
Sequence analysis

arcasHLA: high-resolution HLA typing from

RNAseq

Rose Orenbuch 1,2,†, Ioan Filip1,†, Devon Comito3, Jeffrey Shaman3,

Itsik Pe’er2,* and Raul Rabadan1,*

1Department of Systems Biology, Columbia University, New York, NY 10032, USA, 2Department of Computer

Science, Columbia University, New York, NY 10027, USA and 3Department of Environmental Health Sciences,

Mailman School of Public Health, Columbia University, New York, NY 10032, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Yann Ponty

Received on February 11, 2019; revised on May 13, 2019; editorial decision on May 29, 2019; accepted on June 3, 2019

Abstract

Motivation: The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility

and regulates the host response to many diseases, including cancers and autoimmune di3orders.

Recent improvements in the quality and accessibility of next-generation sequencing have made

HLA typing from standard short-read data practical. However, this task remains challenging given

the high level of polymorphism and homology between HLA genes. HLA typing from RNA

sequencing is further complicated by post-transcriptional modifications and bias due to

amplification.

Results: Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes

from RNA-sequencing data. Our tool outperforms established tools on the gold-standard bench-

mark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100%

at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the

performance of our tool on a new biological dataset of 447 single-end total RNA samples from

nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies.

Availability and implementation: arcasHLA is available at https://github.com/RabadanLab/

arcasHLA.

Contact: itsik@cs.columbia.edu or rr2579@cumc.columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Human leukocyte antigen (HLA) genes encode the proteins that

make up the major histocompatibility complex (MHC). MHC Class

I (HLA-A, -B and -C), produced in all nucleated somatic cells, binds

to and presents intracellular antigens on the cell surface for cyto-

toxic T-cells, which trigger apoptosis if non-selfpeptides are

detected. MHC Class II (including HLA-DPB1, -DQB1 and -DRB1),

on the other hand, constitutively expressed only by specialized im-

mune and epithelial cells, present extracellular proteins to helper T-

cells which mediate the adaptive immune response (Meyer and

Thomson, 2001).

HLA genes are the most polymorphic regions in the human gen-

ome, with over 12 000 known alleles across 38 genes (Robinson

et al., 2015). Pathogen-driven selection may explain this level of

HLA diversity: variation of residues in the binding region allows for

a greater variety of immunogenic peptides. Populations in pathogen-

rich areas exhibit increased HLA diversity (Prugnolle et al., 2005),

and heterozygous individuals show both greater resistance towards

infectious agents and greater fitness than homozygotes (Carrington

et al., 1999; Penn et al., 2002; Thursz et al., 1997).

With the advent of immunotherapy, HLA typing and expression

level quantification is increasingly important for cancer research.
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Immunotherapy depends on the ability of the patient’s HLAs to

effectively bind and present tumor neoantigens on the cell surface

(Chowell et al., 2018). Following immunotherapy, clonal selection

may favor tumor cells with a loss of HLA heterozygosity (LOH) or

silencing of the HLA loci, highlighting the importance of LOH

detection from gene expression data (McGranahan et al., 2017).

Indeed, although past methods look at copy number variation to de-

termine LOH using microsatellites or NGS, RNA sequencing may

give a more accurate picture of HLA expression in tumor cells, par-

ticularly if HLA expression is altered as a result of interruptions in

HLA regulatory pathways due to post-transcriptional or epigenetic

modifications.

High-resolution typing of HLA alleles is also imperative for the

determination of tissue compatibility. HLA nomenclature (e.g.

A*02: 01: 01: 02) consists of four successive fields: allele group, pro-

tein type, followed by synonymous changes in coding regions, and

changes in non-coding regions. High-resolution genotyping is used

to determine histocompatibility, resolving sequencing ambiguities in

the peptide-binding region (Exons 2 and 3 for Class I and Exon 2

for Class II). Certain amino acid residue mismatches within this re-

gion correlate with increased risk of rejection (Petersdorf et al.,

2014). Consequently, the majority of HLA alleles are partially

sequenced (Supplementary Fig. S1), covering at least the peptide-

binding regions.

Specialized methods of typing HLAs, including Sanger sequenc-

ing and PCR enrichment of the HLA loci, are expensive and time-

consuming, given the sample size necessary for effective donor banks

and association studies. Thus, methods using standard NGS reads

with minimal loss of accuracy and resolution are useful. However,

typing with short reads is complicated by the high level of homology

between both HLA genes and alleles, some of which can differ by a

single base. In addition, there exist HLA pseudogenes which can

have detectable expression levels and interfere with typing from gen-

omic sequencing (Kawaguchi et al., 2017; Lonsdale et al., 2013).

