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Abstract: Small plastic packaging films make up a quarter of all packaging waste generated annually
in Austria. As many plastic packaging films are multilayered to give barrier properties and strength,
this fraction is considered hardly recyclable and recovered thermally. Besides, they can not be
separated from recyclable monolayer films using near-infrared spectroscopy in material recovery
facilities. In this paper, an experimental sensor-based sorting setup is used to demonstrate the effect
of adapting a near-infrared sorting rig to enable measurement in transflection. This adaptation
effectively circumvents problems caused by low material thickness and improves the sorting success
when separating monolayer and multilayer film materials. Additionally, machine learning approaches
are discussed to separate monolayer and multilayer materials without requiring the near-infrared
sorter to explicitly learn the material fingerprint of each possible combination of layered materials.
Last, a fast Fourier transform is shown to reduce destructive interference overlaying the spectral
information. Through this, it is possible to automatically find the Fourier component at which to
place the filter to regain the most spectral information possible.

Keywords: 2D plastic packaging; near-infrared spectroscopy; sensor-based sorting; transflection;
monolayer; multilayer films; machine learning; small film recycling

1. Introduction

Currently, around 300,000 t of plastic waste are annually produced in Austria, of which
32% are recycled mechanically [1]. Small films with an area below 1.5 m2 account for
69,000 t, of which 10,260 t, or 14%, are multilayer films with at least two polymers [2].
These films are separated during the beneficiation of the waste and are almost exclusively
used as alternative fuel sources, incinerated or downcycled into low-value products [3].
The substantial potential is latent in the recycling of packaging films since neither co-
incineration nor other thermal recovery adds to the recycling quota [2]. According to the
amended EU Waste Framework Directive, municipal solid waste recycling must reach 60%
by 2030 [4]. Additionally, the new EU guidelines require a recycling rate of packaging
waste of 50% in 2025, with a further increase to 55% in 2030 [4]. This quota can only be
reached through a mix of measures such as higher collection rates, design for recycling,
and improving existing and new sorting techniques. Besides, a recycling system capable
of economically handling a feedstock which accounts for 17 wt.% of all plastic packaging
materials produced, requires additional research. [3].

The reason for the widespread use of multilayer packaging lies in its convenience
for producers, retailers and consumers: The plethora of functions such as UV protection,
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handleability, printability, limited gas permeability, and attractive haptics require only a
minimum of packaging material.

In turn, these inherent properties, the thin layer thickness and the combination of
different polymers impede the separation process. In most sorting plants, near-infrared
(NIR) sorters are used for plastics separation. This technology is based on the interaction
of NIR radiation with the molecular structure of solid materials resulting in distinctive
spectral fingerprints for each polymer type [5]. Thin-film packaging inhibits the separation
by NIR sorting because only a limited amount of radiation is reflected [6]. This lack of
spectral information limits the sorter’s ability to generate a useable spectrum because
the low thickness of the material allows a large amount of radiation to be transmitted [7].
Additionally, the thin layered construction of these packaging films introduces disturbances
in the spectral fingerprint. Due to destructive interferences, sine wave pattern noise may
overlay the spectra, masking its information and thus disfiguring an otherwise applicable
spectrum [8]. Fast Fourier transformation (FFT), which is also used in laboratory-based
infrared spectroscopy, can reduce these overlaying interferences. Though finding the correct
cut-off point has proven to be both time-consuming and tedious if carried out manually [8].

The resulting lack of spectral information can lead to misclassified particles, which
in turn could contaminate an otherwise clean feedstock. This contamination impedes the
recyclability of the recyclate by altering its mechanical properties. This alteration may result
in the need for additional compatibilisers and other additives for the intended recycling
process. [9].

As NIR-based sorters are most widely used in sorting plants, but their potential has
not yet been fully exploited, the aim of this research was to improve their material detection.
Additionally, the decoupling of the material properties from the mechanical separation
enables not only a change of the hardware configuration, in this case the measurement in
reflectance mode, but also the software of the evaluation unit.

