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Abstract

Orienting of visuospatial attention refers to reallocation of attentional focus from one target 

or location to another and can occur either with (overt) or without (covert) eye movement. 

Although it has been demonstrated that both types of orienting commonly involve frontal and 

parietal brain regions as the frontoparietal network (FPN), the underlying representational coding 

of these two types of orienting remains unclear. In this functional magnetic resonance imaging 

study, participants performed a task that elicited overt and covert orienting to endogenously or 

exogenously cued targets with eye-tracking to monitor eye movement. Although the FPN was 

commonly activated for both overt and covert orienting, multivariate patterns of the activation 

of voxels in the FPN accurately predicted whether eye movements were involved or not during 

orienting. These overt- and covert-preferred voxels were topologically distributed as distinct and 

interlaced clusters in a millimeter scale. Inclusion of the two types of clusters predicted orienting 

type more accurately than one type of clusters alone. These findings suggest that overt and covert 

orienting are represented by interdependent functional clusters of neuronal populations in regions 

of the FPN, which might reflect a generalizable principle in the nervous system for functional 

organization of closely associated processes.
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1. Introduction

Allocation of attention toward a source of external sensory it is known as the orienting 

function of attention (Posner, 1980, 2016; Wright and Ward, 2008) and can be executed with 

or without saccadic eye movements, called overt and covert orienting, respectively (Posner, 

1980, 2016). Clarifying the degree of the relationship between eye movement and covert 

orienting is critical to understand the origin and nature of attention. The logical possibilities 

of relationship between them are on a continuum with complete dependence and complete 

independence as the two extremes (Posner, 1980). Complete dependence asserts that eye 

movement (here we use the term overt orienting inter-changeably with attention guided eye 

movement) and covert orienting are inextricable processes supported by the same underlying 

mechanisms (Posner, 1989). For example, the premotor theory of attention proposed that 

orienting of attention arises from saccade preparation (Rizzolatti et al., 1987; Rizzolatti 

et al., 1994). In contrast, complete independence posits that eye movements and covert 

orienting are orthogonal processes supported by different anatomical substrates (Ponser, 

1980).

Anatomical overlap found in neuroimaging studies provided some support for the 

dependence between overt and covert orienting. It has been demonstrated that both overt 

and covert orienting of attention are reliably associated with increased brain activation in a 

large-scale frontoparietal network (FPN) (Beauchamp et al., 2001; Corbetta, 1998; Corbetta 

et al., 1998; De Haan et al., 2008; Fairhall et al., 2009; Gitelman et al., 2002; Grosbras 

et al., 2005; Nobre et al., 2000; Nobre et al., 1997), which is comprised of frontal regions 

around the intersection of the middle frontal gyrus with the precentral gyrus (named frontal 

eye fields, FEFs) and parietal regions near and along intraparietal sulcus (IPS). This network 

is also named the “dorsal attention network” or “dorsal FPN” in literature related to dorsal 

and ventral pathways of attention (i.e., Ptak et al., 2017; Shulman et al., 2010; Szczepanski 

et al., 2013), while the ventral network is comprised of anterior insular cortex and anterior 

cingulate cortex. Here the term FPN is utilized as in the literature of overt and covert 

orienting. The FPN has been considered as a “source” of orienting in the brain that executes 

attentional control by sending bias signals to modulate activity in visual areas and guiding 

the generation of oculomotor actions (Corbetta et al., 1998; Moore et al., 2003; Petersen 

and Posner, 2012; Posner and Petersen, 1990). However, single cell recording in monkeys 

provided compelling evidence at the neuronal level that separate populations of neurons 

within the FEF (Awh et al., 2006; Bruce and Goldberg, 1985; Bruce et al., 1985; Cohen et 

al., 2009; Sato and Schall, 2003; Schall, 1991) (e.g., visual and movement neurons) drive 

attentional location selection and gaze control (Schall, 2004; Thompson et al., 2005). This 

dissociation provided support for the independence between overt and covert orienting.

In contrast to the two extreme models of complete dependence and complete independence 

between overt and covert orienting, a more moderate model of an interdependent 

relationship has been proposed with resources or computations shared at certain but not 

all stages by overt and covert orienting (Belopolsky and Theeuwes, 2012; Casteau and 

Smith, 2019; Corbetta et al., 1998; Hunt and Kingstone, 2003; Jonikaitis and Moore, 

2019; Posner, 1980). It has been argued that this relationship is supported by a large-scale 

functional segregation of the FPN, with the IPS more involved in orienting and the FEF 
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more involved in t eye movement, or supported by a partial segregation as different 

subdivisions within regions of the FPN (e.g., distinct “overt” and “covert” areas within 

the FEF and IPS) (Corbetta, 1998; Posner, 1980). In contrast, single cell recording studies 

revealed a continuum of visual-movement functions among neurons within the FEF (Moore 

et al., 2012), suggesting that there might be an fine-scale interdependent representational 

coding by populations of neurons with different preferences for overt and covert orienting 

within the regions of the FPN. The neural mechanism, i.e., whether large-scale functional 

segregation or fine-scale representational coding underlies this interdependent relationship, 

however, remains elusive.

Methodological data-analytic techniques for functional magnetic resonance imaging (fMRI) 

data provide advanced tools for the decoding of the representation of different cognitive 

processes in functionally overlapping regions of the brain. Compared to the conventional 

univariate analysis with general linear modeling (GLM) typically used to identify and 

localize brain regions involved in a certain process, multivariate pattern analysis (MVPA) 

has a specific advantage in decoding multidimensional representation as patterns of 

activation in voxels or regions associated with different processes in a commonly involved 

region or network (Davis et al., 2014; Haxby, 2012; Peelen and Downing, 2007; Peelen et 

al., 2006). Although the millimeter-level spatial resolution of the voxels in fMRI is much 

lower than the below-millimeter columnar level neural population, patterns of voxel-wise 

activation in a brain area decoded by MVPA can reflect the underlying columnar level 

organization of representational codes for a specific cognitive process (Boynton, 2005; 

Haynes and Rees, 2005; Kamitani and Tong, 2005; Misaki et al., 2013). Therefore, the 

representation ecoding of overt and covert orienting in the FPN can be examined using 

MV-PAu. Enhancement of spatial resolution of fMRI data acquisition would facilitate 

the detection of the fine-scale pattern of neural representation (Gardumi et al., 2016; 

Mandelkow et al., 2017; Swisher et al., 2010).

In this study, we designed a cue-target attention task to manipulate visuospatial overt and 

covert orienting by instructing participants either to move their eyes or maintain central 

fixation following a location cue. In addition, to examine generalizability of the decoding 

of overt and covert orienting, we also manipulated the cue type: voluntary “endogenous” 

cueing that follows a goal-oriented decision to attend to a specific location versus reflexive 

“exogenous” cueing in which attention is captured via a salient cue (Müller and Rabbitt, 

1989; Posner, 1980, 2016; Posner et al., 1985). Brain activation associated with the task 

manipulation was measured using accelerated multiband fMRI, together with simultaneous 

eye-tracking to monitor participants’ eye movement. A GLM was conducted first to test 

the involvement of the FPN in overt and covert orienting. MVPA was then performed to 

test whether the overt versus covert orienting could be decoded by voxel-wise patterns of 

activation within the FPN in a trial-by-trial manner, and to estimate the patterns (i.e., the 

representation) of voxels with different preferences to overt and covert orienting. To further 

characterize the topological organization of the representation in space, we decomposed the 

pattern into overt- and covert-preferred clusters of voxels by using Morse theory and its 

discrete version (Delgado-Friedrichs et al., 2015; Forman, 2002; Milnor, 1963) and then 

quantified the interleaving pattern of the two types of clusters using spatial statistics (Diggle 

et al., 1976; Gómez-Rubio, 2016; Loosmore and Ford, 2006).
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The existence of interdependent representational coding of overt and covert orienting in 

the FPN would be supported by the findings that (1) the FPN was commonly activated in 

both overt and covert orienting to demonstrate the shared resources for these two types of 

orienting; (2) the pattern of voxel-wise activation in the FPN could be decomposed into 

overt- and covert-preferred voxels, and (3) a successful classification of overt and covert 

orienting could be achieved by overt- and covert-preferred voxels solely, and would be 

significantly improved when combining the two types of voxels, to demonstrate the distinct 

and interactive representation within the FPN. The organization of this representation (i.e., 

large-scale functional segregation or fine-scale representational coding) could be further 

examined by quantifying the topological distribution of overt- and covert-preferred clusters 

of voxels.