In the last few years, multiple tools that type HLAs from whole-

genome sequencing, whole exome sequencing (WES), and RNA

sequencing have been published, with improving benchmark per-

formance and resolution (see Supplementary Table S1). These HLA

typing tools attempt to find the one or two alleles that best explain

the sampled reads, either by comparing assembled contigs or align-

ing reads directly to an HLA reference. Most current tools for RNA

sequencing, including seq2HLA (Boegel et al., 2012), OptiType

(Szolek et al., 2014) and PHLAT (Bai et al., 2014), are alignment-

based. The latest RNA-dedicated HLA typing tool, HLAProfiler,

takes a novel approach to graph-based alignment, breaking HLA

transcripts into k-mers and constructing a taxonomic tree used to fil-

ter reads (Buchkovich et al., 2017). Tools also differ in the construc-

tion of their HLA reference: some tools, such as seq2HLA and

OptiType, limit their reference to peptide-binding exons and flank-

ing regions while others use a combination of coding and genomic

sequences. For the purpose of serotyping, it is important to not only

consider the peptide-binding region because it is possible for two

alleles to have identical peptide-binding sequences but different pro-

tein types. In addition, limiting the number of exons considered

increases the occurrence of ambiguous typing.

arcasHLA takes an alignment-based approach, using two separ-

ate coding transcript references: one with alleles with complete

sequences, and a second reference containing all possible combina-

tions of exons including the binding region of all known alleles for

typing partial alleles. This tool uses Kallisto (Bray et al., 2016), an

RNA quantifier with a graph-based pseudo-alignment feature, to as-

sign reads to their compatible HLA transcripts. Tools that perform

graph-based alignment followed by expectation–maximization tran-

script quantification are used to quantify isoform expression. Thus,

these methods extend naturally to highly polymorphic loci such as

the HLA family. Allele abundance for each gene is quantified separ-

ately and the genotype that maximizes the number of reads aligned

is selected from the most abundant alleles. Finally, homozygosity is

determined using the ratio of minor to major non-shared read

counts. As an optional step, partial alleles are typed in a similar fash-

ion. Unlike other tools, population-specific allele frequencies are

used as priors to distribute sampled reads within HLA compatibility

classes in addition to breaking ties between ambiguous alleles (see

Section 2). arcasHLA outperforms other popular HLA RNA-

sequencing typing tools such PHLAT, OptiType, seq2HLA and

HLAProfiler on paired-end benchmark samples (see Table 1).

2 Materials and methods

2.1 Database construction
HLA and related sequences were obtained from the ImMunoGeneTics

(IMGT)/HLA database, IMGT/HLA, compiled by the Immuno

Polymorphism Database project (Robinson et al., 2015). These sequen-

ces include both classical and non-classical MHC Classes I, II genes,

HLA pseudogenes and some related non-HLA genes.

Due to post-transcription splicing, variants in intronic regions

(indicated by the fourth field) cannot be confidently determined

from mature messenger RNA. Excluding introns, we constructed

coding DNA databases for all the HLA alleles in IMGT/HLA using

the sequences and exon coordinates provided in the hla.dat file.

Sequenced untranslated regions (UTRs), missing for many alleles,

were included as noncontiguous sequences. Reference alleles with

insertions or deletions causing a stop loss in the final exon were

truncated if the sequence continuing into the UTR contained no

changes with respect to the reference allele. Without these altera-

tions, reads containing the UTR would be attributed only to tran-

scripts containing the stop loss.

A majority of the alleles archived in IMGT/HLA are missing one or

more exons. Some HLA typing tools include partial alleles by extending

the sequence with an allele’s nearest neighbor (Optitype) or looks at

each exon individually. The method described here uses two separate

references for typing non-partial and partial alleles. The former con-

tains only transcripts for alleles with complete sequences, while the lat-

ter contains transcripts for all possible contiguous combinations of

exons for all known alleles (e.g. 2-3, 1-2-3 etc).

Two-field allele frequencies were retrieved from

AlleleFrequencies Net Database (AFND) (González-Galarza et al.,

2015). Only populations considered to be gold-standard, with allele

frequencies that sum to 1 and a sample size � 50, were used to build

the database. These sample populations were grouped into broad

population categories following the categorization laid out by The

Table 1. Concordance with 1000 genomes gold-standard HLA typ-

ing for 358 RNA-sequencing samples for arcasHLA along with con-

cordance rates for other tools reported in (Buchkovich et al., 2017)

Gene OptiType seq2HLA PHLAT HLAProfiler arcasHLA

A 99.6% 98.6% 99.4% 99.9% 100.0%

B 99.4% 94.8% 93.4% 99.0% 100.0%

C 100.0% 95.1% 94.3% 99.6% 100.0%

DQB1 — 96.0% 96.0% 99.9% 99.9%

DRB1 — 98.5% 98.5% 99.6% 99.7%

Note: Bold denotes maximized concordance.
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National Marrow Donor Program (Gragert et al., 2013). To ac-

count for alleles not seen in the selected population and those not

reported on AFND, Dirichlet smoothing was applied to the allele

frequencies, treating the entirety of the AFND data and IMGT/HLA

database reference as priors.

