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Abstract

Background: Gene expression profiling of rare cancers has proven challenging due to limited access to patient
materials and requirement of intact, non-degraded RNA for next-generation sequencing. We customized a gene
expression panel compatible with degraded RNA from formalin-fixed, paraffin-embedded (FFPE) patient cancer
samples and investigated its utility in pathway activity profiling in patients with metaplastic breast cancer (MpBQ).

Methods: Activity of various biological pathways was profiled in samples from nineteen patients with MpBC and 8
patients with invasive ductal carcinoma with triple negative breast cancer (TNBC) phenotype using a custom gene
expression-based assay of 345 genes.

Results: MpBC samples of mesenchymal (chondroid and/or osteoid) histology demonstrated increased SNAIT and
BCL2L11 pathway activity compared to samples with non-mesenchymal histology. Additionally, late cornified
envelope and keratinization genes were downregulated in MpBC compared to TNBC, and epithelial-to-
mesenchymal transition (EMT) and collagen genes were upregulated in MpBC. Patients with high activity of an
invasiveness gene expression signature, as well as high expression of the mesenchymal marker and extracellular
matrix glycoprotein gene SPARC, experienced worse outcomes than those with low invasiveness activity and low
SPARC expression.

Conclusions: This study demonstrates the utility of gene expression profiling of metaplastic breast cancer FFPE
samples with a custom counts-based assay. Gene expression patterns identified by this assay suggest that, although
often histologically triple negative, patients with MpBC have distinct pathway activation compared to patients with
invasive ductal TNBC. Incorporation of targeted therapies may lead to improved outcome for MpBC patients,
especially in those patients expressing increased activity of invasiveness pathways.
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Background

Metaplastic breast cancer (MpBC) is a rare and ag-
gressive histological subtype comprising 1 % or less of
all breast cancer cases [1-3]. MpBCs are often nega-
tive for estrogen/progesterone receptor expression and
HER2 amplification, yet this subtype differs in hist-
ology from invasive ductal triple negative breast
cancer (TNBC) by the presence of mesenchymal
(chondroid, osteoid), spindle cell, and/or squamous
neoplastic cell populations [1]. Indeed, this histologi-
cally complex cancer often presents with multiple cell
populations of mixed histologies. Patients with MpBC
suffer from a worse outcome than those with invasive
ductal TNBC, and MpBC patients demonstrate a poor
response to chemotherapy [3-5]. Due to its rarity, the
MpBC genome and transcriptome have only recently been
studied with limited sample size [6, 7]. Comprehensive
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molecular profiling of MpBC and its histological subtypes
is urgently needed.

Formalin-fixed, paraffin-embedded (FFPE) samples are
commonly archived from breast cancer patients’ primary
tumors and could prove a valuable resource with which to
study MpBC omics. However, nucleic acids obtained from
such samples are often degraded, thus impeding high
quality profiling of transcriptomics via next generation se-
quencing. The NanoString nCounter platform has shown
compatibility and reliability with gene expression profiling
using RNA obtained from FFPE samples [8—10]. Here, we
leverage the use of a custom NanoString Technologies
nCounter-based assay to overcome sample degradation
and to quickly and cost-effectively profile and compare
pathway activity for various gene expression signatures
across a set of 19 MpBC and 8 invasive ductal TNBC pa-
tient samples (Fig. 1).
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Fig. 1 Overview of NanoString pathway activity profiling in metaplastic and triple negative breast cancer samples. a) Growth factor receptor
network (GFRN), stemness, or apoptosis genes were individually overexpressed in normal human mammary epithelial cells (HMECs) using
adenovirus delivery. b) The gene expression changes most correlated with induction of expression of these genes were identified. ¢) Gene lists
were pared down to the fewest number of genes able to accurately predict that gene’s signature activity. These genes plus genes from other
pathways relevant to breast cancer were placed on a custom NanoString panel. d) RNA from patient breast cancer samples was assayed using
the custom NanoString panel. Figure artwork was created by the authors
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Methods

Patient samples

Through a City of Hope IRB-approved retrospective
analysis protocol, 18 FFPE and 1 fresh frozen sample
from patients with MpBC, and 8 FFPE samples from
patients with invasive ductal TNBC were collected for
profiling (Additional file 1: Table S1). Written in-
formed consent was obtained from all patients who
participated in the study. Clinical records including
demographics, treatment histories, recurrence free and
overall survival, and cancer-associated mutation profil-
ing data were reviewed and recorded for MpBC pa-
tients. MpBC samples were reviewed by a designated
breast pathologist and assigned to histological sub-
types including squamous, spindle cell, mesenchymal
(chondroid and/or osteoid) or mixed subtype accord-
ing to World Health Organization classification [11].

