. Concerning the influence of rapid metabolism 
phenotypes on antimalarial and antiretroviral therapy, information is lacking10.

Another important aspect is that malaria treatment in sub-Saharan Africa may frequently overlap EFV- or 
NVP-based ARTc leading to possible drug-drug interactions. The co-administration of EFV or NVP and AM-LU 
was associated with low plasma concentration of AM and DHA, whereas LU concentration was reduced by EFV 
co-administration16,17. A recent study, looking at HIV-infected patients affected by malaria in Tanzania, has 
shown that the slow metaboliser genotype CYP2B6 *6/*6 leads to high EFV plasma concentration which are 
significantly correlated with low LU plasma concentrations and a high rate of recurrent parasitemia18, increasing 
the risk of the appearance of drug-resistant malaria parasites.

Finally, Botswana (together with other Southern African countries) is also home to individuals with unique 
southern African KhoeSan ancestry. The KhoeSan populations are the earliest known indigenous inhabitants 
of southern Africa and are distinguished by their unique phenotype(s), genetic divergence, click languages, 
and hunter-gatherer subsistence strategy compared to other African populations19–21. During evolution, 
hunter-gatherer practices exposed populations to several xenobiotics which sometimes imposed serious health 
and environmental risks, leading to the selection of specific mutations linked to an efficient detoxification. For 
example, significant differences in prevalence of acetylation phenotypes are found between hunter-gatherer and 
food-producing populations, both in sub-Saharan Africa and worldwide, and between agriculturalists and pas-
toralists in Central Asia22. In Africa, comparative studies on N-acetyl transferase (NAT2) haplotype frequencies 
and acetylation status inference revealed that the hunter-gatherer populations (San, but also Pygmies) are mainly 
composed of fast and intermediate acetylators23, in clear contrast with most agriculturalist populations (such as 
Bantu). A recent report showed differences in the allele frequency for CYP2C8*2 among San and Bantu-related 
communities in Botswana24. These general observations highlight the need for a detailed pharmacogenetic char-
acterization of populations of pure or admixed KhoeSan ancestry in Botswana to accommodate individual/pop-
ulation genetic make-up and expedite optimum treatment strategies against important infections such as malaria 
and HIV infection.

In this study we aim to: i) define the CYP2B6 haplotype status in Botswana via the three most important func-
tional SNPs known to affect the enzyme activity; ii) examine the relationship, if any, of the haplotypes within eth-
nic groups; iii) apply the “metabolic score” in the study of inferred metabolic phenotypes among the populations. 
We selected three sites where the ethnic composition is different (San-related population in the Ghanzi health 
district and Bantu-related populations in the Chobe and Serowe/Palapye health districts, respectively) (see Fig. 1). 
This work is part of the ongoing screening activities for antimalarial drugs efficacy and safety study in Botswana 
unto malaria elimination by 2020, but it also provides useful information on antiretroviral drug metabolism in 
the population, making this research of public health relevance for the country.

Results
Out of 609 samples we obtained genotypic data for all the three polymorphisms from 570 samples (93.60%). The 
genotype and allele frequency for 516 G > T, 785 A > G and 983 T > C in the three selected districts are shown in 
Table 1 with statistical comparisons.

Hardy-Weinberg Equilibrium.  Hardy-Weinberg equilibrium analysis showed that CYP2B6-516 dis-
played significant deviations from Hardy–Weinberg equilibrium in samples from Serowe/Palapye district due 
to a significant heterozygous defect (Wright’s F = 0.13), with the same sample having a significant CYP2B6-
983 heterozygous excess (Wright’s F = −0.17). Genotypes in samples from Chobe and Ghanzi districts were 
in Hardy-Weinberg equilibrium. CYP2B6-785 genotypes were in equilibrium in all three districts analysed. 
Regarding the only two samples showing a rare CC genotype for 983 T > C polymorphism25,26, we sequenced 
them and confirmed the result.