2.2 Genotyping
2.2.1 Read alignment

arcasHLA takes as input a mapped RNA-seq BAM file. After extract-

ing Chromosome 6 reads (and when applicable, extracting any add-

itional reads aligned to HLA decoys or to Chromosome 6 alternate

sequences) from input, we perform a pseudoalignment of the extracted

reads with Kallisto, a graph-based RNA-seq quantifier selected primar-

ily for its improved speed, accuracy and flexibility as compared with

other local or graph-based aligners. Kallisto builds a de Bruijn graph

from the reference transcriptome, in which k-mers (or k-length subse-

quences) represent the nodes, and edges add an additional base to left-

shifted (k–1)-mers connecting between consecutive k-mers. Each read

is decomposed into k-length sequences and hashed into a reference

index. The compatibility class of a given read is then defined as the set

of reference transcripts that are compatible with every one of its con-

stituent k-mers. This method avoids base-by-base alignment in favor of

speed; thus the moniker ‘pseudoalignment’. Because Kallisto skips

k-mers that provide no new information on the compatibility class of a

read, it is less sensitive to sequencing errors in the sampled reads if they

happen to align within any one of these redundant k-mers. Of note:

this method is also insensitive to novel alleles if the corresponding new

variants lie along one of these conserved, skipped k-mers.

2.2.2 Transcript quantification

Like most HLA typing tools, arcasHLA seeks to find the pair of

alleles with maximal support among the observed reads originating

from the HLA locus. Given the thousands of possible alleles for a sin-

gle gene, pairwise comparisons; however, are computationally expen-

sive and they fail to account for the similarity between different

alleles. To reduce the number of alleles considered, arcasHLA exploits

the k-mer structure in transcript quantification and repeatedly culls

low-support allele transcripts. The output of arcasHLA is the allele

pair (or possibly a single allele) that best explains the observed reads.

Division of counts. Traditionally, graph-based transcript quanti-

fiers (Bray et al., 2016; Patro et al., 2014) assign reads to equiva-

lence classes of reference transcripts, further sub-dividing reads

within each compatibility class with equal weights among all the

alleles in a given class. This approach may be beneficial when calcu-

lating differential expression of genes with many possible, equally

likely isoforms present in a single sample. arcasHLA sub-divides

reads differently, accounting for the relative frequencies of HLA

alleles in different human populations. Below, we formalize the

setup for graph-based transcript quantifiers.

Let A be a set of reference alleles with lengths la for a 2 A, and C

a set of observed compatibility classes (where each compatibility

class is a subset of A). For a given allele i 2 A, we define Ci � C as

the set of compatibility classes which contain allele i. Thus, each

element x 2 Ci is a compatibility class consisting of alleles in A with

i 2 x. As such, the read count attributed to an allele i 2 A with equal

weights sub-division is then simply:

ri ¼
X
x2Ci

rx �
1

jxj (1)

where jxj denotes the number of alleles contained in the equivalence

class x, and rx is the total count assigned to class x.

arcasHLA performs genotyping calls with an iterative procedure

that optimizes the read assignment to individual alleles. At the first

step, our genotyping algorithm gives the option to distribute reads

between alleles with weights proportional to population-specific al-

lele frequencies. The largest benefit of this approach is narrowing

the pool of possible alleles as well as breaking ties between alleles

that are indistinguishable given the sampled reads. Given such priors

p ¼ ðpiÞi2A, the count attributed to allele i is thus

ri ¼
X
x2Ci

rx �
piP

a2xpa
: (2)

Subsequently, these counts are normalized by the allele length and

converted into transcript abundances 0 � ai � 1 for each allele i:

ai ¼
ri=liP

a2Ara=la
: (3)

Maximizing the proportion of explained reads. As with Kallisto, the

likelihood of a specific attribution of reads to alleles given by a ¼
ðaiÞi2A is proportional to

LðaÞ /
Y
x2C

X
a2x

aa

la

� �rx

(4)

In order to find the allocation of reads to alleles that maximizes

the likelihood function (Equation 4), we follow an iterative proced-

ure similar to Kallisto’s, with some essential differences.