2. Method

2.1. Participants

Twenty-four adult participants completed the experiment. Data from two participants were 

excluded due to technical issue in eye-tracking data collection, two more participants were 

excluded due to excessive head motion, and three participants were excluded for excessive 

drowsiness in the scanner impacting either the ability to collect eye tracking data or their 

behavioral performance. The final sample size was n = 17 (9 females and 8 males), each 

with no history of neurological or psychiatric disorder and a full-scale intelligence quotient 

(FSIQ) above 80. Power analysis conducted using G*Power 3.1 (Faul et al., 2009) (RRID : 

SCR_013726, http://www.gpower.hhu.de/) demonstrated that the final sample had sufficient 

power to detect the core effects of interest (see Supplementary Results for details). The 

Institutional Review Board of the City University of New York and Icahn School of 

Medicine at Mount Sinai (ISMMS) approved the protocol and written informed consent 

was obtained from each participant.

2.2. The design of the overt and covert orienting task

The overt and covert orienting task (Fig. 1) was designed to investigate overt and covert 

orienting of attention in response to cues that induce both endogenous and exogenous 

orienting. A fixation set, comprised by eight possible cue/target locations presented as 

circles (each with diameter of 3.9°) arranged around a fixation cross (diameter of 1.9°) 

with the visual angle as 10° from the center of each circle to the fixation cross, was 

presented all through each run. This task was comprised of a 2 (Orienting: overt, covert) 

× 2 (Cueing: endogenous, exogenous) factorial design, with four corresponding trial types 

(i.e., overt-endogenous, overt-exogenous, covert-endogenous, covert-exogenous). The task 

consisted of four runs of trials and each run consisted of 16 blocks with 8 trials in each 

block. Only one trial type was presented in each block, indicated by the color of fixation 

cross: at the beginning of each block, the fixation cross either changed to green to indicate 

the participant to move eyes towards the cued-location after the cue and quickly return 

to central fixation after making a response in each trial (overt block), or changed to red 

to indicate to the participant to maintain central fixation during the entire block (covert 

block). The fixation cross remained colored throughout the entire block. These blocks were 

presented in a random order, and blocks in each run were separated by 15-s fixation periods. 
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Each run began with a 15-s fixation period and ended with a 30-s fixation period. The entire 

task was comprised of a total of 512 trials, and the task lasted approximately 50 minutes.

Each trial within a block began with a variable fixation period of 0 to 1000 ms. Then one 

of the circles was cued either by an arrow (with the length as 2.9°) superimposed on the 

fixation cross location pointing to the circle (endogenous cue), or by a change in luminance 

at the location circle (exogenous cue). The cued location was randomized within each block, 

and the cue period lasted 200 ms. After a 600-ms cue-to-target interval, a target arrow 

appeared within the cued circle and was presented for 200 ms, followed by another variable 

fixation period of 2000 to 3000 ms. Each trial lasted 4000 ms. The length of the target 

arrow was identical to the diameter of the circle. Participants were required to respond to the 

direction of the target arrow by pressing a button (the left index finger for a left response, 

and the right index finger for a right response). The response window was 1700 ms starting 

at the target onset.

2.3. Eye-tracking data acquisition

Eye movements during the task were recorded using a ViewPoint Eyetracker (2010, 

Arrington Research, Scottsdale, AZ) with video capture goggle system at a 60-Hz sampling 

rate. The position of the eye camera was adjusted to obtain an image of the eye in which 

the pupil was in the center of eye camera window when the participant was looking straight 

ahead, and the corners of the eye were at the horizontal edges of the camera window. The 

spatial resolution of the recording window was 1600 × 1200. Sixteen-point calibration was 

completed until an accurate calibration was obtained for each participant. Pupil location was 

achieved at a luminance threshold of 0.25 and a scan density setting of 7. Pupil segmentation 

method was set as “ellipse”. Data was online smoothed as simple moving average with 4 

smoothing points.

2.4. fMRI data acquisition

All MRI scans were acquired on a 3T Siemens Magnetom Skyra scanner with a 16 phase-

array channel head coil at ISMMS. All image volumes were acquired along the axial 

plane parallel to the anterior commissure-posterior commissure (AC-PC). Four runs of T2*-

weighted image volumes were acquired with a multiband accelerated echo-planar imaging 

(EPI) sequence with the following parameters: 72 axial slices 2.3 mm thick, repetition 

time (TR) = 1200 ms, echo time (TE) = 31.4 ms, multiband acceleration factor = 6, flip 

angle = 60°, field of view (FOV) = 224 mm, echo spacing = 0.65 ms, matrix size = 98 × 

98, voxel size = 2.3 × 2.3 × 2.3 mm. A single-band image (SBRef image) was acquired 

at the beginning of each run, and then two dummy volumes were acquired to allow for 

equilibration of T1 saturation effects, followed by 665 volumes. After the EPI scans, two 

field maps were acquired using a double-echo gradient echo sequence, with the following 

parameters: 72 axial slices 2.3 mm thick, TR = 731 ms, echo spacing = 0.65 ms, flip 

angle = 50°, FOV = 224 mm, matrix size = 90 × 90, voxel size = 2.5 × 2.5 × 2.3 mm. 

A field-map as opposite phase encoded EPI was acquired as the difference in distortion 

between two acquisitions with opposite phase encoding directions with TE = 4.92 ms. A 

high-resolution T1-weighted anatomical image volume of the whole brain was acquired 

with a magnetization-prepared rapid gradient-echo (MPRAGE) sequence with the following 
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parameters: 176 axial slices 0.9 mm thick, TR = 2200 ms, TE = 2.5 ms, flip angle = 8°, FOV 

= 240 mm, matrix size = 256 × 256, voxel size = 0.9 × 0.9 × 0.9 mm.

2.5. Procedure

Participants were screened for eligibility in an initial session, in which a 3-subtest WAIS-IV 

short form (Vocabulary, Symbol Search, and Figure Weights) (Wechsler, 2008), Edinburgh 

Handedness Inventory (Oldfield, 1971), and Structured Clinical Interview for DSM-IV 

(SCID-IV) (Spitzer et al., 1994) were administered. They also completed a screening form 

assessing the presence of metal in the body as well as personal and family medical and 

psychiatric history. Participants who passed the screening then returned for the scan session 

on another day. Each participant was informed about the task instructions, and was then 

trained on the task in an MRI simulator, in which they completed two runs of trials. This was 

immediately followed by the scan session. The task was compiled and run on a PC using 

E-Prime software (Psychology Software Tools, Pittsburgh, PA). Stimuli were presented on a 

liquid crystal monitor mounted at the back of the scanner bore (refresh rate: 60 Hz; screen 

resolution: 1024 × 768). Participants viewed the screen through a head-coil mounted mirror. 

The view distance was 238 cm. MRI compatible lenses were provided to participants who 

required vision correction. Participants’ responses were collected using a fiber optic button 

system with two button response gloves (BrainLogic, Psychology Software Tools) placed 

under their left and right hands.

2.6. Eye-tracking data analysis

Eye-tracking data were analyzed with the GazeAlyze toolbox (Berger et al., 2012) for 

off-line preprocessing. The period from the cue onset to 1000 ms after the target offset in 

each trial was segmented, with the period between the cue onset and the target onset as the 

window of interest, and the 1000 ms post-target periods as the reference for the drifting 

correction. Blink detection and smoothing were conducted with default parameters. The 

coordinates of the gaze position in each trial were generated after these preprocessing steps.