Given that a simple adaptation of existing sorter may improve their capability to
separate thin, flexible packaging material, substantial increases in recycling quota with
a limited investment are feasible. Preliminary studies have shown the possibility of sep-
arating monolayer from multilayer materials on a laboratory scale using a NIR-active
background in an experimental setup [7]. Further examinations of these findings on an
industrial scale NIR Sorter have proven to increase the spectral quality of flexible packaging
films by implementing a metal reflector to the sorting geometry [2]. Implementing a NIR
inactive metal sheet as a reflector enabled the sorter to measure in transflectance rather
than the usual reflectance mode [2].

Apart from the low material thickness, another prevalent advantage of multilayer
films has proven problematic during separation and recycling: the continuously changing
types of polymer types, thickness and sequence to ensure the best product protection.
Hence, the resulting combination possibilities further complicate the creation of separation
models.

Whenever completing a complex task without explicitly programming every conceiv-
able variation of this task, machine learning becomes the tool of choice. The application
of machine learning methods in NIR spectroscopy has been successfully implemented
in various fields. It has been used to assess the quality of beer from given features [10],
the rapid assessment of water pollution [7] or the prediction of soil total nitrogen, organic
carbon and moisture [11].

This paper investigates the effects of adding a reflective chute material to a state-of-
the-art near-infrared sorting unit. This modification allows 2D plastic packaging material
consisting of single and multi-layer films to be more effectively detected via transflection
and subsequently separated. In addition, an automatic method for applying the FFT to
spectra obtained in this transflection configuration and affected by interference is examined.
This method is an alternative to manually determining the correct cut-off point in the
Fourier deconstruction of the spectra. Based on these improved spectra, a principal compo-
nent analysis is performed to evaluate whether there are predominant spectral differences
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between spectra of mono- and multilayer materials. This characteristic difference can be
used to train machine learning algorithms to separate the two fractions.

Machine learning algorithms are then evaluated based on their prediction performance
and calculation speed. These metrics result in a hierarchy gauging their capability to
produce correct predictions in a reasonable time. This examination is necessary to gauge
whether this approach is feasible for inline applications, categorising spectra generated
in an industrial environment. Finally, an integrated method is discussed, using improved
spectral recognition with mechanically adapted NIR sorter, improved spectra rid of sine
wave interferences and separated into mono- and multilayer materials via supervised
machine learning classification algorithms.

The presented information creates a stepping stone for integrating recyclable resources
to increase the effectiveness of mechanical recycling. This increase in effectiveness further
creates a value-adding raw material source for multilayer recycling processes currently in
development, thus improving the circular economy of polymers [12,13].

2. Materials

All experiments were executed with material obtained directly from the input of an
Austrian material recovery facility. This waste was collected under the Austrian lightweight
packaging collection scheme. Under this scheme, lightweight packaging made of polymers,
aluminium or beverage carton is collected. For plastic packaging, the collection includes
both 3D and 2D material. From this material, the film specimen for this research paper
were sampled.

2.1. Film Specimens

A total of 103 specimens of post-consumer waste were taken directly from a sorting
plant’s input fraction in Austria. The input fraction is delivered in yellow bags, and these
bags were collected and the lightweight packaging therein was used for further evalua-
tions. The samples were neither cleaned, smoothed or otherwise exposed to preparatory
conditioning before the sorting trials were conducted. The samples’ dimensions ranged
from 10 mm × 10 mm to 210 mm × 297 mm and included printed and transparent samples.
Figure 1 shows the small film fraction for reference.
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An examination with Fourier transform infrared (FTIR) spectroscopy yielded the
material composition of the experimental samples. The spectrometer used was a Spectrum
Two FTIR spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with a Zn/Se crystal
with a diamond tip. The spectrometer measures in the range of 650 cm−1 to 4000 cm−1 and
has a spectral resolution of 4 cm−1.