First, we restrict the equivalence classes obtained from the reference

de Bruijn graph construction gene by gene, and perform genotyping

independently for each gene (namely, using our notation, we consider

reference alleles for each HLA gene separately: AHLA�A; AHLA�B;

AHLA�C; . . .). Second, instead of numerically solving for the maximum

likelihood of (Equation 4), we adopt a strong constrained approach

consistent with our goal of outputting at most two alleles for each

HLA gene. Reads in each class are iteratively reallocated based on

abundances from the previous iteration, but after an empirically opti-

mized 10 and 4 iterations for paired- and single-end respectively, alleles

with abundances lower than one-tenth of the maximum observed

abundance are dropped according to the following constraint:

8i 2 AG : if ai < 0:1 � max
fj2AGg

aj
� �

if ai  0 (5)

for each gene G in MHC Classes I and II.

The 10% threshold, previously determined by HISAT-genotype

(Kim et al., 2018) for use with whole-genome sequencing, assumes

that the abundance of the minor allele does not fall below a tenth of

the major allele’s abundance. When applied to RNA sequencing,

this allows for a large range in the natural variation between major

and minor allele expression as well as differences in read counts due

to sequencing and amplification.

The iterative read re-allocation in arcasHLA is as follows:

rtþ1
i  

X
x2C

rx �
at

iP
a2xat

a

(6)

for all iterations t until convergence. Here, the upper indices denote

the respective allele abundances or reads at the specified iteration.

Next, these counts are normalized by transcript lengths and con-

verted back into abundances:

atþ1
i  rtþ1

i =liP
a2Artþ1

a =la
(7)

With each updated estimate, a higher proportion of reads are dis-

tributed to the alleles with the highest abundances and the lowest

abundance alleles are culled, per (Equation 5).
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Like HISAT-genotype (Kim et al., 2018) and Sailfish (Patro

et al., 2014), we use SQUAREM (Varadhan and Roland, 2008) to

accelerate the convergence. The read allocation is considered to con-

verge when the difference in abundance from the previous iteration

to the current one is below 10�7, with a maximum of 1000 itera-

tions allowed. Indeed, arcasHLA has been shown to always meet the

convergence criterion in both of our test datasets. At the end of the

arcasHLA iteration procedure, the remaining alleles are those that

explain the highest proportion of aligned reads for each gene.

2.2.3 Selecting the most likely genotype

Ideally, after convergence and culling, a single allele is left for homo-

zygotes and two alleles for the heterozygotes. However, due to high

levels of homology between certain alleles, particularly beyond the

two field resolution, alleles may be indistinguishable given the

observed reads and more than two likely alleles may be returned. In

order to further narrow down the pool to exactly two alleles, the pair

that explains the greatest proportion of reads is selected. Finally, we

include a check for homozygosity by assessing the top two alleles’

non-shared read counts. If the minor-to-major ratio of non-shared al-

lele counts lies below an empirically optimized threshold of 15%, the

individual is called as homozygous for the major allele. Otherwise,

the individual is called as heterozygous for the top ranking pair.

2.2.4 Partial allele typing

Partial allele typing is included as an optional step. Extracted reads are

aligned to the reference containing the allele transcripts from the data-

base. Possible partial alleles are first identified by running transcript quan-

tification on the peptide-binding exon transcripts. Next, arcasHLA

iterates through the set of exon combinations represented in the returned

partial alleles. If a partial allele does not exceed by more than 10 reads a

non-partial minor allele in a given region, then it is discarded as it cannot

be confidently called as a valid allele. Next, all combinations of remaining

partial alleles and the previously called non-partial alleles are considered.

If a pair with one or more partial alleles explains a greater proportion of

reads in any of these exon regions than the original genotype, then it is

returned. If more than one partial-containing pairs explains the same

amount of reads, allele frequencies are used to break the tie.

2.3 Datasets
2.3.1 Benchmark dataset: 1000 genomes

HLA-A, -B, -C, -DRB1 and -DQB1 genes for 1267 of the 1000

Genomes individuals were typed using Sanger sequencing based on

the IMGT/HLA database from 2009 (Gourraud et al., 2014). Only

the peptide-binding region for each gene was sequenced. As previ-

ously stated, multiple alleles can share the same binding region se-

quence, and thus a list of equivalent alleles is reported. Since 2009,

IMGT/HLA has expanded their database to more than four times as

many alleles, and, like HLAProfiler (Buchkovich et al., 2017), we

used the latest list of ambiguous alleles provided by IMGT/HLA to

update the ground truth.

mRNA sequencing for 358 of these samples is provided by the

Geuvadis project, representing five of the 1000 Genomes populations

(CEU, FIN, GBR, TSI and YRI) (Lappalainen et al., 2017). These

samples are generally high in quality with a mean RNA integrity

number or RIN (Schroeder et al., 2006), of 9.1 (ranging from 6.2 to

10), and a mean of 58.5 million reads mapped to the hg19 reference

(ranging from 17 to 163.5M reads). Reads are paired-end, and

75 base pairs (bp) in length. 25.1 and 14.8% of these individuals are

homozygous for at least one gene at two fields in resolution for MHC

Classes I and II, respectively.