Activated pathway and GFP control samples

Activated pathway or control samples were generated
in normal human mammary epithelial cells (HMECs)
overexpressing genes of interest or GFP, respectively,
as described previously [12]. Briefly, HMECs were
cultured in basal Mammary Epithelial Cell Growth
Medium plus a bullet kit (MEGM, Lonza, MD, USA).
HMECs were starved of bullet kit additives 36 h prior
to infection with adenovirus expressing either AKT1,
BAD, BCL2L11, HER2, IGF1R, RAF1, or SNAI1 for
18 h or KRAS (G12V mutation) for 36 h at MOI of
200. Overexpression of these genes was chosen to
capture core cell growth, death/survival, and stemness
phenotypes.

NanoString custom codeset
Probe gene targets for the custom gene expression
panel were selected from previously published gene
expression signatures (AKT1, BAD, HER2, IGFIR,
KRAS G12V, and RAFI, from Rahman et al. [12];
multi-cancer invasiveness from Anastassiou et al. [13];
stem cell signature from Boquest et al. [14]; TNF
alpha signature from Phong et al. [15]) and two novel
signatures (BCL2L11 and SNAI1) generated using the
adenovirus infection protocol described above..
Signature gene sets from previously published
AKT1, BAD, HER2, IGF1R, KRAS G12V, and RAF1
signatures were reduced from the previously opti-
mized RNA-sequencing-based signature lengths. Gene
lists were sequentially-reduced in five gene increments
down to a minimum size of five genes and each
reduced gene list was used to profile cell lines from
the International Cancer Benchmarking Partnership
(ICBP) and breast cancer patient samples from The
Cancer Genome Atlas (TCGA) using the Adaptive
Signature Selection and InteGratioN toolkit (ASSIGN,
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[16], available from BioConductor, https://doi.org/10.1
8129/B9.bioc.ASSIGN) as described in Rahman et al.
[12]. The ASSIGN pathway signature prediction
scores were correlated with proteomics data for genes
known to be associated with each signature as de-
scribed previously [12]. Gene lists were selected to
minimize the reduction of overall ASSIGN score vs.
proteomics data correlation in TCGA while using a
maximum of 150 genes across all six signatures
(Additional file 2: Fig. S1). The reduced signature
lengths for AKT1, BAD, HER2, IGFIR, KRAS G12V,
and RAF1 were 20 genes, 15 genes, 10 genes, 20
genes, 75 genes, and 50 genes, respectively.

Genes from the BCL2L11 and SNAIl signatures
were selected similarly to the method described in
Rahman et al. [12]. Briefly, signature gene lists of
various lengths were derived using ASSIGN to com-
pare RNA expression from HMECs overexpressing ei-
ther BCL2L11 or SNAII against those overexpressing
GFP. For BCL2L11, candidate gene lists were subse-
quently used to predict pathway activity in small cell
lung cancer cell lines from the Tse et al. [17] dataset
(GSE10841). The BCL2L11 activity predictions from
ASSIGN for these cell lines were correlated with the
cell lines’ average EC50 in response to ABT-263, a
Bcl-2 family inhibitor. The signature which resulted in
the largest negative Spearman correlation was selected for
further development. SNAII signature candidate gene lists
were used to predict pathway activity in an immortalized
normal mammary epithelial cell line (HMLE) from the
Taube et al. [18] dataset (GSE24202). The signature that
best separated the ASSIGN prediction scores in HMLE
cells overexpressing SNAIl from HMLE expressing
empty-vector control was chosen for further development.
Following selection of the BCL2L11 and SNAII signature
gene lists, we manually screened for and removed heat
shock proteins (HSP) frequently appearing in the gene
lists generated by ASSIGN across pathways. Seventy-nine
genes were identified as HSP genes and removed from the
signatures, resulting in final signature lists containing 54
genes for BCL2L11 and 103 genes for SNAIL.

Analysis scripts for the AKT1, BAD, BCL2L11, HER?2,
IGF1R, KRAS G12V, RAF1, and SNAI1 pathway signa-
tures are available at: https://github.com/dfjenkins3/
MpBC_genomics_paper.

The Anastassiou multi-cancer invasiveness, Boquest
stem cell, and Phong TNF alpha signatures were re-
duced to 25 genes each, based on those genes with
highest expression in post-treatment breast cancer pa-
tient samples profiled in Brady et al. [19]. Additional
genes of interest relevant to breast cancer were also
added to the panel. In total, 345 genes (336 query
genes and 9 housekeeping genes) were incorporated
into the custom assay (Additional file 3: Table S2).
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Patient and HMEC sample RNA extraction

RNA was extracted from patient breast cancer samples
using the RNeasy FFPE kit, and from the HMEC controls
using the RNeasy mini kit (both from Qiagen, CA, USA).
RNA concentration was assessed with Nanodrop spectro-
photometer ND-1000 and Qubit 3.0 Fluorometer (both
from Thermo Scientific, CA, USA). RNA fragmentation
and quality were determined by 2100 Bioanalyzer (Agilent,
CA, USA).