Artifact detection was conducted using an in-house Matlab script. Slow drifting within each 

run was corrected using a moving window approach, in which the mean coordinates across 

32 trials before and after each trial were subtracted from the coordinates of gaze position 

in that trial. The area of interest of the covert condition was defined as a circle with the 

diameter as 1/4 of the length of the recording window, and the area of interest of the overt 

condition was defined as the area outside the areas of interest of covert. Trials with the gaze 

position located outside the areas of interest of the corresponding condition were identified 

as outliers. For each task condition, the coordinates of gaze position in trials with the cue 

and target appearing at each of the eight circles were calculated separately. Trials with the 

coordinates outside 3 standard deviation (SD) of each target location in each task condition 

were also identified as eye-tracking outliers. All trials identified as outliers were removed 

from all of the following analyses. There were 80.0 ± 16.1% (mean ± SD) trials remaining 

after the artifact detection and outlier exclusion. The exclusion rate did not significantly 

differ between the overt (18.9 ± 15.6%) and covert (19.9 ± 20.1%) conditions, t(16) = 0.092, 

p = .928. The mean and SD of the coordinates in the remaining trials were calculated for 

each target location in each task condition. The eye-movement distance (in visual angle) 
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from the gaze position to the center of the window was then calculated. A 2 (Orienting: 

overt, covert) × 2 (Cueing: endogenous, exogenous) analysis of variance (ANOVA) was 

conducted on the eye-movement distance.

2.7. Behavioral analysis

The response accuracy was calculated for trials with valid eye-movements, as the percentage 

of trials with correct responses out of the total number of trials in each condition. RT in 

each trial was measured as the interval between the target onset and the subsequent button 

press made within the 1700-ms response window. Mean and SD of RTs in each condition 

were calculated for each participant. Trials with no response or incorrect responses and 

trials identified as eye-tracking outliers were excluded from the RT analyses. Trials with 

RT exceeding 3 SD of the mean RT across the remaining trials in each condition were 

considered as RT-outliers and were also excluded from the RT analyses. There were 98.2 ± 

0.01% trials remained after this RT trimming. A 2 (Orienting: overt, covert) × 2 (Cueing: 

endogenous, exogenous) ANOVA was conducted on the RT.

2.8. Image preprocessing

Functional MRI preprocessing and statistical modeling were conducted using the statistical 

parametric mapping package (SPM12, Well-come Trust Centre for Neuroimaging, London, 

UK), following the Human Connectome Project (HCP) minimal preprocessing pipeline 

(Glasser et al., 2013). Fieldmap correction was first conducted for all EPI images. EPI 

images in each run were realigned to the SBRef images and all SBRef images were 

realigned to the SBRef image in the first run. The mean SBRef image across all runs 

was then co-registered to the T1 image, spatially normalized to the Montreal Neurological 

Institute (MNI) ICBM 152 space based on normalization parameters of the T1 image, and 

resampled to a voxel size of 2 × 2 × 2 mm. To examine the experimental effect on brainstem 

regions (such as superior colliculus) and cerebellum, the normalized EPI images were 

further co-registered to both MNI ICBM 152 EPI template and the EPI template weighted 

by the brainstem mask (Xuan et al., 2016). All normalized EPI images were also spatially 

smoothed with an 8 × 8 × 8 mm full-width-at-half-maximum (FWHM) Gaussian kernel for 

the GLM. Normalized but unsmoothed data was used in the MVPA.

2.9. Localization of brain regions involved in overt and covert orienting

We applied a single-trial analysis protocol (Choi et al., 2012; Kinnison et al., 2012; Rissman 

et al., 2004; Wu et al., 2018) to identify brain regions involved in overt and covert orienting 

as the regions showing significant activation increase in each trial and in the overt and covert 

conditions. Conjunction analysis was then conducted to identify regions commonly involved 

in both conditions, and disjunction analysis was conducted to identify regions specifically 

involved in each condition. We also compared the results of single-trial analysis to the 

conventional GLM to validate the single-trial analysis. These analyses were conducted in 

a whole-brain voxel-wise manner, and the following analyses focused on the frontal and 

parietal clusters of the FPN (including the FEF and the IPS) identified in the conjunction 

analysis. The single-trial signal extraction enabled us to test the classification power of the 

activation of the voxels in the regions of the FPN in a trial-by-trial manner in the MVPA. 

This protocol, rather than the block-wised analysis, was applied because only trials with 
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gaze located on the target circle and with correct response were included in the MVPA 

analyses.

2.9.1. Conventional general linear modeling—First-level (subject-level) GLM was 

conducted for the EPI images by regressing the observed event-related blood oxygenation 

level-dependent (BOLD) signals on task-related regressors to identify the brain regions 

which showed the hemodynamic response as a function of task events for each participant 

(Friston et al., 1994). For each run, onsets of cues in each task condition were modeled 

as a train of delta functions, and then these onset vectors were convolved by a SPM basis 

function of hemodynamic response (HRF) (Friston et al., 1998) to create four regressors of 

interest. Only trials with correct responses and not identified as eye-tracking outliers were 

included. In addition, onset vectors for cues in trials with incorrect responses or identified 

as eye-tracking outliers were also constructed for each condition, if any, and then convolved 

with the HRF to create nuisance regressors, resulting in a range of 0 to 8 nuisance regressors 

in each run. The six motion parameters generated during realignment and one regressor 

to indicate runs were entered as nuisance covariates for each run. Low-frequency drifts 

in signal were removed using a high-pass filter of 256 s. Serial correlation was estimated 

using an autoregressive AR(1) model. The GLM was estimated and the images of parameter 

estimates (beta images) were obtained. This model did not separate the activation associated 

with the processing of cue and target because the cue-to-target interval was fixed in the task. 

The estimated parameters represent the overall activation change during the entire process of 

attention orienting, including both cue- and target-related activation.

Orthogonal polynomial contrasts across beta images of the four regressors of interest (i.e., 

overt-endogenous, overt-exogenous, covert-endogenous, covert-exogenous) were applied to 

identify brain regions that: 1) showed significant increase in activation in overt conditions 

versus fixation baseline (contrast vector: [0.5, 0.5, 0, 0]) and covert conditions versus 

fixation baseline (contrast vector: [0, 0, 0.5, 0.5]), and 2) showed significant different 

between overt and covert conditions (overt > covert: [0.5, 0.5, −0.5, −0.5], covert > overt: 

[−0.5, −0.5, 0.5, 0.5]). It is worth noting that although the estimated BOLD signal included 

activation associated with both cue- and target-related process, the location of the target 

was counterbalanced between the overt and covert conditions and the cue was 100% valid, 

therefore the second contrast should not be affected by the difference in target-related 

process. The contrast vectors were normalized across all runs. The contrast images from 

all participants were then entered into a second-level group analysis for each effect, with 

random-effects statistical model in which the cue effect was the fixed effect and participants 

was the random effect. The conjunction between the effects of overt-minus-fixation-baseline 

and covert-minus-fixation-baseline was examined to identify common regions of activation 

in the overt and covert conditions. The threshold of significance for each test was set as 

an uncorrected voxel-wise level p < 0.001 for the height with a contiguous voxel extent 

threshold (k) that was estimated by random field theory to correct for multiple voxel 

comparisons at a cluster-wise level of p < 0.05. Disjunction analysis was conducted to 

identify regions with an increase in activation specifically in the overt or the covert condition 

by masking out activation in one condition (e.g., covert) when testing for activation in the 
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other condition (e.g., overt), with the threshold of the exclusive mask as uncorrected p < 

0.05.

2.9.2. Single-trial analysis—Single-trial extraction was conducted using a “extract-

one-trial-out” approach (Choi et al., 2012; Kinnison et al., 2012; Padmala and Pessoa, 2011; 

Rissman et al., 2004), with its detection and estimation power demonstrated in our previous 

study (Wu et al., 2018). Specifically, a first-level GLM was constructed and estimated for 

each individual trial of interest. The regressors in this GLM were identical to the first-level 

GLM described above, except that the regressor of the condition containing the trial of 

interest was split into two regressors: 1) the regressor as the convolution of the HRF and 

the onset of cue in the trial of interest; and 2) the regressor as the convolution of the HRF 

and the onsets of cue in the rest of trials in this condition except for the trial of interest. 