2.1.1. Classification with FTIR Spectroscopy

The exact measurement method is explained in greater detail in a paper published
by Koinig et al. in 2022, which examined the composition of Austrian lightweight pack-
aging waste using FTIR measurements. The method is therefore described in short in the
following.

Fourier-transform infrared spectroscopy (FTIR) in attenuated reflectance (ATR) mode
was used to classify the film specimen into their respective material classes.

Samples on which the results differ for the front and back are defined as multilayer
films, while samples with identical results for the front and the back are defined as mono-
layer films. However, the FTIR-ATR characterisation method is limited to identifying the
polymeric material on the sample’s surface and penetrates only a few micrometres of the
sample thickness. In case of uncertainties in assigning a sample to the mono- or multilayer
category, additional FTIR measurements were performed in transmission mode to investi-
gate the material composition over the entire sample thickness to ensure reliable results.

According to the FTIR spectral analysis, the specimens were categorised into different
groups of mono- and multilayer materials. The materials represented by the selection of
samples are represented in Table 1.

Table 1. List of mono- and multilayer materials used in the sorting trials.

Materials Recycling Label Share

Polyethene PE 9 wt.%
Polypropylene PP 31 wt.%
Polyethene + polyethylene terephthalate PE/PET 28 wt.%
Polyethylene + polyamide PE/PA 6 wt.%
Polyethylene + polypropylene PE/PP 16 wt.%
Polypropylene + polyethylene terephthalate PP/PET 9 wt.%
Polypropylene + polyamide PP/PA 1 wt.%

2.1.2. Experimental Sensor-Based Sorting Setup

The trials were conducted with an experimental sensor-based sorting (SBS) setup.
The NIR sensor, an EVK-Helios-G2-NIR1, was used for the trials. This sensor detects the
reflected NIR radiation emitted by a halogen lamp on a sample. The emitted radiation is
reflected, absorbed, or transmitted depending on the specimen and interacts with near-
surface molecules [14]. The spectral resolution of the sensor is 3.18 nm with a frame rate
of 476 Hz and an exposure time of 1800 µs. Each spatial pixel is 1.60 mm wide, owing to
the geometrical setup of the testing rig. The waveband evaluated during the trials was
991 nm to 1677 nm, split into 220 discrete measuring points. After detection, the radiation
is analysed with EVK SQALAR to classify the respective spectra.

The function principle of the sorting rig is depicted in Figure 2.
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2.1.3. Reflectors

The sorting experiments, which were the basis for the data evaluated in this paper,
were conducted with two reflective chutes made of aluminium and copper. These adapta-
tions had to be made to the existing sorting setup to allow for measurement in transflection.
Two variants of the reflective chute were manufactured by laser cutting the metal plates.
The specific shape of the reflector was chosen so as not to cover the illumination of the
sorter, which is necessary to detect objects for ejection. Copper and aluminium were used
as reflective materials because they are highly promising due to their high reflectivity of
NIR radiation [15].

3. Methods

The described experimental sensor-based sorting setup was used to classify the 2D
materials during the trials. This chapter explains the preparations to complete the sorting
model generation and separation of materials. Further, the measurements in transflection
mode are explained. Finally, the methods used in creating the machine learning approaches
and the spectra improvement methods are explained.

3.1. Measurements in Transflection Mode

One of the defining characteristics of NIR sorting is the interaction of material and
NIR radiation. During this interaction, the incident radiation energy is partially converted
into kinetic energy of molecular vibrations, while other parts of the radiation’s intensity
are transmitted and reflected [16]. Only sufficient interaction between the molecules of
the specimen and the incident NIR radiation creates useable NIR spectra for classification.
Material with insufficient thickness causes most of the incident radiation to be lost to
transmission. Additionally, the minuscule amount of reflected radiation has not interacted
sufficiently with the material to cause alterations in the spectra. Preliminary studies
have shown that the minor signal alterations caused by the low material thickness in
reflectance mode can be alleviated by adapting the experimental sensor-based sorting setup
for measurements in transflectance mode [7,17].