NanoString nCounter profiling system
The NanoString nCounter platform gene expression
assay has been described previously [20]. Briefly, the
NanoString nCounter platform assays gene expression
directly from RNA samples via hybridization of samples
with a set of multiplexed nucleotide probes. Probes for
each gene target are uniquely barcoded with a series of
fluorophores. Fluorescence microscopy imaging of sam-
ple-hybridized fluorophore-labeled probes generates
quantitative counts data for each gene in each sample.
For gene expression profiling on the nCounter system,
patient sample or HMEC control RNA was first hybrid-
ized with the custom 345-gene codeset (NanoString Tech-
nologies, WA, USA) at 65°C for 16 h. Post-hybridization
probe:target mixture was then purified and quantified via
nCounter MAX Digital Analyzer (NanoString Technolo-
gies, WA, USA).

Pathway activity profiling in patient samples

Raw NanoString counts data were normalized to internal
positive control probes and housekeeping genes using
nSolver Software (NanoString Technologies, WA, USA)
version 4.0, according to default parameters, except for
background threshold count value was set to 20. Pathway
probabilities for AKT1, BAD, BCL2L11, KRAS GI12V,
HER2, IGFIR, RAF1, and SNAII signatures were calcu-
lated using ASSIGN, according to the same parameters as
in Rahman et al. [12], with adaptive signature selection set
to false. Pathway scores for Anastassiou multi-cancer
invasiveness, Phong TNF alpha, and Boquest stem cell sig-
natures were calculated using ASSIGN as above, with
adaptive signature selection set to true.

Differential gene expression and biological pathway
enrichment analysis

Differential gene expression analysis was performed
using the NanoStringDiff package, version 1.10.0 for R
(available from BioConductor, https://doi.org/10.18129/
B9.bioc.NanoStringDiff) using default settings [21]. This
package uses a negative binomial-based model appropriate
for discrete counts data, and employs a normalization step
incorporating data from the internal nCounter positive
and negative controls and the panel housekeeping controls
to identify differentially-expressed genes across groups.
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The package adjusts for false discovery using the Benja-
mini-Hochberg method. Genes passing the q < 0.05 false
discovery cutoff were considered for pathway enrichment
analysis using Ingenuity Pathway Analysis (IPA) software
(Qiagen Silicon Valley, CA, USA). Analyses in IPA were
run with the “reference set” parameter set to the input list
of genes assayed on the NanoString panel to account for
sampling bias of genes chosen for the panel. IPA uses a
right-tailed Fisher’s exact test to calculate the probability
that genes belonging to particular biological pathways
from its curated knowledge base are enriched in input
datasets due to chance. IPA canonical pathways with
p <0.05 are reported herein.

Statistics

Statistical tests were performed using Prism version 6.0
(GraphPad, CA, USA). Comparison of ASSIGN pathway
activity scores across groups was performed using one-
way ANOVA followed by Tukey’s post hoc test. Survival
analyses were performed using the Kaplan-Meier log-rank
method, with hazard ratios (HR) and 95% confidence in-
tervals (CI) reported. For survival analyses, patients were
grouped by median pathway activity score and the sample
with median value was included in the group containing

Table 1 Cohort characteristics for 19 patients with metaplastic
breast cancer

Patient Characteristics n=19 %
Age: Median: 68 Range: 35-86
<50 3 158
50 to < 70 7 36.8
270 9 474
Race:
Asian 2 10.5
Hispanic 3 15.8
Non-Hispanic White 14 737
Breast Cancer Stage:
I 2 105
Il 15 789
Il 1 53
v 1 53
ER, PR, HER2 Status:
ER-, PR-, HER2- 17 89.5
ER-, PR-, HER2 unknown 2 10.5
Histological Subtype:
Mesenchymal 1 53
Mixed spindle cell and mesenchymal 2 10.5
Mixed squamous and spindle cell 3 15.8
Spindle cell 7 36.8
Squamous 6 316
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its closest numerical value. The single sample with mesen-
chymal histology was grouped with samples with mixed
mesenchymal and spindle cell histology for analyses.

Results

Patient cohort characteristics

A total of 19 cases of MpBC from 1996 to 2014 were in-
cluded. The median patient age at diagnosis was 68 years
(range: 35—86 years). A diverse range of histological sub-
types was represented in the patient cohort, including
32% (6/19) squamous, 37% (7/19) spindle cell, 16% (3/
19) mixed squamous and spindle cell, 10% (2/19) mixed
spindle cell and mesenchymal, and 5% (1/19) mesenchy-
mal samples (Table 1). Representative hematoxylin and
eosin stained slides demonstrating histology of each sub-
type can be found in Additional file 4: Fig. S2. The ma-
jority of patients’ cancers were categorized as ER—/PR
—-/HER2-, with 2 patients’ HER2 status unknown. Me-
dian follow-up time for all 19 patients was 64 months
(range: 5-220) and for those patients alive at time of
analysis, 84 months (range: 64—220).

Performance of RNA-seq based signatures on NanoString
platform

We converted gene expression signatures originally cre-
ated using RNA-sequencing data for use with the Nano-
String gene expression profiling platform. To re-optimize
the signatures to best capture pathway activity via Nano-
String, RNA from control HMEC samples overexpressing
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each gene of interest and from HMECs overexpressing
GFP was assayed on the NanoString platform using the
custom codeset, and the top gene expression changes be-
tween groups were identified using ASSIGN (Fig. 2).
These changes in gene expression identified in the control
samples were then used to profile pathway activity in pa-
tient samples.