We ran arcasHLA on these samples with IMGT/HLA v3.24.0,

the version also used by HLAProfiler, for comparison purposes. In

addition to updating the ground truth with allele ambiguities, calls

were updated with the high-resolution typing using Ilumina

TruSight provided by HLAProfiler. In order to test arcasHLA’s

performance on high quality single-end samples too, we also treated

the 1000 Genomes samples as being single-end, following PHLAT’s

(Bai et al., 2014) methodology.

2.3.2 New biological dataset: the Virome of Manhattan

We ran arcasHLA on a set of 447 single-end total RNA-sequencing

samples collected from nasopharyngeal swabs from 69 healthy

individuals enrolled as part of a DARPA-funded project entitled

‘The Virome of Manhattan: a Testbed for Radically Advancing

Understanding and Forecast of Viral Respiratory Infections’ (Birger

et al., 2018; Galanti et al., 2019).

Sample collection and preparation. Nasopharyngeal samples

were collected using minitip flock swabs and stored in tubes with 2

ml DNA/RNA Shield (Zymo Research, R1100-250) at 4–25�C for

up to 30 days and then aliquoted into two 2 ml cryovials and stored

at �80�C. RNA was extracted from 200 ll of each stored sample

using the Quick-RNA MicroPrep Kit (Zymo Research, Irvine, CA).

Eluted RNA was then quantified and assessed for quality using

Agilent Bioanalyzer (Santa Clara, CA), and the remaining quantity

was sequenced with Illumina following the Ribo-Zero rRNA

Removal Kit, target 30 M single-end 100 bp reads.

Sample processing. The individuals in the Virome study repre-

sent a heterogeneous cohort with self-reported and SNP-validated

race/ethnicity (using the population clusters from the Exome

Aggregation Consortium (ExAC) dataset (Lek et al., 2016)) from

African-American, Caucasian, Asian, Hispanic and Native

American groups. As such, known population-specific allele fre-

quency priors were passed to arcasHLA on this dataset executed in

single-end mode from input BAM files mapped with STAR v.2.5.2b

(Dobin et al., 2013) to human reference GRCh37 (Aken et al.,

2016). In contrast to the high quality, homogeneous samples from

the benchmark set, the Virome samples have a mean RIN

(Schroeder et al., 2006) of 7.0 (ranging from 1.0 to 9.9), and a mean

of 22.2 M reads mapped to the human GRCh37 reference (ranging

from 5.9 to 68.2 M reads).

Ground truth for typing comparison. We established the HLA

genotyping ground truth for the Virome dataset using an assortment

of in silico tools which attain high concordance with deep targeted

sequencing validation protocols: xHLA (Xie et al., 2017), HISAT-

genotype (Kim et al., 2018) and OptiType Szolek et al. (2014)—that

we ran on WES data processed with the xGEN-Illumina platform (at

60� 25 M target PE 100 bp reads) and extracted from saliva samples

drawn independently from the nasopharyngeal swabs in our cohort.

Since we required both MHC Classes I and II calls to test the full cap-

ability of arcasHLA, we resorted to setting xHLA’s two-field calls as the

true Virome genotypes. On average, for HLA-A, -B and -C genes, two

additional tools showed good agreement with xHLA (Table 2). Further,

in order to optimize speed and memory usage, we first used the HISAT-

genotype extract_reads function, which builds on the HISAT aligner

(Kim et al., 2015), to extract reads mapping to the HLA locus before

genotyping with xHLA. xHLA calls MHC Class I HLA-A, -B and -C

and MHC Class II HLA-DPB1, -DQB1 and -DRB1. According to

xHLA calls, the Virome individuals show lower rates of homozygosity

than in the benchmark set with rates of homozygosity of 14.5

and 10.1% for MHC Classes I and II, respectively. HISAT-genotype

and arcasHLA were run using IMGT/HLA database v. 3.26.0. For
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arcasHLA typing, we extracted the unmapped reads in addition to those

from Chromosome 6.