Placing a reflective background plate onto the chute allows measurements to be taken
in transflection mode. This way of measuring thin films alleviates the problem caused by
the low thickness of the material. The radiation is reflected after its first pass through the
specimen. This approach enhances the interaction of radiation and material because of
the lengthened path the radiation takes through the material: First, the incident NIR beam
enters the sample and a small proportion of its intensity is immediately reflected. However,
a significant proportion is transmitted through the specimen and consequently reflected
by the reflective material placed behind the sample. Hence, it passes again through the
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material and can be detected through the NIR sensor. This additional pass through the
material increases the spectral quality and enables the creation of a sorting model to classify
film materials.

Through this process, the variability of the spectra is decreased. This variability is
defined as the absolute difference between pixels of the same specimen [2].

Only if the pixels of a given specimen exhibit similar spectra, a specimen be classified
correctly. Figure 3 compares the spectra of a PE film measured in transflectance mode (left)
and the standard reflectance mode (right). The depiction shows the mean spectra of ten
pixels, normalised via the “zScore” method and smoothed by Gaussian smoothing with
a 10-point floating smoothing window. It can be seen that the characteristic PE peak at
1150 nm becomes more pronounced when measured in transflection.
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3.2. Preparations for Sorting Trials

The trials were conducted with teaching and testing fractions. The specimens were
separated into a teaching set to create the model containing 80% of the materials and a
separate testing set to check the model prior to the sorting trials containing 20% of the
specimen. A train test split of 80:20 is one of the most effective ways to train models [18].
The train set consisting of known composition mono- and multilayer materials was used
to create a sorting model. The second class was the test set consisting of monolayer and
multilayer materials not used for teaching the sorting model. With the teaching and test sets
created, the reflective background was installed, and the sorting model, which is necessary
to classify and eject the multilayer materials, was created.

Model Creation Using EVK SQALAR

The sorting model for separating the individual materials was created using EVK
SQALAR.

A sorting model for NIR sorting defines the criteria for which the experimental sensor-
based sorting setup sorts fractions based on reference spectra. These spectra are taken from
known composition materials, and these benchmark spectra are compared to the unknown
materials’ spectral information during the sorting trials. If an unknown pixel’s spectrum
shows sufficient similarities to a reference, it is classified as this material class.

Apart from the reference spectra, the sorting model defines the pre-processing and
spectral processing methods applied to the spectral information. Here, the upper and
lower limits of spectral intensity in which viable pixels for evaluation lie, are considered.
Concessions were made to create a sorting model that can use reflective backgrounds.
Firstly, the white calibration with the reflective background was completed, allowing the
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existing white calibration algorithm to adapt to the increased intensity of reflected radiation
due to the adapted chute material. Secondly, the illumination intensity had to be lowered
to prevent overexposed pixels. This was performed despite the results of previous research
stating that increased illumination intensity improves the spectral quality [17].

Table 2 shows the pre-processing and spectral processing methods used in preparing
the spectral information for classification. These methods were described in the literature
as ideal for separating post-consumer waste as they enhance the subtle differences in each
spectrum, facilitating the differentiation between similar spectra, for example, between PE
or PP monolayer and PE–PP multilayer [19,20].

Table 2. List of pre-processing and spatial-processing.

Pre-Processing Spectral-Processing

Bad pixel replacement Calculation of the first derivative
Intensity calibration Smoothing
Noise suppression Normalisation
Spatial correction

This procedure for creating a sorting model was undertaken with the standard con-
figuration for measurements in reflectance while the aluminium and the copper reflectors
were used for measurements in transflectance. This approach yielded an individual sorting
model for reflective surfaces and the non-reflective original chute.