Metaplastic breast cancer histological subtypes
demonstrate differential pathway activation
Unsupervised hierarchical clustering of pathway activity
scores for growth factor receptor network (GFRN),
stemness, and apoptosis pathways revealed several broad
clusters of pathway activity across MpBC and TNBC pa-
tients (Fig. 3a-b). Notably, MpBC and TNBC patient
samples did not cluster exclusively; rather, these samples
were interleaved across clusters. Further, MpBC patient
samples did not group distinctly by subtype; however,
patient samples with a mesenchymal cell population
(chondroid and/or osteoid) grouped in high SNAI1/
BCL2L11 pathway activity clades (left side of heatmap;
Fig. 3a), while all uniformly squamous samples grouped
in low SNAI1/BCL2L11 pathway activity clades (right
side of heatmap, Fig. 3a). Indeed, samples with any mesen-
chymal cell population had significantly higher SNAI1 path-
way activity scores than patients of the spindle and
squamous subtypes (ANOVA, p = 0.0131; Fig. 3c). Similarly,
mesenchymal samples demonstrated significantly increased
BCL2L11 and marginally significantly increased AKT1
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pathway activity compared to squamous patients (BCL2L11:
ANOVA, p =0.0337; AKT1: ANOVA, p = 0.0542, Fig. 3c).
Interestingly, HER2 pathway activity was significantly
higher in TNBC samples than in MpBC samples (Student’s
t-test, p < 0.001; Fig. 3d). Specifically, spindle cell, squamous
and mixed spindle/squamous subtype samples had signifi-
cantly lower HER2 pathway activity than TNBC samples
(ANOVA, p <0.001; Fig. 3c). All patient MpBC and TNBC
samples were clinically categorized as negative for HER2
amplification or HER2 status unknown; however, all sam-
ples expressed ERBB2, with TNBC samples demonstrating
significantly increased ERBB2 expression compared to
MpBC samples (Additional file 5: Fig. S3). Differences in
expression of the other 9 genes in the HER2 gene expres-
sion signature also contributed to differential pathway activ-
ity between MpBC and TNBC samples. No differences

were seen in pathway activity across subtypes for the other
pathways profiled, including BAD, KRASG12V, IGFIR,
RAFI1, Anastassiou invasiveness, Boquest stem cell and
Phong TNF alpha (Fig. 3c-d).

Differences in gene expression across subtypes

We examined gene expression differences across the panel
of NanoString genes using NanoStringDiff, an R package
designed to identify gene expression differences from the
discrete counts data generated by the NanoString platform
[21]. Gene expression profiling revealed differences be-
tween MpBC and TNBC samples as well as between sam-
ples of different MpBC histological subtypes. Fifty-seven
genes were differentially expressed between MpBC and
TNBC samples (Table 2). Genes down-regulated in MpBC
included, among others, CD24, keratinocyte-related genes
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such as CALMLS and KRT81 and late cornified envelope
genes, LCEIF, LCE3D, and LCE3E, which were largely not
expressed in MpBC samples, but were expressed in the
majority of TNBC samples. Genes up-regulated in MpBC
included cytokine genes /L6 and IL8, EMT-related genes
FNI and CTGF, and genes involved in extracellular matrix
synthesis and adhesion: COLIAI, COL5A1, COL5A2,
ICAM1, and HAS2 (Table 2).

Further, to explore subtype-specific gene expression, we
identified genes differentially expressed in each MpBC
subtype. Twenty-four panel genes were significantly differ-
entially expressed between spindle cell MpBCs and all
other MpBCs (Benjamini-Hochberg adjusted p <0.05,
Table 3). Squamous subtype samples had 36 differentially
expressed genes and mesenchymal subtype samples had
24 genes differentially expressed compared to all other
MpBC samples (Table 3).

Next, we interrogated non-GFRN pathway dysregulation
at the subtype level by assessing the differentially expressed
genes identified by NanoStringDiff for enrichment of genes
belonging to the same pathway in the canonical pathways
database curated by IPA. Genes differentially expressed be-
tween MpBC and TNBC samples were enriched for genes
in the hepatic fibrosis and atherosclerosis pathways
(Table 4). Differentially expressed genes from the mesen-
chymal subtype were enriched for interferon signaling,
IL-17 signaling, (a) granulocyte adhesion, and helper T cell
differentiation pathway members. Similarly, IL-17 signaling
and (a) granulocyte adhesion pathways were identified as
enriched in spindle cell differentially expressed genes, as
several genes up-regulated in mesenchymal samples were
down-regulated in spindle cell samples. No pathways were
significantly enriched in genes differentially expressed in
squamous subtype samples.