2.4 Implementation and availability
arcasHLA is as a command line tool written in Python 3.6 available on

the public GitHub repository https://github.com/RabadanLab/arcasHLA.

This software is divided into four steps (Fig. 1). (i) Database construction

takes fewer than 3 min on average and allows for the selection of a spe-

cific IMGT/HLA version. (ii) Reads are extracted from previously sorted

BAM files. (iii) Reads are pseudoaligned and allele abundances are quan-

tified, followed by selection of the most likely genotype. Although it is

possible to do so, we do not recommend genotyping with arcasHLA dir-

ectly from raw FASTQ files. (iv) (Optional) Reads are aligned to a refer-

ence containing partial alleles. Possible partial alleles are selected and

compared with the complete genotype from Step iii.

The Geuvadis RNA sequencing of the 1000 Genomes individuals

was used for benchmarking the performance of arcasHLA, and the

data are available from ArrayExpress (E-GEUV-1).

3 Results

3.1 Benchmark performance
When run on the 1000 Genomes benchmark set, arcasHLA achieves

100% accuracy for Class I and above 99.7% accuracy for Class II

genes, outperforming other established tools (Table 1). Overall,

arcasHLA provides high levels of concordance for the HLA region

using this benchmark set. 99.9% of A, B and C alleles have complete

sequences in the gold-standard (reference version 3.24.0), while only

96.8% of DQB1 and 98.6% of DRB1 alleles are not partial, which

accounts for the lower accuracy of seq2HLA and PHLAT (they do

not type partial alleles). arcasHLA’s accuracy dropped slightly when

genotyping complete alleles for the ‘single-end’ samples with an

average accuracy of 98.5 and 97.3% for Classes I and II, respective-

ly (Supplementary Table S2). However, the current method of par-

tial typing is prone to false positives for partial alleles when typing

Class I from single-end reads, with an accuracy of 90.1%.

Surprisingly, typing improves for DQB1, with an accuracy of 99.3%

for Class II.

For computational analysis of arcasHLA, we randomly selected

30 samples from the 1000 Genomes benchmark dataset (Fig. 2).

These samples, typed without the optional partial allele typing step,

were analyzed on a Linux instance with 16 vCPUs and 64 GiB of

memory using 8 threads per sample. All samples were genotyped in

<2 min. arcasHLA effectively achieves an order of magnitude run-

time improvement over HLAProfiler (without its additional refine-

ment and partial typing steps) when mapped RNA-seq reads are

readily available. This runtime improvement should be interpreted

by practitioners as an advantage to be gained from integrating

arcasHLA as part of an existing pipeline (with BAM file intermedi-

ates) for typing HLA as compared with standalone HLA typing

pipeline (HLAProfiler).

3.2 Performance on the Virome of Manhattan dataset
In spite of the lower quality metrics in the Virome dataset,

arcasHLA yields high accuracy (Table 2): 97.7% for Class I and

94.1% for Class II. Given the lower accuracy for partial typing using

single-end reads in the benchmark set, we did not perform partial

typing for this set.

Expression of MHC Class II in the Virome samples (extracted

from nasopharyngeal swabs) can likely be attributed to the upper

airway epithelial cells which are known to constitutively express

MHC Class II (Wosen et al., 2018), and to the infiltration of

Table 2. Concordance of calls for arcasHLA, OptiType and HISAT-

genotype with xHLA for 447 RNA samples from 69 individuals

Input (#) RNA (447) WES (69)

Tool arcasHLA OptiType OptiType HISAT

A 97.5% 95.2% 98.6% 99.4%

B 98.0% 94.5% 96.4% 98.6%

C 97.7% 97.4% 98.6% 100.0%

DPB1 94.2% — — —

DQB1 93.3% — — 94.9%

DRB1 94.9% — — 94.2%

Note: Bold denotes maximized concordance for RNA sequencing results.

Fig. 1. Overview of arcasHLA pipeline from alignment to genotyping. The HLA de Bruijn graph was generated with Velvet (Zerbino and Birney, 2008) and visual-

ized with Bandage (Wick et al., 2015)
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leukocytes within the tissue lining the turbinates. Previous transcrip-

tome analyses have shown that leukocyte markers are indeed

expressed at low but detectable levels in samples from nasopharyn-

geal swabs (Chu et al., 2016). Such specialized epithelial and im-

mune cells are likely in the minority, which may explain our tool’s

lower accuracy result for Class II genes. In fact, although arcasHLA

was able to correctly call MHC Class II alleles for a majority of the

samples, it failed to call HLA-DQB1 for several samples with an

RIN of 1 where there were no reads at all mapping to DQB1 alleles.