The estimated beta image for the trial of interest was considered as the brain responses 

associated with the condition of the trial of interest. This routine was looped for trials with 

correct responses and not identified as eye-tracking outliers. Trials with a global mean beta 

value across all voxels that was above or below 3 SD of the mean across all remaining 

trials were defined as outliers and removed from the following analyses. Brain activation 

associated with overt and covert orienting were estimated as the averaged beta images across 

all trials in the corresponding condition.

First-level statistical analysis was conducted as an independent sample t-test of the overt 

versus covert comparison for beta values in each voxel in the FPN. The generated subject-

level averaged beta images of overt and covert conditions were then entered into a second-

level group analysis as a paired t-test. The effects of overt-minus-fixation-baseline, covert-

minus-fixation-baseline, the conjunction and disjunction analyses of these two effects, and 

the comparison of overt versus covert were examined based on this second-level GLM. The 

significant threshold of each test was FWE corrected voxel-wise level p < 0.05 for the height 

with a contiguous voxel extent threshold (k) that was estimated by random field theory to 

correct for multiple voxel comparisons at a cluster-wise level of p < 0.05.

2.10. Classification of overt versus covert orienting based on activation in the regions of 
the FPN

We employed MVPA (Haxby et al., 2001; Haynes and Rees, 2005; Norman et al., 2006) to 

test whether overt and covert orienting of attention can be predicted based on activation of 

voxels in the regions of the FPN. The support vector machine (SVM) (Cortes and Vapnik, 

1995), which is one of the most popular supervised machine learning methods, was used as 

the classifier. The linear SVM in this study modeled the relationship between the orienting 

type in each trial (target variable) as a weighted sum across the activation across voxels 

in an ROI of the FPN (input features). The linear model was adopted to reduce the risk 

of over-fitting caused by the much larger number of feature dimensions (e.g., the number 

of voxels) compared to the sample size (i.e., the number of trials) (Misaki et al., 2010). 

The linear SVM was implement using the “fitsvm” function in the Statistics and Machine 

Learning Toolbox of MATLAB. The frontal ROI (named as FEF) and the parietal ROI 

(named as IPS) were defined as the corresponding clusters that showed significant activation 

in the conjunction analysis, and the ROI of FPN was defined as the combination of these 
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two ROIs. Voxel-wise activation for each ROI was extracted from the single-trial beta maps 

estimated based on normalized but unsmoothed EPI images.

The input feature of the SVM was a m × n array, with each row as the vectorized activation 

of voxels in an ROI in each trial (m: number of trials, ranged from 195 to 485), and each 

column as the beta values of voxels in the ROI (n: number of voxels, 7423 for the FEF, 

8953 for the IPS, and 16376 for the FPN). The values of each input feature were normalized 

across all trials (mean as 0 and SD as 1). The overt condition was coded as the negative 

class and covert condition was coded as the positive class. Here the number of trials in the 

overt and covert conditions were relatively balanced for all participants, with the ratio of 

covert conditions ranging from 49.1% to 53.8%, and therefore not expected to significantly 

bias the classifications. Classification decisions in linear SVM were computed through a 

linear combination of weights and input data: y = wTx + b, with x as the features, y as the 

expectation of the target variable, and w as the weight vector across features. The weight 

vector was estimated when searching the hyperplane with the largest margin between the 

two classes, as the best one that separates all data points of one class from the other class 

(Cortes and Vapnik, 1995). The trials were split into two independent sets: the training 

set and the testing set. The weight vector learned based on the training set was applied to 

the testing set to predict the class of each trial, in which a trial with y<0 predicted as an 

overt trial and a trial with y>0 predicted as a covert trial. The sign of the weight of each 

feature represents the response bias of that voxel, with a negative weight representing an 

overt preference and a positive weight representing a covert preference. The absolute value 

reflects the importance of this feature in the classification, with a bigger absolute value 

indicating a higher importance.

Ten-fold cross validation was employed to evaluate the performance of this binary 

classification, in which all trials were randomly divided into 10 folds, with 9 of them as the 

training set and the rest one as the testing set. The classifier trained based on the training set 

was then applied to predict the class of each trial in the testing set. There were four possible 

outcomes of the prediction: true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN). The focal measure of the classification performance was the accuracy, 

i.e., (TP + TN) / (TP + FP + FN + TN). Other measures of the classification performance 

were also computed for each class, including precision = TP / (TP + FP), recall (sensitivity) 

= TP / (TP + FN), and F1 score = 2 × (recall × precision) / (recall + precision). These 

measures could reflect whether the classification was biased: an unbiased classification will 

reveal similar estimates between the two target classes for each measure. A total of 1000 

permutations of 10-fold cross validation were performed for each participant. The average of 

each of the measures of outcomes was computed.

The null distributions of performance and weights were estimated by randomly shuffling the 

target classes in another 1000 permutations of 10-fold cross validation. For the measures 

of performance, the average of each measure was computed as the estimated chance 

level performance and then compared to the empirical measures across participants using 

paired t-tests. For the subject-level analysis of the weight, the distribution of the empirical 

weight values was compared to the null distribution for each feature as a two-sample 

t-test. Bonferroni correction was applied to correct for multiple comparison, resulting in a 
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corrected significant level of p < .05. The thresholded weight vector was mapped back to 3D 

MNI space based on the corresponding coordinates of each voxel to generate a thresholded 

weight map for each participant.

We did not apply similar analyses to examine the exogenous and endogenous differences 

because it is not the focus of this study. The main hypothesis of this study focuses on 

the encoding mechanisms of overt and covert orienting of attention, whereas there was no 

similar hypothesis for exogenous and endogenous attention. Additionally, exogeneous and 

endogenous attention are highly related to cueing and due to the fixed cue-target interval in 

this experiment, the cue- and target-related BOLD responses could not be separated.

To examine the impact of spatial smoothing on the classification performance, MVPA was 

also performed on voxel-wise activation extracted from the single-trial beta maps estimated 

based on spatially smoothed EPI images (FWHM = 8 × 8 × 8 mm). The classification 

performance of MVPA based on unsmoothed and smoothed EPI were compared as paired 

t-tests. To examine the potential impact of block structure on the classification performance, 

i.e., whether the temporal proximity between events contributed to the classification, a 

control analysis was performed for each ROI. In this analysis, all trials in 1 out of 10 

blocks, rather than 1 out of 10 trials, were assigned as the testing set, while the rest of trials 

were assigned as the training set. In the corresponding permutation analysis for the baseline 

performance, trial labels were shuffled at block level, rather than trial level, to match the 

temporal adjacency of trials within blocks.

We also conducted a group-level analysis for the weight maps, in which empirical weight 

maps (unthresholded) were also compared to the chance level weight maps as a paired 

t-test (two-tailed) for each voxel within the ROI. Bonferroni correction was applied to 

correct for multiple comparisons, resulting in a corrected significance level of p < .05. To 

examine the similarity between the weight map and univariate activation map generated 

in the GLM, we transformed each map into a 1-d array and then computed the Pearson 

correlation coefficient between them. Here univariate activation maps estimated based on the 

unsmoothed single-trial images were used to make them comparable to the weight maps.