http://cypalleles.ki.se
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Linkage Disequilibrium analysis.  A significant linkage disequilibrium (LD) was found with Arlequin 
between all pairwise comparisons of the three polymorphic loci when samples were considered as a single pop-
ulation (n = 570). Chi-square test values ranged from 36.07 (P < 0.00001, 1 df) for CYP2B6-516 vs CYP2B6-983, 
to 443.55 (P < 0.00001, 1 df) for CYP2B6-516 vs CYP2B6-785, to 43.93 (P < 0.00001, 1 df) for CYP2B6-983 vs 
CYP2B6-785. When analysing the samples separately by district of origin, we found a significant LD in all districts 
for all pairwise comparisons between the three loci (Table 2). In general, LD between CYP2B6-516 and CYP2B6-
785 was strongest, while LD between CYP2B6-983 and the other two loci was weakest but still highly significant.

Haplotype frequency estimation.  Haplotype frequencies were estimated using Arlequin (Table 3). For 
the combined samples, the GAT haplotype was the most common and the GGC haplotype the rarest. Among the 
identified haplotypes, two not yet categorized were found, TGC and TAC, indicated as *6 + *18 and *9 + *18, 
respectively (Table 3). When districts were considered separately, GAT remained the dominant haplotype while 
GGC remained the rarest. However, differences in haplotype frequencies could be observed between districts. 
While there was no statistical difference in the population structure between the Serowe/Palapye and Chobe 
districts (Population pairwise FSTs test: P = 0.06 +/− 0.024, 110 permutations), there was a significant difference 
when both districts were separately compared to the Ghanzi district (Population pairwise FSTs test: P < 0.00001, 
110 permutations for both comparisons). When the Serowe/Palapye and Chobe districts were combined and 
then compared to the Ghanzi district, the populations were still significantly different (Population pairwise FSTs 
test: P < 0.00001, 110 permutations). In particular the Ghanzi district displayed in particular a higher frequency 
(as estimated by ML) of the GAT (65.55%), TAT (10.98%) and TAC (1.53%) haplotypes and a lower frequency of 
the TGT (12.79%) and TGC (3.18%) haplotypes (Table 3). These data indicated a distinct population structure 
in terms of the CYP2B6 alleles in the Ghanzi district compared to both the Serowe/Palapye and Chobe districts.

Neutrality tests.  For each sample, the most likely gametic phases (as determined by Arlequin) were selected 
to perform neutrality tests. The results of the Tajima’s D tests indicated positive values above 2 for the Serowe and 
Chobe populations with significant P-values and 1.26 for the Ghanzi samples with a non-significant P-value. The 
Chobe and Serowe combined population dataset (i.e. Bantu) also yielded a statistically significant D value above 
two (Table 4). The significantly positive Tajima’s D scores among the Bantu groups could either indicate the pres-
ence of balancing selection, migration or a sudden population contraction, or even indicate positive selection on 
pre-existing genetic variation27.

Metabolic score.  The expected metabolic scores were analysed among the three populations (Table 5 and 
Fig. 2).

The Kolmogorov-Smirnov test did not find any statistically significant divergence from normal distribution 
for the metabolic scores in each of the three sub-samples (Table 5). The Bartlett test for homogeneity of variances 
showed that the three variances were not statistically different from each other (Bartlett’s chi square = 3.32, df = 2, 
P = 0.19). The chi-square statistic in the comparison of the absolute frequencies distribution of the metabolic 
scores among all districts was 9.43 with the associated P-value being 0.49, indicating that the distributions of met-
abolic scores in the three groups were comparable. The CYP2B6 inferred phenotypes associated with a reduced 
metabolism were found in 36.67% (n = 209/570) of the overall population studied, mainly intermediate (94.25%, 
n = 197/209) rather than poor metabolizer (5.75%, n = 12/209). Phenotypes associated with increased metabo-
lism were found in 4.21% (n = 24/570) of the population studied, with only 2 individuals showing an inferred 
ultra-rapid metabolic phenotype.