We highlight the fact that the Virome samples contain variable mix-

tures of human, bacterial and viral RNA (as detected by a BLAST

search of the un-mapped reads Altschul et al., 1990), which can im-

pact the RIN score. The variable sampling depth of the nasal cavity

is another source of RIN variation and it can have a considerable ef-

fect, as mentioned earlier, on the coverage of HLA genes.

Another source of error likely stems from the single-end sequenc-

ing used in the Virome study which is known to generate a less

accurate mapping due, in particular, to the inability to resolve

single-base ambiguities. In spite of these study limitations, we report

that HLA calling can still be successfully performed in silico from

low RIN samples with relatively low coverage of the HLA locus

(Fig. 3).

4 Discussion

Accurate high-resolution HLA typing is imperative for determining

tissue and hematopoietic compatibility. Typing from NGS reads is a

boon to large-scale association studies where specialized assays

prove too time-consuming and expensive. However, typing from

short reads is complicated by the high level of homology between

HLA alleles and genes. Typing tools must be able to resolve ambigu-

ities given limited information, low read counts, short length reads,

or single-end sequencing.

With our new tool, arcasHLA, we have adapted transcript quantifi-

cation algorithms to aid in typing of HLAs, a method which could be

extended to type other highly polymorphic regions. arcasHLA per-

forms at or near 100% accuracy on the gold-standard benchmark set,

outperforming all other tools that run on RNA-sequencing data. We

have also validated our tool on a new biological dataset from a meta-

transcriptomic study of human nasopharyngeal swabs, showing how

low read counts and low quality reads (as measured by the RIN) can

affect the ability to type the MHC locus in silico.

Given the high level of homology between alleles, it is unlikely

that reads align solely to a single allele. Although it may be possible

to select the top pair from all observed alleles, it often improves ac-

curacy and runtime to filter out low-support alleles before the final

scoring. For example, OptiType drops alleles that are not present in

HLA databases, and HLAProfiler only selects the top n pairs by pro-

portion of explained reads. Taking inspiration from HISAT-

genotype, arcasHLA uses allele transcript quantification combined

Fig. 2. Runtime analysis on 30 randomly selected samples from 1000

Genomes dataset for arcasHLA (extract and genotype steps, and overall run-

time) and HLAProfiler

Fig. 3. Concordance rates restricted to Virome samples below a threshold for (a) RIN and (b) log-scaled reads by HLA gene, truncated when the number of sam-

ples dropped below 55, approximately one-eighth the total sample size. Panels (c) and (d) show the number of samples remaining
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with culling of low-support alleles to narrow down the pool of pos-

sible alleles, thereby improving on previous filtering methods. Like

OptiType, arcasHLA uses allele priors to influence results; however,

the method presented here uses these to nudge the transcript quantifi-

cation in the direction of more common alleles without disregarding

alleles rare enough to not be cataloged in HLA databases. Indeed, the

use of allele priors does not change the high level of accuracy on the

1000 Genomes set, which consists of high quality samples only (in

read count and RIN). The use of population-specific allele frequencies

does, however, consistently improve concordance between arcasHLA

and calls from WES in the Virome dataset. This may be due to lower

quality metrics and the single-end protocol used in the Virome study.

Indeed, in the Virome cohort, using an individual’s specific popula-

tion improved results; as did simply using the prior used for the

Dirichlet smoothing. Thus, for high quality samples of unknown ori-

gin no priors are required; for low quality samples; however, a prior

based on existing populations is likely to improve the accuracy of

calls (see Supplementary Table S3).

After this initial filtering step, HLA typing tools must resolve

ambiguities between alleles to select the most likely genotype. Most

tools use some scoring function to select the pair of alleles that

explains the greatest proportion of observed reads, at times includ-

ing consideration for noise, allele priors, or other factors. arcasHLA,

at present, takes a relatively simple approach, selecting the pair of

alleles that explains the greatest proportion of reads for each gene.

Like Polysolver (Shukla et al., 2015), arcasHLA uses allele frequen-

cies to break ties between pairs with the same read count.

As tools approach 100% accuracy for standard benchmark tests,

other criteria must be used to distinguish between them. With

increased use of HLA typing in large-scale association studies, run-

time becomes a more important factor. In such studies, RNA

sequencing is likely already aligned for other purposes. Given that

alignment is usually the most time consuming part of the HLA typ-

ing process, running from pre-aligned input cuts down on overall

runtime. As such, tools like arcasHLA and xHLA can boast run-

times that are orders of magnitude smaller than their competitors.