To further exanine the representational coding of overt and covert orienting in the FPN, 

we estimated and compared the contribution of overt/covert-preferred voxels and their joint 

contribution. The two extremes of continuums of the possible relationship would lead to 

distinct predictions. For a completely dependent relationship, a successful overt versus 

covert classification would be only achieved by combining overt- and covert-preferred 

voxels, but could not be achieved by each type of voxel solely. In contrast, for a completely 

independent relationship, a successful overt versus covert classification would be achieved 

by either overt- and covert-preferred voxels solely. Further, if a successful overt versus 

covert classification could be achieved by either type of voxel solely and combining 

the two types of voxels could significantly enhance the classification accuracy, it would 

be supported by a joint representational space comprised by interdependent voxels with 

different preferences, or supported by an increased amount of information conveyed by two 

independent types of voxels. In this analysis, to test the contribution of one type of voxel 

solely, we set the weights of all the voxels for the other type response bias (e.g., overt 
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preferred voxels with ncovert voxels) to zeros, and then applied this weight vector to predict 

the targets of 20% of trials randomly selected from the full data set of each participant. 

The comparable reference performance of the prediction in which voxels with both types of 

voxels combined was estimated by randomly selecting the equal number of weights (e.g., 

novert) from both overt- and covert-preferred voxels (e.g., set the weights of ncovert voxels 

into zeros, regardless of the sign of weight). The distributions of the empirical prediction 

performance were estimated by 1000 permutations, and the reference performance was 

estimated by another 1000 permutations. The mean performance of single type weight and 

the mean performance of reference prediction were computed across these permutations for 

each participant. At the group level, paired t-test was conducted to compare the single type 

performance to the reference performance. A paired t-test was also conducted to compare 

the empirical performance to the chance level.

To test the generalizability of the decoding across participants, cross-subject classification 

was performed, in which one participant’s data set was used as the training set and another 

participant’s data set was used as the testing set. The chance level performance was 

estimated for each pair of participants as the average performance of the 1000 permutations 

in which targets in the testing set were randomly shuffled. The mean performance of the 272 

cross-subject classification was compared to the chance level performance as a paired t-test 

(one-tailed).

To test the generalizability of the decoding of overt and covert orienting across endogenous 

and exogeneous cueing, we conducted a cross-cueing-classification analysis, which used 

the all trials with one type of cueing (e.g., exogeneous) as the training set and trials 

with the other type of cueing (e.g., endogenous) as the testing set. Performance of the 

endogenous-to-exogeneous and exogeneous-to-endogenous classifications were estimated 

separately. Chance level performance of each cross-cueing classification was computed as 

the mean across 1000 permutations in which the target classes in the testing set were 

randomly shuffled. Paired t-tests were conducted to compared the performance of each 

cross-cueing classification to the corresponding chance level performance as the reference.

2.11. Characterizing the topological organization of the weight maps

Each participant’s mean weight map as the average across all permutations in the above 

overt versus covert MVPA was further decomposed into overt- and covert-preferred clusters 

for each region of the FPN, defined as areas of voxels with positive weights surrounding 

local maxima and areas of voxels with negative weights surrounding local minima, 

respectively. The decomposition was based on Morse theory (Milnor, 1963) to identify 

topologically critical structures from a scalar function (i.e., a weight map within the FEF or 

IPS). In particular, it viewed the weight map as a terrain function and extracted its landscape 

features such as basins (areas surrounding local minima) and mountains (areas surrounding 

local maxima). The weight map was first decomposed into a covert-preferred domain 

comprised of all voxels with positive weights and an overt-preferred domain comprised 

of all voxels with negative weights. Then the overt-preferred domain was also decomposed 

into clusters, each of which is a Morse stable manifold of a local minimum (a basin with 

a unique local minimum), while the covert-preferred domain was further decomposed into 
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clusters, each of which is a Morse unstable manifold of a local maximum (a mountain 

with a unique local maximum). More details of the Morse decomposition can be found 

in Supplementary Methods and the implication of this method is introduced in Hu et 

al. (2021).The procedure of the decomposition was illustrated in Supplementary Fig. 1. 

Numbers of clusters were counted and the volume of each cluster was computed as the 

number of voxels in the cluster multiplying the voxel size (2 × 2 × 2 = 8 mm3), and its 

isotropic size was computed as the cube root of the volume.

This decomposition approach characterized the clustering tendency of the weight maps, 

which considered the topological distribution of the weights in the space, which is not 

directly comparable to conventional clustering approaches such as K-means that mainly 

considers the geometric distribution of the weights. Clustering tendency of the weight 

maps was compared to the null distribution, which was estimated by performing Morse 

decomposition on each subject-level weight map generated by the permutation used to 

estimate the null distribution of classification performance and amplitude of the weights. 

The noise covariance across space and factors related to vascularization in these maps were 

consistent with those in the corresponding empirical maps. Pair-wise t-test was conducted to 

compared the empirical cluster size to the estimated chance level. Larger averaged cluster 

size indicates higher clustering tendency in the map.

Classic spatial statistics, i.e., the G and K functions (Besag and Green, 1993; Loosmore 

and Ford, 2006), were used to characterize the relative spatial arrangement of the overt- and 

covert-preferred clusters, i.e., an interlaced property. More details of the spatial statistics can 

be found in Supplementary Methods and Supplementary Figure 2.

3. Results

3.1. Eye-tracking and behavioral performance

Eye movements were successfully located to the cued locations, i.e., one of the eight 

peripheral circles in each trial, in the overt condition and were located around the central 

fixation in the covert condition (Fig. 2a). Distance of eye movement in each condition is 

shown in Fig. 2b and Supplementary Table 1. The main effect of Orienting (overt vs. covert) 

was significant, F1, 16 = 898.80, p < .001, ηp
2 = .98, with greater mean visual angle in 

the overt condition (Mean ± SD: 8.95 ± 0.21°) than in the covert condition (0.79 ± 0.10°). 

The main effect of Cueing (endogenous vs. exogenous) was not significant, F1, 16 < 1 

(endogenous: 4.86 ± 0.09°, exogenous: 4.87 ± 0.10°), nor was the Orienting by Cueing 

interaction, F1, 16 = 3.38, p = .085, ηp
2 = .17. These findings indicate the distance of eye 

movement was driven by the type of orienting, and was not significantly impacted by the 

endogenous vs. exogenous cueing, which validated the manipulations of overt versus covert 

orienting in our task.

The mean behavioral accuracy was above 95% in all conditions (Fig. 2c and Supplementary 

Table 2), indicating that participants understood the task and followed the instructions to 

make responses as accurate as possible. Reaction time (RT) in each condition is shown in 

Fig. 2d and Supplementary Table 2. The main effect of Orienting was significant, F1, 16 = 

21.11, p < .001, ηp
2 = .57, with a shorter mean RT in the overt condition (536.1 ± 19.9 ms) 
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compared to the covert condition (606.2 ± 20.3 ms). The main effect of Cueing was also 

significant, F1, 16 = 6.54, p = .021, ηp
2 = .29, with a prolonged mean RT in the endogenous 

condition (579.6 ± 20.2 ms) compared to the exogenous condition (562.7 ± 17.4 ms). The 

Orienting by Cueing interaction was not significant, F1, 16 = 1.54, p = .23, ηp
2 = .09. These 

results indicate that covert orienting is more difficult than overt orienting, and the exogenous 

cueing is more effective than endogenous cueing.