3.3. Sorting Trials

The sorting trials were performed with every specimen in the test set. Each attempt
was repeated five times to eliminate random factors, such as the trajectory of the film
specimen. The sorter was set to eject multilayer materials.

A particle was considered to be classified correctly when the high-pressure nozzles
were activated and the particle was ejected. Through this approach the number of correctly
separated specimens for the respective configuration.

3.4. Principal Component Analysis to Determine the Possibility of the Application of Machine
Learning Approaches

Even with increased fidelity to the material’s spectral fingerprint in the available
spectra, the overabundance of available multilayer material combinations poses a problem
in creating a sorting model. It is infeasible to implement a sorting routine with spectral
information to correctly recognise all available multilayer material to differentiate it from
monolayer material, and neither is it feasible to include all existing monolayer materials in
the sorting model. Therefore, it is necessary to adopt a sorting mechanism that achieves the
task of detecting multilayer materials without explicitly implementing a vast number of
multilayer spectra. For this, a supervised learning approach was chosen. In order to achieve
this, common identifying characteristics of multilayer materials must be present. If they
influence the spectra enough to enable classification, the existence of these characteristics
would enable the separation of multilayer materials without the need to gather the spectra
of each material. A principal component analysis (PCA) was applied to the 17,569 spectra
recorded from the multilayer and monolayer specimens. The PCA was used to reduce the
220-dimensional spectral information into principal components to analyse if sufficient
differences are present in the data to explain the variance of the data set with principal
components.

Since the PCA indicated differences between multilayer and monolayer spectra, a com-
parison of the average of the multilayer material and monolayer material spectra was
conducted. This comparison was used to evaluate the spectral range in which the two
classes differ most. This comparison was made by taking the mean of all multilayer and
monolayer spectra used in this trial. The two resulting spectra were compared by taking
the two-norm of the distance of each spectral point of the monolayer spectra from its
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corresponding spectral point of the multilayer spectra. This yielded in the wavelengths at
which monolayer spectra and multilayer spectra differ substantially from each other.

3.5. Evaluation of Machine Learning Approaches to Classify Spectral Data

With the information gathered via the PCA, an array of machine learning approaches
was applied to the spectral information gathered from the thin film specimen. First, the
17,569 spectra gathered from the specimen were randomly separated into a training and
a test set. This is required to enable holdout validation to train the machine learning
approaches. The test set contained 20% (3513) of the spectra, while the training set consisted
of the remaining 80% (14,056) of spectra, again utilising the recommended 80/20 split.

Cross-validation allows training and testing on a given number of data splits and thus
permits an estimate of how well a given model will perform on unseen data. Holdout
validation depends on splitting the data set according to the given ratio between the
training and test set. Even with cross-fold validation potentially increasing the prediction
success by 0.1–3%, the time trade-off on large data sets is substantial [21]. The machine
learning approach was repeated using cross-fold validation with five cross-validation folds.
One of the selected groups is used as a test set, while the other is used as a training set.
After grouping, the model is trained on the training set and tested and scored using the
test set. This process is repeated until all sets have been used as the test set. The holdout
validation was chosen after preliminary tests resulted in a high prediction success when
using holdout validation while requiring less training time.

Each NIR spectrum consists of 220 spectral data points. Every spectral point contains
the radiation intensity detected by the NIR sensor and is a feature used for predicting
the material class in this context. The first derivative of every spectrum was taken to
enhance differences inherent in the spectral data, and no further feature engineering, e.g.,
feature selection, was performed. Thus, the machine learning approach initially used all
220 spectral points equally spaced over the NIR spectral region of 930–1700 nm. After
these preliminary trials, a PCA was conducted, reducing the number of features from 220
to 3. These three features explained ~80% of the variance in the model. This approach
tripled the number of observations per second the models were capable of and increased
the prediction accuracy in one case.