Figure 1.  Map of Botswana.
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Discussion
African populations represent the most genetically diverse populations in the world and this complicates the 
already inadequate treatment strategies developed for several communicable and non-communicable diseases. 
Our study in Botswana showed that haplotype composition is diverse between the Bantu-related communities 
from Serowe/Palapye and Chobe districts, and the San-related communities of the Ghanzi area. This probably 
reflects the different genetic background and evolutionary history of hunter-gatherers and food producing pop-
ulations (farming and pastoralists) in Southern Africa28. We pooled together the haplotype data from Serowe/

District

516 G > T HWE 
(P)

785 A > G HWE 
(P)

983 T > C

HWE (P) TotalGG (%) GT (%) TT (%) f(T) AA (%) AG (%) GG (%) f(G) TT (%) TC (%) CC (%) f(C)

Serowe/
Palapye (S/P)

104 
(40.62)

106 
(41.41)

46 
(17.97) 38.67 Het-d 

(0.038)
108 
(42.19)

109 
(42.58)

39 
(15.23) 36.38 ok 183 

(71.48)
73 
(28.52) 0 (0.00) 14.26 Het-e 

(<0.001) 256

Chobe (Ch) 46 
(29.49)

74 
(47.44)

36 
(23.07) 46.79 ok 49 

(31.41)
80 
(51.28)

27 
(17.31) 42.95 ok 107 

(68.59)
47 
(30.13) 2 (1.28) 16.35 ok (0.061) 156

[S/P + Ch] 150 
(36.41)

180 
(43.69)

82 
(19.90) 41.75 Het-d 

(0.025)
157 
(38.11)

189 
(45.87)

66 
(16.02) 38.96 ok 290 

(70.39)
120 
(29.13) 2 (0.48) 15.05 Het-e 

(<0.001) 412

Ghanzi (GH) 81 
(51.26)

64 
(40.51)

13 
(8.23) 28.48 ok 107 

(67.72)
47 
(29.75) 4 (2.53) 17.41 ok 128 

(81.01)
30 
(18.99) 0 (0.00) 9.49 ok 158

All 231 
(40.53)

244 
(42.81)

95 
(16.66) 38.07 Het-d 

(0.021)
264 
(46.32)

236 
(41.40)

70 
(12.28) 32.98 ok 418 

(73.33)
150 
(26.31) 2 (0.36) 13.51 Het-e 

(<0.001) 570

Comparison: Yates-corrected chi-square value (with P), df = 1; OR (95% CI)

S/P vs Ch 4.93 (0.022) 1.39 (1.04–1.87) 3.1 (0.067) 1.31 (0.97–1.76) 0.51 (0.416) 1.17 (0.78–1.76)

S/P vs GH 8.50 (0.003) 0.63 (0.46–0.86) 33.61 (≪0.001) 0.37 (0.26–0.52 3.65 (0.044) 0.63 (0.39–10.1)

Ch vs GH 21.67 (≪0.001) 0.45 (0.32–0.64 47.48 (≪0.001) 0.28 (0.19–0.41) 5.97 (0.010) 0.54 (0.32–0.89)

[S/P + Ch] 
vs GH 16.49 (≪0.001) 0.55 (0.41–0.74) 47.02 (≪0.001) 0.33 (0.24–0.46) 5.57(0.014) 0.59 (0.38–0.92)

Table 1.  Genotype and allele frequencies for CYP2B6 516-785-983 SNPs and comparisons among the groups. 
HWE: Hardy-Weinberg equilibrium test (with P, when significant). Het-d: significant heterozygous defect; 
Het-e: significant heterozygous eccess. Comparisons were made among districts of different ethnic composition 
(pairwise or combined) for each SNP.