3.2. Involvement of the whole brain and the FPN in overt and covert orienting of attention

The contrast of overt-minus-fixation-baseline revealed significant bilateral activation in 

regions of the FPN, including frontal regions of the supplementary motor area (SMA) 

extending to the anterior cingulate cortex (ACC) and the superior and middle frontal gyri 

extending to the precentral gyrus, as well as in the parietal regions of the IPS extending 

to the superior parietal lobule (SPL). This contrast also revealed significant bilateral 

activation in visual areas (including the calcarine cortex, middle and inferior occipital gyri, 

fusiform gyrus, and middle temporal gyrus), and subcortical regions of thalamus, putamen, 

superior colliculus, pulvinar, dorsal and ventral part of cerebellum, and vermis (Fig. 3a and 

Supplementary Table 3). The contrast of covert-minus-fixation-baseline revealed significant 

bilateral activation in regions of the FPN, and in the anterior insular cortex (AIC), visual 

areas (including middle and inferior occipital gyri, fusiform gyrus, and middle temporal 

gyrus), and subcortical regions of thalamus, putamen, superior colliculus, dorsal and ventral 

part of cerebellum, and vermis (Fig. 3b and Supplementary Table 4). The conjunction 

between these two contrasts revealed significant bilateral activation in the FPN, visual areas 

(including middle and inferior occipital gyri, fusiform gyrus, and middle temporal gyrus), 

the thalamus, and the dorsal and ventral parts of cerebellum, as well as unilateral activation 

in the left superior colliculus (regions in violet in Fig. 3c and Supplementary Table 

5). Disjunction analysis showed that the overt condition was specifically associated with 

bilateral activation in the primary visual areas (calcarine cortex and lingual gyrus) and the 

pulvinar, and that the covert condition was specifically associated with bilateral activation in 

the ACC, the AIC, the anterior portion of the thalamus, as well as unilateral activation in the 

right superior temporal gyrus and the right superior colliculus (Fig. 3c and Supplementary 

Table 6). The contrast of overt > covert revealed a significant activation in the left and right 

calcarine cortex, while the contrast of covert > overt did not reveal significant activation in 

any region (Fig. 3d and Supplementary Table 6). Similar results were found by using the 

conventional GLM (see Supplementary materials and Supplementary Fig. 3 for details).

The ROIs of the FPN were comprised of a frontal FEF-centered ROI and a parietal ROI 

that included mainly the IPS, both defined as the regions that showed significant activation 

in the conjunction between the contrasts of covert-minus-fixation-baseline and overt-minus-

fixation-baseline. Specifically, the ROI of the FEF (highlighted as white dashed contours 

in Fig. 3) was defined as the frontal areas located in the region around the intersection 

of superior frontal gyrus and middle frontal gyrus, and extending to the SMA and the 

precentral gyrus. The ROI of the IPS (highlighted as green dashed contours in Fig. 3) 

was defined as the parietal areas including the anterior, ventral, medial, lateral, and caudal 

portions of the IPS, and the SPL. Comparison between activation in the overt and covert 

conditions did not show any significant difference under the thresholds of FWE corrected 
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p < .05 with small volume correction restricting the comparison within the FPN (Fig. 

3d). Averaged regional activation of the FEF and the IPS are illustrated in Supplementary 

Fig. 4, with a significantly greater activation in the covert conditions than in the overt 

conditions revealed only in the right FEF. Each participant’s voxel-wise activation in the 

FPN for the overt versus covert contrast estimated based on unsmoothed data is illustrated in 

Supplementary Fig. 5.

3.3. MVPA classification performance of overt versus covert orienting based on 
activation of the FPN

The classification of overt versus covert orienting using linear SVM reached an accuracy 

of 85.8 ± 4.9%, 85.8 ± 4.5%, and 89.9 ± 4.6% by patterns of voxel-wise activation in the 

ROIs of the FEF, the IPS, and the FPN (i.e., FEF and IPS combined), respectively (Fig. 

4a). The classification accuracy based on the FPN was significantly higher than the accuracy 

based on the FEF alone, t16 = 10.05, p < .001 and the IPS alone, t16 = 12.39, p < .001, 

while the difference between the FEF and IPS was not significant, t16 < 1. Spatial smoothing 

using a FWHM as 8 × 8 × 8 mm Gaussian kernel resulted in a significant decrease in 

classification accuracy for each ROI (FEF: 75.1 ± 5.7%, IPS: 76.4 ± 3.9%, FPN: 80.7 ± 

5.1%; all ps < .001). Precision, recall, and F1 score of these classifications are reported in 

Supplementary Table 7, which did not show any bias to either overt or covert condition. 

All of these measures were significantly higher than chance level of 50.4 ± 0.6% (ps < 

.001). Accuracy of the control analysis considering the block structure was also significantly 

higher than chance level for each ROI (FEF: 59.7 ± 7.0% > 50.0 ± 1.9%, t16 = 5.14, p < 

.0001; IPS: 55.1 ± 4.1% > 50.1 ± 1.5%, t16 = 4.72, p = .0001), indicating the classifications 

were not biased by the trial sampling method.

Accuracy of the cross-subject classification, i.e., training the overt-versus-covert classifier 

based on all data from one participant and testing its performance on data from other 

participants, was 55.0 ± 0.7%, 54.1 ± 0.8%, and 55.0 ± 0.7% for the FEF, IPS, and FPN, 

respectively on average, which was close to but significantly higher than the chance level (all 

ps < .001; Fig. 4b and Supplementary Table 8). Accuracy of the cross-cueing classifications, 

i.e., training the overt-versus-covert classifier based on trials in the one cueing condition 

and testing its performance on the trials in the other condition (endogenous-to-exogenous 

and exogenous-to-endogenous cross-classifications), ranged from 66% to 72%, were 

significantly above the chance level (ps < .001) and did not show any bias to either overt or 

covert condition (Fig. 4c and Supplementary Table 9).

SVM weight maps of the overt-versus-covert classification based on activation of voxels 

in the FEF, IPS, and FPN were illustrated for two participants in Fig. 5a–5c (see 

Supplementary Fig. 6–8 for the weight maps for the other participants). Most of voxels 

showed weights significantly different from the null distribution for both FEF and IPS, 

while only a small proportion of voxels showed univariate voxel-wise activation significantly 

different from zero (see Supplementary Table 10 for details). For the group-average of 

the weight maps across all participants, no voxels in the FEF and the IPS cluster showed 

significant difference from the null distribution.
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Both voxels with positive and negative SVM weight values revealed positive beta values 

(activation) in both overt and covert conditions (Fig. 5d). The overt condition was associated 

with a pattern that the voxels with positive weight values showed lower activation (lower 

beta values and negative z values) than the voxels with negative weight values (higher beta 

values and positive z values), while the covert condition showed a reversed pattern (Fig. 5e). 

The univariate activation could account for 38.5 ± 10.6% of variance of the weights (r = .615 

± .086) for the FEF, and 38.6 ± 11.7% variance of the weights (r = .615 ±. 094) for the and 

IPS, respectively. Therefore, voxels with negative and positive weights can be considered as 

overt- and covert-preferred voxels, respectively.

Classifications by activation of overt-preferred voxels alone reached an accuracy of 62.0 

± 6.5% for the FEF and 57.9 ± 3.7% for the IPS, while accuracy of the classification by 

activation in the covert-preferred voxels was 57.8 ± 5.1% for the FEF and 56.9 ± 3.2% for 

the IPS, (Fig. 6). These accuracies were slightly but significantly higher than the chance 

level (ps < .001). Combining the two types of voxels when controlling the total number of 

voxels led to a significant superadditive increase of classification accuracies (FEF: 96.1 ± 

2.4%, IPS: 88.1 ± 5.9%; all ps < .001). Precision, recall, and F1 score of these classifications 

are reported in Supplementary Table 11, which did not show any bias to either overt or 

covert condition.

3.4. Topological property of the spatial distribution of the overt- and covert-preferred 
voxels

The analysis of the topological properties of the spatial distribution of the overt- and covert-

preferred clusters of voxels revealed that the two types of clusters were interlaced with an 

average cluster size of 14.3 ± 3.1 voxels for the FEF and 14.0 ± 2.3 voxels for the IPS 

(Supplementary Table 12), which was significantly smaller than the chance level cluster size 

(FEF: 98.8 ± 16.6 voxels, IPS: 83.2 ± 8.1 voxels). This finding indicates that the clustering 

tendency for voxels with the same preference in these ROIs was significantly different from 

the clustering tendency of randomly distributed noise. Specifically, based on the topological 

distribution of the overt- and covert-preferred voxels in space, areas within each FPN region 

were decomposed into about 500 to 600 clusters based on the discrete version of Morse 

theory. Nearly half of these were overt-preferred clusters, i.e., areas of voxels with negative 

weights surrounding a local minimum, and the other half were covert-preferred clusters, i.e., 

areas of voxels with positive weights surrounding a local maximum (Fig. 7a and 7b). Each 

cluster was comprised of 10 to 20 voxels corresponding to a 4 to 5 mm isotropic volume. 