All necessary computations were conducted running MATLAB by The MathWorks
(Natick, MA, USA) Version 9.10.0.1710957 (R2021a) Update 4 on a Windows 10 computer
equipped with an Intel® UHD Graphics 630 and an Intel ® Core ™ i5-9400H CPU clocked
at 2.50 GHz.

3.5.1. Used Machine Learning Algorithms

Supervised learning approaches were used to differentiate between mono- and multi-
layer materials. The selection process for the correct algorithm yielded several different
machine learning approaches to be tested. Since the problem at hand is a clustering problem
with three possible clusters, the following algorithms were chosen and evaluated for their
performance.

Decision Tree

Decision Trees are known as Classification and Regression Algorithms since they can
perform classification and regression. Decision trees follow along their edges or branches
and decide at the nodes which branch to follow to label a new input. A condition is queried
at every node to decide which branch to follow [22]. When categorising whether a given
material is a multilayer film or not, the prime features to be evaluated are the intensity of the
given pixel at a specific wavelength. Figure 4 shows an example of a simple decision tree.
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k-Nearest Neighbour

The k-nearest neighbour (kNN) algorithm works by analysing the distance between a
new data point and its k-nearest neighbours. The user determines the number of neighbours
evaluated, k, influencing the algorithm’s outcome. The new data point is then assigned the
label of the majority of its neighbours. The Euclidian distance between neighbouring data
points is used as a decision criterion. [23].

Figure 5 shows an example; if k = 5 and 3 neighboring points are classified as multilayer
while two are classified as a monolayer, the new data point will be labeled multilayer. In this
example, the dimensionality has been reduced from 220 to 2 by a prior PCA. This reduction
in dimensions is usually made in preparation of a kNN approach to avoid the effects of the
curse of dimensionality, which plagues many machine learning algorithms [24]. In kNN,
the Euclidian distance becomes useless as a metric in higher dimensions since all vectors
are equidistant to the search query vector.
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k-Means

The k-means algorithm is well suited to classification problems. It works by defining a
number, k, of clusters. Then a set of centres for those clusters is randomly selected. All data
points are then labeled according to their distance to these clusters. After this clustering,
the new centres of those clusters are calculated, and the algorithm begins anew, again
clustering the data around the new cluster centres. With every iteration of the algorithm,
the change of the centres becomes smaller. The procedure is repeated until a threshold
number of iterations is reached. The classification is then complete, and the model can
be used to classify new data according to the k-clusters. The success of this approach
dramatically depends on the selection of the initial centres. It is therefore advisable to create
various k-means models with different starting parameters. Apart from relying on the
starting conditions, the k-means approach’s low computational and memory requirements
are its advantages. Figure 6 shows a completed clustering using the k-clusters approach.
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Support Vector Machine

Support vector machines (SVM) separate the given data set by a hyperplane that
maximises the empty area between different data sets. This area is called the margin.
The solution offering the maximum margin separating the given data sets is considered
the optimum and chosen to classify new data. These separating lines, or hyperplanes, are
generated by support vectors, thus the name. A sample showing the classification process
of an SVM is shown in Figure 7. These hyperplanes can be linear and not linear, rendering
the SVM able to classify most data sets of natural features where a linear separation is
impossible [25].
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Neural Net

The application of neural networks for classification differs from traditional machine
learning algorithms. A classification task requires the input of labeled data, and this
supervised learning approach can be used to classify all data that humans can label. Neural
networks are commonly applied to text classification, fraud detection, voice identification,
or video analysis. A shallow neural network (SNN) with one connected layer has been
applied to the input. The input consisted of the first derivative of the spectra contained
in the spectral image. The classification yielded three classes for the evaluated pixels:
multilayer, monolayer and background.