District Comparison Chi-square P-value (1 df)

Serowe/Palapye 516 vs 785 198.19 <0.00001

Serowe/Palapye 516 vs 983 22.54 <0.00001

Serowe/Palapye 785 vs 983 25.36 <0.00001

Chobe 516 vs 785 147.27 <0.00001

Chobe 516 vs 983 5.94 0.014760

Chobe 785 vs 983 8.32 0.003920

Ghanzi 516 vs 785 81.29 <0.00001

Ghanzi 516 vs 983 4.79 0.028660

Ghanzi 785 vs 983 4.88 0.027110

Table 2.  Pairwise LD analysis for the three polymorphic loci. Chi-square values and P-value for LD analysis 
were obtained using Arlequin. Significance is assumed for P < 0.05.

Haplotype CYP2B6 allele

Absolute and (ML) frequencies

S/P Ch Gh All

GAT *1 271 (0.52) 145 (0.45) 210 (0.66) 626 (0.54)

TGT *6 113 (0.22) 90 (0.30) 38 (0.13) 241 (0.22)

TGC *6/*18 49 (0.09) 35 (0.10) 13 (0.03) 97 (0.08)

TAT *9 33 (0.07) 19 (0.06) 35 (0.11) 87 (0.08)

GAC *18 18 (0.04) 12 (0.05) 12 (0.04) 42 (0.04)

GGT *4 22 (0.05) 7 (0.02) 3 (0.01) 32 (0.03)

TAC *9/*18 3 (0.01) 2 (0.01) 4 (0.01) 9 (0.01)

GGC *16 3 (0.01) 2 (0.01) 1 (0.00) 6 (0.01)

Table 3.  Haplotype frequencies by district and for all the samples combined. Maximum-likelihood (ML) 
haplotype frequencies were calculated using the EM algorithm in Arlequin.
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Palapye and Chobe districts considering them as a single population since there was no statistical difference in 
the population structure between the two districts. The frequency for CYP2B6 516 G > T is in line with few other 
studies from Botswana29,30. It should be pointed out that looking at the single SNP CYP2B6 516 G > T, Serowe/
Palapye and Chobe districts do show statistical difference in genotypes distribution (see Table 1). However, hap-
lotypes better predict the population structure than single SNPs31, and this observation is also true in CYP2B6 
because of the known linkage among the sites2, as confirmed in this study. We identified two haplotypes not yet 
categorized into alleles that however were already described in other studies32,33.

A possible explanation of the difference observed for genotype distribution at 516 polymorphism between the 
two districts inhabited by Bantu could be due to the HWE of genotypes that was present only in Chobe district. 
The deviation from the HWE in Serowe/Palapye district was also found for the 983 polymorphism. Deviation 
from HWE could be due to lack of CC genotypes for CYP2B6-983, LD between SNPs at position 516 and 983. 
In addition, Serowe/Palapye has a wider sample size that increases the likelihood of deviation from the HWE 
when one of the genotypes (CC) is absent or very rare. Other studies in Africa found absence of 983-CC geno-
types which prevented testing for HWE34,35. Another possible factor affecting both CYP2B6-516 comparisons and 
HWE in Serowe/Palapye district could be ethnic admixture since it is know that the Bantu-related population of 
Botswana carries a variable proportion of KhoeSan ancestry36,37.

An important result of our study is that the metabolic inferred phenotypes are similar among the three inves-
tigated sites. The main reason for this phenomenon could be due to the homeostatic effect of the mutations when 
taken together. Thus, despite clear and high levels of haplotype diversity among the sites, we observe an inferred 
phenotypic convergence, with the result that, globally, drug metabolism remains consistent and comparable 
among the populations studied. It is worth noting that convergent phenotypic evolution is a known phenomenon 
in biology38,39 and also relevant in human populations for several characters included skin pigmentation, lactose 

Population
Serowe/Palapye 
(S/P) Chobe (Ch) [S/P + Ch] Ghanzi (Gh)

Tajima’s D (P-value) 2.39583 (<0.05) 2.50852 (<0.05) 2.63745 (<0.05) 1.25562 (>0.1)

Table 4.  Results of the Tajima’s D neutrality test. Tests were performed with DnaSP v6. P-values are provided in 
brackets.