Invasiveness markers and patient survival

To examine the relationship between pathway activity
and survival, we stratified patients by median ASSIGN
pathway activity score for all pathways assayed, and
assessed patient recurrence-free survival (RFS) and
overall survival (OS) within each group. Patients with
above-median Anastassiou invasiveness pathway activity
experienced shorter RFS and OS than those with equal
to or below-median pathway activity (RFS: p=0.021,
HR =5.82, 95% CI=1.31-25.84; OS p =0.02, HR =5.77,
95% CI = 1.32-25.24; Fig. 4a). Patients with below-median
KRAS G12 V pathway activity experienced a worse outcome
compared to those patients with equal-to or above-median
KRAS G12V pathway activity (RES: p = 0.0145, HR = 6.55,
95% CI=1.45-29.55; OS: p<0.001, HR = 14.14, CI =3.10-
64.40; Fig. 4c). There was no significant difference in out-
come identified between patients stratified by median path-
way activity for the remaining pathways assessed with the
NanoString panel.
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Table 2 Genes differentially expressed between metaplastic
breast cancer and invasive ductal triple negative breast cancer

samples

Gene

Log, Fold Change p-value

FDR-adjusted p-value

Genes upregulated in metaplastic samples

1.90E-05
6.59E-05
6.57E-04
8.62E-04
1.23E-03
248E-03
247E-03
2.64E-03
3.86E-03
3.59E-03
4.87E-03
552E-03
5.77E-03
5.93E-03
6.65E-03
7.22E-03
7.13E-03
731E-03

Genes downregulated in metaplastic samples

PTHLH 411
IGFBP3 1.97
ICAM1 1.71
IER3 1.72
BST2 1.56
HAS2 1.93
PDPN 1.95
IL6 231
COL5A1 1.52
FN1 1.53
IL8 202
PLAT 1.77
COL5A2 1.52
COL1AT 1.67
INHBA 149
CDH11 1.15
MYLK 1.32
CTGF 1.37
PRR9 -5.10
LCE3E —31.84
LCETF -5.76
FAM25A -3.87
AGPAT9 —2.65
DUSP8 =214
FAMB83A-AS1 -3.61
FGFBP2 -0.26
CHACI —2.84
HSPE1 -207
cD24 -2.90
ALOXE3 —3.54
ERBB2 -1.24
RIMS3 -1.36
ACTBL2 -3.04
KLK6 =351
LCE3D —4.12
ABCB1 -2.20
LOC100130238 -2.86
BMP6 -2.06
T™MCC2 —=1.55
LEP =277

2.55E-15
333E-14
143E-11
2.89E-10
5.29E-10
6.17E-10
4.15E-08
1.20E-07
3.57E-07
1.10E-06
1.57E-06
4.81E-06
1.22E-05
1.98E-05
2.11E-05
3.69E-05
8.55E-05
1.15E-04
2.12E-04
4.06E-04
5.38E-04
6.05E-04

443E-04
1.23E-03
8.83E-03
1.07E-02
1.43E-02
2A45E-02
245E-02
2.54E-02
3.12E-02
3.12E-02
3.80E-02
3.99E-02
4.04E-02
4.07E-02
4.47E-02
4.53E-02
4.53E-02
4.53E-02

8.58E-13
5.60E-12
1.60E-09
243E-08
3.45E-08
3.45E-08
1.99E-06
5.06E-06
1.33E-05
3.69E-05
4.80E-05
1.35E-04
3.16E-04
443E-04
4.44E-04
7.30E-04
1.51E-03
1.94E-03
3.39E-03
6.19E-03
7.86E-03
8.47E-03
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Table 2 Genes differentially expressed between metaplastic
breast cancer and invasive ductal triple negative breast cancer
samples (Continued)

Gene Log, Fold Change p-value  FDR-adjusted p-value
ZSCANT12P1 -1.70 846E-04 1.07E-02
CCL26 -1.96 9.29E-04 1.11E-02
MAL —2.26 1.38E-03  1.54E-02
ERBB3 -1.85 2.29E-03 241E-02
NOV -1.52 2.26E-03 241E-02
PAPL -191 2.88E-03  2.69E-02
DSCAM -2.87 376E-03  3.12E-02
KRT81 -2.34 369E-03 3.12E-02
TAGLN3 -202 3.90E-03 3.12E-02
ZNF165 -1.39 344E-03  3.12E-02
CALML5 -2.55 5.00E-03 3.82E-02
DIRAS3 -1.69 552E-03  3.99E-02
ARHGAP33 —0.66 558E-03  3.99E-02
RASD2 -1.24 6.92E-03  4.53E-02
FAMA6B -1.20 741E-03  4.53E-02
PDGFB -0.79 8.17E-03  4.90E-02

FDR false-discovery rate

Previous studies have identified that expression of mesen-
chymal markers including SPARC, VIM, and TWIST nega-
tively correlate with MpBC patient survival [22, 23]. In the
present study, patients with above-median SPARC expres-
sion experienced shorter recurrence-free and overall
survival times than patients with equal-to or below-median
SPARC expression (RFS p=0.023, HR=5.52, 95% CI=
1.26-24.1; OS p =0.023, HR =541, 95% CI=1.26-23.2).
Conversely, patients bifurcated by median VIM expression
or by median SNAI1 pathway activity did not experience
differences in outcome (Additional file 6: Fig. S4).