When typing thousands of samples, such a difference can have a sig-

nificant impact. When genotyping from a pre-aligned BAM file, it is

possible that HLA reads may be lost (either unmapped or discarded

by the aligner) if the individual’s HLA genotype differs significantly

from the reference sequence. However, given the competitive levels

of accuracy between tools that use raw FASTQs versus BAMs, it is

unlikely that lost reads significantly affect performance. In addition,

the scales may tip in favor of BAM-based tools that extract HLA

sequences from BAMs aligned to GRCh38 with alternative sequen-

ces (decoys and HLAs).

Another distinguishing factor between tools is their ability to

perform under suboptimal conditions. Single-end sequencing makes

resolving ambiguities between similar alleles a harder task; as such,

many HLA typing tools for RNA sequencing, such as Seq2HLA and

HLAProfiler, only accept paired-end data. When typing non-partial

alleles for the ‘single-end’ benchmark dataset, arcasHLA performs

competitively with other tools as well as outperforming OptiType

for the Virome dataset. However, arcasHLA’s higher agreement

with xHLA than Optitype for this set may be due to the nature of

OptiType’s calls which is limited to resolving ambiguities in the

antigen-binding region. In addition, it is possible that both xHLA

and arcasHLA make the same typing errors, limiting to some extent

this type of comparison without a true ground truth. Nonetheless,

without the resources to perform specialized HLA typing assays,

taking a consensus between results from different tools may be the

best approach.

In recent years, a whole body of work has begun to map out the

critical importance of our microbiome in systemic immunity, develop-

ment, homeostasis, disease and patient responses to immunotherapy

(Grice and Segre, 2012; Obata and Pachnis, 2016; Zitvogel et al.,

2018). As in our project on the Virome of Manhattan, we expect that

future metatranscriptomic studies of the human host will rely on in sil-

ico methods to disentangle human from bacterial reads and maximally

extract biological signal from low quality and highly heterogeneous

bulk samples. arcasHLA has been validated here for use with bulk

total RNA samples that contain eukaryotic, prokaryotic and viral mix-

tures, showing high concordance for MHC Classes I and II with the

top HLA calling tools. Indeed, arcasHLA is minimally impacted by

low read counts, low quality and the single-end sequencing protocol.

In the future, we plan on adding confidence scores for the most like-

ly genotype calls, as well as a more robust check for zygosity that takes

expected levels of noise into account. We also plan to build a pipeline

to detect novel alleles using de novo assembly of reads mapping to the

HLA locus. In order to identify novel alleles, we would compare the

difference in coverage at mismatch sites between these novel contigs

and the original genotype produced by arcasHLA. Another feature in

the works for the upcoming arcasHLA version is allele-specific expres-

sion quantification post genotyping. Expression levels for HLA-C have

been shown to correlate with certain allele groups that share an up-

stream variant; such differences have shown clinically significant impli-

cations in HIV and tissue-compatibility (Petersdorf et al., 2014;

Thomas et al., 2009). Along these lines, expression-level data may en-

able us to detect loss or silencing of the HLA loci as a possible mechan-

ism of immune evasion. We are developing two new applications of

arcasHLA: a test for HLA allele imbalance in tumors, and the verifica-

tion of mutations called from genomic sequencing.

The development of HLA typing tools from DNA and RNA

sequencing is limited by the availability of gold-standard, benchmark

datasets. These sets, used to both develop and test these tools, have

only two field resolution typing for six HLA loci as well as unresolved

ambiguity between alleles beyond the peptide-binding region. As

such, tools often call different alleles for individuals from the 1000

Genomes set, yet they report near perfect accuracy. Although group-

ing by identical antigen-binding region is useful from a serological

standpoint, this may hinder association studies as differences outside

this region may influence expression, antigen-binding ability and

interaction with T-cell receptors. The development of tools with ac-

curate calling beyond the second field is hampered by the lack of pub-

lic datasets with quality NGS samples and highest resolution typing.

Although arcasHLA is capable of genotyping non-classical HLA

loci as well as HLA pseudogenes if they are expressed at sufficiently

high levels, there exists no benchmark set to validate these calls at any

level of resolution. In addition, validation of in silico HLA tools with

publicly available data is limited to a small subset of populations.

RNA sequencing for the 1000 Genomes project is available for only

four Caucasian populations and one African population, and thus is

far from representative of a global population. Under-representation

is not limited to these benchmark datasets; there are likely many gaps

in IMGT/HLA and AFND, both of which are dependent on inde-

pendent researcher contributions. Finally, HLA test sets with lower

quality and single-end reads or sourced from tissue samples rather

than lymphocyte cell lines would aid in the development of tools that

perform well in challenging, real-world conditions.
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