District
PM 
(−3)

Expected metabolic phenotypes (with scores)

PM 
(−2) I (−1)

EM 
(0) I (+1)

UR 
(+2) Total

K-S D statistic 
(P)

Serowe/Palapye 0 4 86 150 14 2 256 0.34 (n.s.)

Chobe 1* 4* 56 90 5 0 156 0.38 (n.s.)

Ghanzi 0 3 55 97 3 0 158 0.38 (n.s.)

Total 1 11 197 337 22 2 570 0.36 (n.s.)

Table 5.  Distribution of the inferred metabolic phenotype and scores by district, and Kolmogorv-Smirnov 
(K-S) D statistics with associated P values to test the normal distribution of data. Score attribution was made 
according to: 516 TT = −2; 516 GT = −1; 516 GG = 0; 785 GG = +2; 785 AG = +1; 785 AA = 0; 983 CC = −2; 
983 TC = −1; 983 TT = 0. We performed a summation for each genotype (516, 983 and 785) per sample to 
obtain the “metabolic score”. PM: poor metabolisers; I: intermediate metabolisers; EM: extensive metabolisers; 
UR: ultra-rapid metabolisers. (*two 983CC genotypes were found in Chobe).

Figure 2.  Distribution of the inferred metabolic scores by districts. PM = poor metabolisers; I = intermediate 
metabolisers (either with delayed or increased metabolism); EM = extensive or ‘normal’ metabolisers; 
UR = ultra-rapid metabolisers.
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tolerance and immune responses40–43. The CYP2B6 enzyme plays an important primary role in bioactivating and 
detoxifying a certain number of procarcinogens and environmental agents44,45 as well as processing the arsenal of 
plant chemical defences introduced with diets46. The homogeneous phenotypes among the different sub-samples 
of this study are probably due to adaptation to the environmental and/or toxicological conditions of the Kalahari 
and surrounding areas. Based on the Tajima’s D neutrality test results, the two different patterns between Bantu 
and San could either indicate the presence of balancing selection or alternatively migration or a sudden pop-
ulation contraction in the Bantu population but not in the San. The results could also be possible evidence for 
positive selection on pre-existing genetic variation. A similar trend was already found by Fuselli et al.47 for the 
CYP2D6 gene and by Podgorná et al.22 for the NAT2 gene comparing hunter gatherers with food producing pop-
ulations in Africa. There is thus some evidence that the current haplotypes might have evolved independently 
among the different ethnic groups and may thus represent a spectrum in terms of historical and potential adapta-
tions to different ecological and toxicological niches. However, analysis of more genes and control groups will be 
required to exclude non-evolutionary events (e.g. migration into the Bantu populations) as the underlying cause 
of the observed results.

According to the metabolic score, expected metabolic phenotypes were obtained: 59.12% of the population 
study showed a CYP2B6 extensive metabolic phenotype, whereas 36.67% and 4.21% had a reduced and increased 
metabolic phenotype respectively (see Table 5). The poor and the ultra-rapid metabolic phenotype were observed 
in 2.1% (n = 12/570) and 0.35% (n = 2/570) of individuals respectively, whereas 34.56% (n = 197/570) showed 
an intermediate reduced metabolic phenotype, and 3.86% (n = 22/570) had an intermediate increased metabolic 
phenotype. Individuals with a CYP2B6 reduced metabolic phenotype may have an increased risk of malaria treat-
ment failure when treated with artemisinin derivatives48, as well as an impaired outcome of EFV or NVP-based 
ARTc10,29. This effect on malaria therapy efficacy could constitute an important obstacle in the malaria elimination 
phase, suggesting the need to strengthen the surveillance of AM-LU drug efficacy in Botswana. It is important to 
note that Chobe is a seasonal malarious area bordering with Namibia, Zambia and Zimbabwe, whereas Serowe/
Palapye is more prone to unstable epidemics based on weather patterns49,50. Differently, in Ghanzi, which does 
not usually receive high amounts of rainfall, malaria outbreaks do occur at times, as it is currently the case (http://
www.moh.gov.bw/press%20release/MALARIA%20PRESS%20RELEASE.pdf).