Discussion

Elucidation of the omics underlying rare cancer types such
as MpBC requires methods to accurately profile limited
samples available from these cancers. Our results demon-
strate the utility of RNA collected from FFPE samples and
profiled with the NanoString platform to obtain interpret-
able gene expression and pathway activity data for patients
with MpBC. Using this platform, we identified differences
in gene expression and pathway activity between MpBC
and invasive ductal TNBC samples, as well as between
samples from different MpBC subtypes.

Several genes with potential implications on patient treat-
ment were found significantly differentially expressed be-
tween MpBC and TNBC samples. One such gene, CD24,
was down-regulated in MpBC. Interestingly, low expression
or lack of expression of the CD24 protein has long been
considered a marker of breast cancer stem cells, and
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Table 3 Genes differentially expressed between metaplastic
breast cancer subtypes

Gene

Log, Fold
Change

p-value

FDR-adjusted
p-value

Genes differentially expressed in Mesenchymal vs. all other MpBC types

AQP5
ILTA
EXTL1
TNFRSF11B
FGFBP2
PSG5
CXCL5
CA6
CccL2
IRF1
IFI35
STAT1
TYMP
EPSTIT
ICAM1
OAS3
BST2
ARC
TAP1
SAMHD1
SYNGR1
TNFRSF10B
CXCL11
STC1

Genes differentially expressed in Spindle

SPRRTA
SPRR2A
SPRR2D
AQP5
EXTL1
CXCL6
LY6D
KRT4
TFPI2
CXCL5
NEFM
IL1B
MAOB
FN1
CCL2
LEP
MMP9
CXCL3

10.36
—3.83
9.07

502

6.91

—6.16
—249
2162
-3.10
—248
-2.20
-1.98
—-2.00
=251
—242
—1.65
=230
243

=219
-1.76
1.30

—147
—2.64
—2.23

=530
—367
—2262
573
298
6.08
—-1.56
—2.64
298
3.10
558
265
257
1.66
1.53
-21.29
292
207

<222E-16
1.36E-11
6.84E-11
1.36E-09
2.22E-08
2.84E-08
1.34E-07
2.11E-05
2.39E-05
8.46E-05
1.23E-04
4.09E-04
5.00E-04
6.65E-04
6.29E-04
6.67E-04
7.25E-04
9.32E-04
1.02E-03
2.34E-03
2.82E-03
2.76E-03
3.29E-03
3.21E-03

<222E-16
2.28E-09
7.67E-09
1.14E-07
1.49E-06
1.59E-06
6.43E-06
8.85E-04
8.92E-04
2.84E-03
3.76E-03
1.15E-02
1.29E-02
1.40E-02
1.40E-02
1.40E-02
143E-02
1.74E-02
1.81E-02
393E-02
431802
4.31E-02
4.60E-02
4.60E-02

cell vs. all other MpBC types

6.48E-13
3.28E-12
8.87E-12
3.26E-11
6.86E-11
2.27E-09
2.75E-09
9.36E-09
1.17E-08
1.61E-07
2.92E-05
7.61E-05
2.80E-04
4.80E-04
4.94E-04
4.51E-04
5.87E-04
9.76E-04

2.18E-10
551E-10
9.94E-10
2.74E-09
461E-09
1.276-07
1.32E-07
3.93E-07
4.37E-07
541E-06
8.92E-04
2.13E-03
7.25E-03
1.04E-02
1.04E-02
1.04E-02
1.16E-02
1.64E-02
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Table 3 Genes differentially expressed between metaplastic
breast cancer subtypes (Continued)

Gene Log, Fold p-value FDR-adjusted
Change p-value
HSPA6 1.31 9.46E-04 1.64E-02
VIPR1 -2.30 944E-04 1.64E-02
ROR1 1.08 2.21E-03 3.53E-02
OXTR 1.66 2.39E-03 3.65E-02
TNFRSF10D 1.62 2.60E-03 3.80E-02
DKK1 242 3.30E-03 4.62E-02

Genes differentially expressed in Squamous vs. all other MpBC types

AQP5
ELF5
SPRR1A
SPRR2A
TF
HSPOOAA4P
CA6
EXTL1
PSG5
GLYATL2
PI3

TCN1
EPGN
DHRS9
SPRR2D
SLC47A2
DSCAM
D4
ALDH3B2
CITED1
EEF1A2
CCL20
C120rf39
STEAP4
PPL
NEFM
HAS2
LCE3D
CDRT1
PTHLH
PRSS22
ALDH1A1
TNFAIP2
LEP

ELF3
GRHL3

—24.83
=279
6.65
6.30
-3.00
-2.99
—-8.88
-19.35
0.20
3.00
549
397
2.68
221
11.54
433
—2349
—293
3.18
3.80
3.03
222
2.70
2.28
203
-5.96
=214
4.05
292
248
1.99
1.67
141
840
2.34
2.08