Spatial statistical analysis showed that the overt- and covert-preferred voxels within each 

region of the FPN were organized as distinct clusters that distributed as an interlaced pattern 

in the same space. See Supplementary Materials and Supplementary Fig. 9 for the results of 

the specific analysis of the topological distribution.

4. Discussion

This study demonstrated an interdependent relationship between overt and covert orienting. 

The common activation of the FPN in both overt and covert orienting of attention found in 

this study and previous fMRI studies (Beauchamp et al., 2001; Corbetta, 1998; Corbetta et 
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al., 1998; De Haan et al., 2008; Fairhall et al., 2009; Gitelman et al., 2002; Grosbras et al., 

2005; Nobre et al., 2000; Nobre et al., 1997) supports some dependence of these two types 

of orienting. In contrast, the distinct underlying representational coding of orienting revealed 

by the significant predictive power of the multivariate patterns of activation in the regions of 

the FPN supports independence of overt and covert orienting, consistent with findings from 

single-cell recording studies in monkeys (Bruce and Goldberg, 1985; Bruce et al., 1985; 

Cohen et al., 2009; Sato and Schall, 2003; Schall, 1991). Importantly, the joint classification 

power of overt- and covert-preferred clusters of voxels, the superadditivity, indicates an 

interdependent relationship. That is, each type of cluster could predict the orienting type 

slightly but significantly better than chance level, and these two types of clusters together 

led to a significant superadditive increase in prediction accuracy, with the amplitude of the 

increase being greater than the sum of the accuracy increases (compared to chance level) by 

each type of clusters. Joint involvement of the two types of clusters with different preference 

may convey unique information for the representation of overt and covert orienting, beyond 

the additive effect of the information conveyed by each type of clusters. Even though overt 

and covert orienting could be solely implemented by an independent representation in its 

corresponding type of cluster, an interdependent representation that involves both types of 

clusters leads to more reliable coding of orienting.

Voxel-wise multivariate pattern of activation in the FPN is likely associated with the 

underlying neuronal-level mechanism. The spatial resolution of voxel-wise activation 

observed in fMRI studies is much lower than the scale of neuronal populations. However, 

the spatial distribution of neuronal populations impacts the relative magnitude difference 

across voxels (i.e., the pattern of activation) within a brain region demonstrated in 

previous studies on the representational coding of stimulus orientation in the primary 

visual cortex (Alink et al., 2013; Boynton, 2005; Haynes and Rees, 2005; Kamitani and 

Tong, 2005). These studies revealed that millimeter-level activation patterns in the primary 

visual cortex arise from random spatial irregularities in the map of below-millimeter 

level orientation columns. Specifically, activation in each individual voxel emerges from 

a combination of activity of all neural populations inside this voxel. The inhomogeneity of 

the spatial distribution of populations of neurons across voxels leads to a mosaic-like spatial 

distribution of voxel-wise activation with idiosyncratic biases in individual voxels (Kamitani 

and Tong, 2005; Swisher et al., 2010; Tong and Pratte, 2012). Similar to the encoding of 

stimulus orientation in the primary visual cortex, there is a continuum of visual-movement 

functions among neurons within the FEF (Moore et al., 2012), and attention selection 

and eye movement control are implemented by selectively activating and suppressing the 

populations of visual and motor neurons in the FEF (Thompson et al., 2005). Therefore, 

if there is random variability in the spatial distribution of the neurons with visual and 

motor preferences, the proportion of different populations contributing to the activity of each 

individual voxel may lead to a bias in the activity. Overt orienting would be associated 

with a pattern of higher activation in voxels containing more motor-preferred neurons (overt-

preferred voxels) than in voxels containing more visual-preferred neurons (covert-preferred 

voxels), while covert orienting would be associated with the reverse pattern.

There are several possible alternative explanations for the classification power of the 

activation in the FPN on the type of orienting. For example, overt and covert conditions 
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differed in task difficulty. In this study, selective activation in the overt condition was 

observed in the primary visual cortex, likely reflecting foveation of the target in this 

condition that is typically associated with enhanced activity in visual cortex (Corbetta et 

al., 1998). In contrast, selective activation in the covert condition, which was more difficult, 

was observed in the ACC and AIC that are typically associated with task difficulty indicated 

by prolonged RT as in literature (e.g., Mulert et al., 2003; Naito et al., 2000; Yarkoni et 

al., 2009). However, these selective responses were not observed in the FPN. These results 

suggest that task difficulty did not significantly contribute to the classification of the type of 

orienting by the activation in the FPN.

The topological property of the pattern of distinct and interlaced clusters of overt- and 

covert-preferred voxels in regions of FPN suggests a fine-scale representational coding of 

orienting within each region of the FPN. The representational coding of orienting may be 

organized as a fine-scale pattern within each anatomical region with multiple overt- and 

covert-preferred subdivisions, which is in contrast to a coarse-scale pattern driven by mean 

regional activation in different anatomical regions (Swisher et al., 2010; Tong and Pratte, 

2012). The clustering of voxels found in the weight maps was organized as millimeter-level 

isotropic clusters for each region, rather than distinct patterns of regional activation across 

regions of the FPN. This suggests that overt and covert orienting are encoded by a fine-scale 

representation in the FPN, rather than a clear segregation by anatomical landmarks forming 

different regions or sub-regions. The finding of reduced classification accuracy by spatially 

smoothing the images further demonstrated the existence of fine-scale representation that 

would be detrimentally impacted by reduction of spatial resolution (Op de Beeck, 2010). 

This fine-scale representational coding echoes findings from single cell recording studies in 

monkeys showing that visual, motor, and visuo-motor neurons are mixed in the FEF (Bruce 

and Goldberg, 1985; Bruce et al., 1985; Schall, 1991).

Although the anatomical properties (e.g., layer, morphological cell type) of neuronal 

populations in the FPN are still poorly understood (Squire et al., 2012), the distinct and 

interlaced clusters revealed by MVPA in this study may provide insight into the within-

region topological distribution of the neuronal populations. Although intra-region fine-scale 

activation pattern may reflect the spatial organization of underlying neuronal populations, 

the pattern has rarely been characterized due to the lack of a corresponding methodology. 

The Morse decomposition together with spatial statistics provides an approach to quantify 

the clustering tendency of voxels with different response preferences in the pattern. High 

clustering tendency may lead to functional segregation as different sub-regions, which may 

be associated with an independence of associated functions. In contrast, the interlaced 

distribution of clusters with different preferences within the same anatomical region of 

the FPN likely facilitates the coordination of attention orienting and attention guided 

eye movement via microstructural neural circuits, which may be more efficient than via 

macrostructural circuit between distinct anatomical regions. The use of unsmoothed images 

which were acquired using multiband sequence with a relatively high spatial resolution in 

this study may facilitate the detection of the fine-scale representation within the FPN (see 

Supplementary Discussion for more information). It is worth noting that the absolute size of 

isotropic clusters cannot be treated as an estimate of the size of neuronal population, because 

although the BOLD signal and electrical signal are associated, they are also different in 
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many aspects. Spatial smoothing in image preprocessing steps (e.g., normalization) and the 

thresholding parameter in the Morse decomposition may also impact the absolute size of 

isotropic clusters. In addition, the accuracy of the classification based on the combination of 

the FEF and IPS was slightly but significantly higher than the classification based on FEF 

or IPS alone. This indicates that the fine-scale representations of orienting within these two 

regions are largely redundant but with some unique contribution. However, the increased of 

number of voxels in the combination feature set might also have contributed to the enhanced 

classification accuracy.