Concerning individuals having an inferred ultra-rapid metabolic phenotype, they are rare and the effect of 
their metabolic pattern seems to affect mainly EFV or NVP-based ARTc by leading to sub-therapeutic drug expo-
sure with a potential increase of risk of selection for viral resistance10. Further studies should focus on this fast 
metaboliser fraction of the population almost neglected in the scientific literature.

Finally, it is worth noticing that drug-drug interaction in malaria and HIV co-infections can lead to therapeu-
tic consequences. For examples, EFV was shown to reduce AM AUC by 80%, tripling the dose of AM needed to 
compensate EFV-inductive effect51. In another study, EFV was shown to reduce LU bioavailability52. To ensure 
antimalarial treatment success in HIV/malaria co-infected patients on EFV-based ART, an increase of dosage or 
an extension of the duration of AM-LU treatment using the current dose was proposed from several authors17,53. 
Studying how this is affected by drug metabolism phenotype is another important topic that will deserve future 
attention.

Moreover, malaria infection stimulates HIV replication, causing transient elevation in viral load54 that can 
hamper the management of HIV infected patients, possibly amplifying HIV prevalence55 and this could be rele-
vant for Botswana.

Our work has some limitations one being the absence of metabolic phenotypes, since this is a pure genet-
ics study. Furthermore, we did not measure the extent of KhoeSan ancestry, instead we based our definition of 
San-related ethnicity on family names and sites. However, based on the results from our current study, we can 
conclude that although ethnically and genetically different, populations in Botswana display convergent evo-
lution in their drug metabolism. The presence of significant numbers of slow and fast metabolisers can signifi-
cantly impact the emergence and spread of drug resistance in malaria and HIV, either by exposing pathogens to 
sub-lethal drug doses or inducing non-compliance in patients, with similar consequences. The high frequency of 
co-infections and the negative interaction between anti-HIV and anti-malaria drugs further exacerbates the risk 
of resistance emerging. This warrants constant monitoring in the population to identify potential patients with 
abnormal drug metabolism and adapt treatments accordingly.

Methods
Sample collection.  The survey was performed from March to May 2012 in Botswana in the broader context 
of a Malaria Indicator Survey56,57. A total of 609 unrelated children aged 2–12 years asymptomatic for malaria 
were enrolled from primary schools and child welfare clinics: 288 from the Serowe/Palapye district, 159 from the 
Chobe district and 162 from the Ghanzi (or Gantsi) district. These districts have peculiar ethnic compositions, 
as shown in previous studies24,58. The same protocol for enrollment was followed in all sites. Written informed 
consent for multiple genetic and epidemiological surveys was obtained from all the subjects’ parents/caregiv-
ers before enrollment in the study. This study was conducted in accordance with the guidelines of the Helsinki 
Declaration of 2000 revised 2013, with the approval from Human Research and Development Division of the 
Botswana Ministry of Health [PPME-13/18 V (380)] and the Institutional Review Board of the University of 
Pennsylvania [protocol number 820378]. Three ml of whole blood was collected into EDTA-containing tubes by 
qualified health care workers.

DNA extraction and PCR-RFLP conditions.  DNA was extracted with Qiagen kits according to the 
manufacturer’s protocol. CYP2B6 516 G > T (rs3745274) detection was carried out using a PCR-RFLP technique 
according to the protocol of Lavandera et al.59 with minor modifications. For CYP2B6 983 T > C (rs28399499) 
detection we applied a touchdown PCR-RFLP assay developed in our laboratory34. Finally for the purpose of 