<222E-16
< 2.22E-16
337E-12
4.54E-12
1.90E-11
467E-11
143E-10
2.62E-10
1.83E-09
7.10E-09
7.14E-08
3.25E-05
3.32E-05
743E-05
1.09E-04
1.52E-04
1.79E-04
2.20E-04
2.89E-04
3.23E-04
4.19E-04
4.13E-04
5.40E-04
6.83E-04
7.28E-04
9.26E-04
1.18E-03
1.26E-03
1.60E-03
1.74E-03
1.72E-03
2.01E-03
230E-03
2.94E-03
4.25E-03
4.82E-03

< 222E-16
< 2.22E-16
3.77E-10
381E-10
1.28E-09
2.62E-09
6.87E-09
1.10E-08
6.84E-08
2.39E-07
2.18E-06
8.59E-04
8.59E-04
1.78E-03
244E-03
3.19E-03
3.53E-03
4.11E-03
5.12E-03
543E-03
6.40E-03
6.40E-03
7.89E-03
9.56E-03
9.79E-03
1.20E-02
1.47E-02
1.52E-02
1.85E-02
1.88E-02
1.88E-02
2.11E-02
235602
291E-02
4.08E-02
4.50E-02

MpBC metaplastic breast cancer. FDR: false discovery rate
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various clinical trials are underway to target the cancer
stem cell population in breast cancer [24—26]. Additionally,
we identified COLIAI up-regulation in MpBC samples.
The protein product of the COLIAI gene forms part of the
type I collagen protein complex, which has previously been
identified as up-regulated in mesenchymal MpBCs when
compared to adjacent normal tissue [27]. Further, high ex-
pression of the COLIAI gene and protein has been associ-
ated with shorter recurrence free and overall survival in
breast cancer, as well as with response to cisplatin [28, 29].
Additionally, we identified increased HAS2 in MpBC sam-
ples. A previous study found expression of this enzyme in-
volved in hyaluronan synthesis in 72.7% of patients with
MpBC, compared to only 56% of patients with invasive
ductal TNBC, and 25.2% of patients with invasive ductal
carcinoma of ER, PR, or HER2-positive phenotypes [30].
Clinical trials investigating treatment of patients with high
hyaluronan levels with recombinant hyaluronidase are cur-
rently underway in multiple cancer types [31-33].

At the pathway activity level, profiling results demon-
strated increased BCL2L11, SNAI1, and AKT1 pathway ac-
tivity in patient samples with a histologic mesenchymal
(chondroid or osteoid) component. This finding supports
that of Gwin et al. [34], who identified increased SNAI1
gene expression in chondroid MpBC tumors, and that of
Taube et al. [18], who found high SNAI1 expression in a set
of 12 metaplastic patient samples. Based on these findings,
inhibition of SNAI1 pathway components may be a viable
strategy for improving outcomes for patients with mesen-
chymal MpBC. While there are currently no FDA-approved
SNAII inhibitors, the histone deacetylase (HDAC) inhibitors
panobinostat and entinostat have been shown to reduce
expression of SNAI1 and other EMT markers [35-37].
HDAC inhibitors are currently FDA-approved for use in
some cancers, and thus may be an implementable strategy
for treatment of MpBC tumors with high SNAII activity.

Similarly, we identified increased BCL2L11 pathway ac-
tivity in patients with mesenchymal MpBC. Increased
SNAI2-driven BCL2L11-encoded protein BIM expression
was identified by Merino et al. [38] at the proliferating
edge of two metaplastic breast cancer patient-derived xe-
nografts, and it was speculated that this expression may
play a role in tumor cell dissemination and metastasis.
This same leading-edge expression of BIM was not
present in TNBC and ER+ xenografts. Future experiments
are needed to clarify the role of increased BIM in MpBC
tumors, and to determine whether modulation of MAPK
pathway activity upstream of BIM improves outcomes for
patients with mesenchymal MpBC.