Although the patterns of activation in the FPN were comprised of two types of clusters with 

different response biases (one cluster type is activated more than the other type of cluster), 

their common activation in both overt and covert conditions (the above baseline activation of 

both types of clusters) represents the general involvement of FPN in orienting. This finding 

provides further support for an interdependent mechanism of overt and covert orienting in 

the FPN. That is, activation pattern of the cluster with each type of cluster conveys some 

information for whether the corresponding type of orienting is executing, as the independent 

aspect of the relationship. The joint pattern comprised by the two types of clusters further 

provides additional information of the orienting type, as the dependent aspect of the 

relationship. Therefore, the relationship of overt and covert orienting is in between these 

two extremes, i.e., interdependent. The two types of clusters are not dissociable when only 

examining the involvement of the FPN in two types of orienting as in previous studies 

(Beauchamp et al., 2001; Corbetta et al., 1998; De Haan et al., 2008; Grosbras et al., 2005; 

Nobre et al., 1997). Univariate (voxel-wise) comparison employed in previous studies to 

disassociate the two types of orienting reported either no significant difference in the FPN 

(De Haan et al., 2008; Fairhall et al., 2009), or an impact on mean regional activation 

associated with the condition with a higher task difficulty (Corbetta et al., 1998; Nobre et al., 

2000; Nobre et al., 1997). Although univariate analysis is powerful in examination of impact 

on mean regional activation, it is not sensitive to the fine scale patterns of activation (Davis 

et al., 2014). In this study, voxels revealing significant difference in activation between 

overt and covert conditions were barely observed with subject-level univariate analysis. In 

addition, because of the large cross-subject variability in the spatial distribution of these 

clusters as demonstrated in this study, it is almost impossible to reveal common clusters 

at group level in the univariate analysis. The spatial smoothing and cluster-level extent 

threshold applied in the univariate analysis may further eliminate the possibility to detect 

clusters of voxels with significant overt versus. covert difference shared across participants 

in the current study as well as in previous studies. The low accuracy of cross-subject 

decoding and the large cross-subject variability in the weight maps indicate that there is 

minimal overlap in the topological distribution of neuronal populations in the FPN across 

individuals.

The successful cross-cueing-decoding (i.e., the endogenous-to-exogeneous and exogeneous-

to-endogenous cross-cueing-classifications) suggests that the representational coding of 

overt and covert orienting in the FPN is a high-level encoding mechanism that is 

independent of how attention is summoned by the cue. It has been proposed that attention 

guided eye movement and attentional orienting are only closely related for exogenous 

cueing towards peripheral events, but not for endogenous cueing (Casteau and Smith, 
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2019; Reuter-Lorenz and Fendrich, 1992; Smith et al., 2012). In this way, eye movement 

and attention would be functionally related for the processing of peripheral events rather 

than have intrinsic physiological relationship (Posner, 1980). However, the successful 

cross-cueing-decoding together with the non-significant orienting by cueing interaction in 

behavioral performance found in this study do not support this account. Instead, this finding 

provides evidence for a general representation of orienting that is not specific to endogenous 

or exogenous orienting.

This study demonstrates that eye movements and covert attention are encoded by fine-scale, 

interdependent, interlaced functional clusters in the FPN. Intermingling of motor and 

attentional functions has been observed in FEF-homologue areas in non-human primates 

as described above as well as in the arcopallilal gaze field of the barn owl (Winkowski 

and Knudsen, 2006; Winkowski and Knudsen, 2008). The interdependent fine scale 

representational pattern of closely associated processes in the brain may therefore reflect 

a generalizable principle of functional organization for orienting in the brain across species 

(Squire et al., 2012). Whether this organizational principle applies to other types of closely 

associated functions remains to be investigated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the overt and covert orienting tasks. Diagonal timeline: schematic of one trial 

in the covert orienting and exogenous cueing condition. In this task, the fixation cross and 

eight circles around the fixation were presented on the screen for the whole experiment. 

After a variable fixation period of inter-trial-interval (ITI1, 0–1000 ms), a cue appeared for 

200 ms, followed by a cue-target interval of 600 ms. Participants were required to move eyes 

towards the cued-location after the onset of the cue if the central fixation was green (overt 

block), and to maintain central fixation during the entire block if the central fixation was 

red (covert block). A target arrow then appeared at the cued location and was presented for 

200 ms, followed by another varied fixation period (ITI2, 3000 ms – ITI1). Participants were 

required to press button to respond to the direction of the target arrow within a response 

window of 1700 ms. They were also required to quickly return eyes to central fixation after 

making a response when in the overt block. Upper right: Illustration of the 2 (Orienting: 
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overt, covert) × 2 (Cueing: endogenous, exogenous) task design. The orienting conditions 

are indicated by the color of the fixation across (green: Overt, red: Covert), which remained 

during each task block consisted of 8 trials. The cueing conditions were indicated by an 

arrow superimposed on the fixation cross location (Endogenous), or a change in luminance 

of one of the circles (Exogenous).
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Figure 2. 
Eye-movement and behavioral performance in each task condition. The mean and standard 

deviation (SD) of the coordinates of eye movements (indicated respectively as the center 

and the boundary of each dashed cross) in trials with the cue appeared at each of the 8 

locations in the overt condition and the center focus in the covert condition (a). Distance 

of eye movements from the center of screen as visual angle (b), response accuracy (c), and 

reaction time (RT) (d) in each task condition. Error bars indicate the ± 95% confidential 

interval (CI) for within-subject design across participants.
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Figure 3. 
Brain activation associated with overt and covert orienting of attention. Brain regions 

that showed significant activation in the contrasts of overt-minus-fixation-baseline (a) and 

covert-minus-fixation-baseline (b). Colormap indicates the T value. Brain regions that 

showed significant activation in conjunction and disjunction between these two contrasts (c). 

Violet: conjunction. Light blue: overt specific activation. Magenta: covert specific activation. 

Brain regions that showed significant activation changes in the contrast of overt > covert 

(blue) (d). No region showed significant activation change in the contrast of covert > 

overt. The frontal and parietal clusters of the frontoparietal network (FPN) identified in 

the conjunction analysis were highlighted as the areas within the white and green dashed 

contours, respectively.

Wu et al. Page 28

Neuroimage. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Accuracy of the overt versus covert classification based on the activation pattern of the 

voxels in the FPN. (a) Classification accuracy based on the activation of the voxels in the 

FEF, the IPS, and the FPN (i.e., with FEF and IPS combined). Classification accuracy 

based on the unsmoothed and smoothed voxels were presented using light and dark 

grey bars, respectively. (b) Accuracy of the cross-subject classification. (c) Accuracy of 

the cross-cueing classification for endogenous-to-exogenous (En-to-Ex) and exogenous-to-

endogenous (Ex-to-En). The dashed lines represent the chance level accuracy. Error bars 

indicate the ± 95% confidence interval (CI) for within-subject design across participants.
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Figure 5. 
Weight maps of the overt versus covert classification of two participants. Left and right 

panels are for the participant S1 and participant S2, respectively. Voxels with SVM weight 

values significantly below (in blue, overt-preferred) and above (in red, covert-preferred) zero 

in the classification in the FEF solely (a), in the IPS solely (b), and in the FPN, i.e., FEF 

and IPS combined (c). The cluster of the FEF and IPS was highlighted as the areas within 

the white and green dashed contours, respectively. Mean fMRI activation (d) and its z score 

(e) in voxels with negative weights (overt-preferred) and positive weights (covert-preferred). 

Error bars indicate the ± 95% CI for within-subject design across participants.
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Figure 6. 
Classification accuracy based on activation of overt-preferred and covert-preferred voxels. 

Based on voxels in the FEF (a) and the IPS (b). Blue bar: overt-preferred voxels only. 

Red bar: covert-preferred only. Blue-red bar: overt- and covert-preferred voxels mixed, with 

the number of voxels equal to the number of overt-preferred voxels. Red-blue bar: overt- 

and covert-preferred voxels mixed, with the number of voxels equal to the number of 

covert-preferred voxels. Dashed line: chance level accuracy. Error bars indicate the ± 95% 

CI for within-subject design across participants.
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Figure 7. 
Topological properties of the weight maps. Axial view of the weight map (upper panel; 

color map indicates the weight value) and its Morse decomposition (lower panel; color maps 

indicates the type of cluster) of the FEF (a) and IPS (b) of participant S1.
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