http://www.moh.gov.bw/press%20release/MALARIA%20PRESS%20RELEASE.pdf
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this study we adopted a new in-house protocol for the analysis of the CYP2B6 785 A > G (rs2279343) polymor-
phism. Briefly, we designed two primers that amplify a 223 bp fragment of the CYP2B6 gene (forward primer: 
5′-AACCTGCAGGAAATCAATGC-3′; reverse primer: 5′-CCTTCTTCCCTCCCCATCTTC-3′). For PCR 
cycling, after 5 min of denaturation at 94 C, the PCR mixture was subjected to the following conditions: 30 s 
at 94 C, 30 s at 65 C and 30 s at 72 C for 35 cycles, with a final step of 10 min at 72 C. The PCR product was then 
incubated with NlaIV restriction enzyme that cuts the mutant allele (G) in three fragments of 144 bp, 62 bp and 
17 bp; while the wild-type allele (A) is digested in two fragments of 161 bp and 62 bp. The digested fragments were 
visualized on a 4% agarose gel. Negative control comprised of PCR reaction without a DNA template and controls 
for human genotyping were utilized after sequencing the different genotypes.

Hardy-Weinberg Equilibrium evaluation.  Evaluation of Hardy-Weinberg equilibrium was performed 
using the HWSIM software (freely available at http://krunch.med.yale.edu/hwsim/) and Monte-Carlo permu-
tation test performed when genotypic classes had an expected cell size of less than five. Wright’s F statistics was 
applied to evaluate the expected level of heterozygosity.

Linkage Disequilibrium, haplotype frequency analysis and Neutrality test.  Arlequin v3.560 was 
used to test for linkage disequilibrium between the three loci and for haplotype reconstruction. Several other 
studies were able to evaluate haplotype structure and population differentiation looking at functional SNPs in the 
same gene61–64. The input consisted of diploid genotypic DNA data with unknown gametic phase and assuming 
co-dominance. The expectation-maximization (EM) algorithm used to test for Linkage Disequilibrium (LD) was 
run for 20,000 permutations and 3 initial conditions, based on recommended criteria. For haplotype reconstruc-
tion the EM algorithm was run on the same input file used for the LD test at the haplotype level, with 50 starting 
points and 1,000 iterations. Other parameters were set to default. The Excoffier–Laval–Balding (ELB) algorithm 
(with default settings) was used to generate haplotype counts. Population haplotype frequencies were determined 
both by haplotype counts and estimated by Maximum Likelihood (ML) and were compared using pairwise FSTs 
calculated using default values.

After determining the gametic phase of the samples using the ELB algorithm in Arlequin, the DnaSP (v6) 
software65 was used to calculate and evaluate the Tajima’s D neutrality test using the total number of mutations.

Metabolic score.  We elaborated and adopted a “metabolic score” to take into account the global effect of 
the three polymorphisms together, according to an extensive literature linking genetic polymorphisms to func-
tional impact10,66–68. For the metabolic score we translated the genotype information into a measure of phenotype 
using an ‘activity score’ system already adopted for CYP2D647,69, for CYP2A670 and for CYP2C1971. The meta-
bolic score adopted is based on the algebraic sum of the individual allele values, according to an additive model 
for CYP2B672,73. The scores were set conferring a −1 value for each slow metabolism allele and +1 for rapid 
metabolism allele, while an extensive metabolism allele was scored 0. Accordingly, we obtained: 516 GG = 0; 516 
GT = −1; 516 TT = −2; 983 TT = 0; 983 TC = −1; 983 CC = −2; 785 AA = 0; 785 AG =  +1; 785 GG =  +2. Each 
composite genotype was attributed a final metabolic score by summing the single score for each SNP.

To test possible deviation from the normal distribution of the scores the Kolmogorov-Smirnov test was used 
and the statistic D values calculated for each distribution. A related P-value greater than 0.05 indicates normal 
distribution of data74. Bartlett’s test was performed to assess if the assumption of equal variances among the three 
populations was valid75. Comparisons among metabolic scores were calculated using the chi-square statistic.

All the statistical calculations were performed using Statistica 13.0 software (StatSoft).
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