In the present cohort, patient samples with high Ana-
stassiou invasiveness pathway activity and high expres-
sion of the extracellular matrix glycoprotein SPARC
experienced worse outcomes. SPARC expression has
been associated with invasiveness phenotype in patients
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Table 4 Canonical pathways enriched in genes differentially expressed between subtypes
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Pathway p-value Overlap (%)  Overlap (gene
number)
MpBC vs. TNBC
Hepatic fibrosis /Hepatic stellate cell activation 1.80E-03 393 11/28
Atherosclerosis signaling 213E-02 40 6/15
Mesenchymal vs. other MpBC
Interferon signaling 6.83E-04  57.1 4/7
Granulocyte adhesion and diapedesis 1.18E-03 316 6/19
Agranulocyte adhesion and diapedesis 474803 294 5/17
Type | Diabetes Mellitus signaling 101E-02 429 3/7
Th1 pathway 101E-02 429 3/7
Differential regulation of cytokine production in intestinal epithelial cells by IL-17A and IL-17F 148E-02 667 2/3
Th1 and Th2 activation pathway 153E-02 375 3/8
HMGB1 signaling 177802 267 4/15
Dendritic cell maturation 1.778-02 267 4/15
IL-17 signaling 219E-02 333 3/9
iNOS signaling 283E-02 500 2/4
T helper cell differentiation 283E-02 500 2/4
Retinoic acid mediated apoptosis signaling 283E-02 500 2/4
IL-17A signaling in fibroblasts 283E-02 500 2/4
IL-15 production 283E-02 500 2/4
Production of nitric oxide and reactive oxygen species in macrophages 297E-02 300 3/10
LXR/RXR activation 297E-02 300 3/10
Hepatic fibrosis /Hepatic stellate cell activation 428802 179 5/28
Spindle vs. other MpBC
Agranulocyte adhesion and diapedesis 560E-05 412 7/17
Granulocyte adhesion and diapedesis 1.18E-03 316 6/19
Role of IL-17F in allergic inflammatory airway diseases 1.30E-03 500 4/8
Role of IL-17A in Arthritis 1.30E-03 500 4/8
Glucocorticoid receptor signaling 213803 286 6/21
Osteoarthritis pathway 474E-03 294 5/17
Role of IL-17A in Psoriasis 6.04E-03 500 3/6
Hepatic fibrosis /Hepatic stellate cell activation 1.04E-02 214 6/28
Differential regulation of cytokine production in macrophages and T helper cells by IL-17A and IL-17F  148E-02  66.7 2/3
Differential regulation of cytokine production in intestinal epithelial cells by IL-17A and IL-17F 148E-02 667 2/3
Airway pathology in Chronic Obstructive Pulmonary Disease 148E-02 667 2/3
IL-17A Signaling in airway cells 153802 375 3/8
IL-17A signaling in fibroblasts 283E-02 500 2/4
LXR/RXR activation 297E-02 300 3/10
TREM1 signaling 389E-02 273 3/11

Squamous vs. other MpBC

No significant pathways to report

MpBC metaplastic breast cancer, TNBC invasive ductal carcinoma of triple negative breast cancer phenotype
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Fig. 4 Patient survival correlates with epithelial-to-mesenchymal transition and invasiveness markers. Patients with a) high Anastassiou
invasiveness signature activity, b) high SPARC gene expression and ¢) low KRAS G12 V pathway activity experience a worse outcome
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with ductal carcinoma in situ, as well as with poor sur-
vival in patients with TNBC [39, 40]. Thus, a treatment
strategy capable of reducing the invasiveness potential of
metaplastic cancer cells may benefit MpBC patient outcome.
Lack of KRAS activity to drive poor outcome in the present
patient cohort may reflect the extent to which aggressive
MpBCs are driven by stemness/invasiveness pathways not
related to MAPK pathway activity.

MpBC tumors are notorious for their failure to respond
to chemotherapy; however, chemotherapy remains the
standard of care for TNBC, including triple-negative MpBC
[5, 41]. Thus, identification of targetable pathways altered
in MpBC is necessary for improving patient outcomes.
Multiple ongoing trials including ARTEMIS and I-SPY2
are testing a precision medicine approach for TNBC treat-
ment [42—-44]. Patients with MpBC may similarly benefit

from a precision medicine approach, which may be further
tailored to the patient’s specific MpBC subtype. Such an
approach might leverage tumor transcriptomic profiling at
time of patient diagnosis to determine if MpBC patients
would benefit from specific targeted therapies.

MpBC is a remarkably rare cancer, and it is important
to note the limitations in our conclusions due to the
limited sample size from a single institution. However,
data from the current study corroborate findings from
other MpBC studies published to date. One such study
examined gene expression differences across MpBC sub-
types via RNA sequencing [6]. As in the present study,
Piscuoglio et al. [6] also identified genes ALDH3B2,
CDRTI, ELF3, EXTLI, GLYATL2, PI3, PPL, and PRSS22
as differentially expressed in the squamous subtype and
genes AQPS, EXTL1, MMP9, NEFM, and VIPRI in the
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spindle subtype. Further, our identification of increased
IL8, IL6, HAS2, and ICAM1, as well as decreased ERBB2
in MpBC samples matches findings from a microarray
comparison of gene expression between metaplastic
breast cancers and ductal carcinomas of the breast [22].
At the pathway activity level, high SNAI1 activity and in-
creased expression of stemness and EMT markers have
been identified in the present cohort as well as in other
MpBC patient cohorts [18, 34].

Conclusions

This study demonstrates the utility of applying a path-
way-specific multiplex gene expression assay in profil-
ing FFPE-derived RNA from patients with MpBC. Gene
expression profiling across different MpBC tumor sub-
types showed coordinate dysregulation of growth and
survival pathways that was distinct from immune and
stemness cell states. Further, RAS signaling activity and
activity of pathways related to cancer invasiveness were
associated with patient outcome in this cancer type. Fu-
ture studies to validate findings in a larger MpBC pa-
tient cohort are warranted.
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