3.5.2. Feature Engineering

Before classification, the raw spectral data was normalised using the “zScore” method,
which ensures a mean value of zero and a standard deviation of one. The spectra were
smoothed using a Gaussian smoothing algorithm with a ten-element sliding mean window.
Additionally, the first derivative of the spectral data has been taken to make the differences
inherent in the spectral data more prominent.

3.6. Use of Fast Fourier Transformation to Improve Spectra

Fast Fourier transformation (FFT) was applied to improve spectral quality. This ap-
proach enabled overlying sine wave-like spectral abnormalities to be reduced. This reduc-
tion in overlying sine wave-like spectral abnormalities made the analysis of previously
obscured spectral information possible.

The fast Fourier transformation algorithm of MATLAB is used to achieve the original
spectrum’s discrete Fourier transformation (DFT). The DFT of a signal decomposes the
original spectrum into a series of harmonic sinewave parts and represents a frequency
spectrum. Figure 8 shows a representation of a generic noisy signal. Here it can be seen
that any signal composes itself of a series of overlying frequencies. The underlying signal
is overlaid with noise, making it difficult to determine the original signal. The noise could
be eliminated by manipulating the signal in this representation, making the signal clearer.
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By manipulating the representation of the original spectrum, unwanted noise, for ex-
ample, the aforementioned sine wave abnormalities, can be omitted in the inverse Discrete
Fourier transformation (iDFT). The iDFT is used to recreate the signal. To generate a usable
spectrum, the placement of this filter has to be evaluated, and the resulting spectrum has
to be compared to a suitable reference spectrum. This computation takes the two-norm
of the difference between the new spectrum and the reference spectrum. An algorithm
evaluates the resulting spectrum concerning the reference spectrum and places the filter
in the position that yields the optimum spectrum, which facilitates this evaluation. This
way, manual experimentation of filter placement, which previously took considerable
time, can be automated [8]. The deviation from the reference spectrum is plotted over
the corresponding filter position for visual inspection to evaluate the correct positioning.
The result of this process is shown in Figure 9, which depicts the evaluated placement point
for the low pass filter and the resulting deviation. The point in the search with the lowest
deviation is marked. This placement point was then used for further processing.
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The original spectrum is represented in 220 Fourier coefficients. These coefficients
correspond with the camera’s spectral resolution with which the spectrum was recorded.
Figure 10 shows the representation of the spectrum after the FFT was applied. Further,
the location of the deep pass filter is visualised.
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Summary of Applied Methods

In summary, three methods were used to solve problems in sorting films. Firstly, the
spectra quality was insufficient for separating the material. This issue was remedied by
applying measurement in transflection. The second problem was that after the inclusion of
reflective backgrounds for measurement in transflection, sine wave-like disturbances were
still occurring in the spectra. These in turn were reduced with FFT. Because finding the
correct cut-off point for the low pass filter by hand is time-consuming, an algorithm is used
which finds the cut-off point that results in the best spectra after reconstruction.

The third problem was the abundance of material compositions in multilayer films,
which impeded the creation of a sorting model that recognises multilayer materials. PCA
and the comparison of multilayer film and monolayer film spectra evaluated the viability
of applying machine learning methods to solving this problem. With these methods,
characteristic differences in the spectra were found, which promised a successful application
of machine learning methods. These methods were used to classify film spectra into two
groups and were compared to each other’s prediction accuracy and computation speed to
find the best machine learning method suited for the task. Figure 11 shwos a summary of
encountered problems when sorting films and the applied solutions.
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4. Results

All results are assessed based on the number of correct ejections. The first sorting trials
were conducted without adaptations to the sorting rig. These results are used as reference
values to compare the effect of introducing a reflective background on sorting multilayer
and monolayer films.

4.1. Detection Rate without Reflector (Glass Chute)

In summary, 46% of all materials were correctly sorted using no reflective surface as a
background for classification. The lack of useable spectral information explains this low
sorting success. Given the lack of spectral information to base the classification, creating
the sorting model proved difficult.

Figure 12 depicts the detection rate for all materials using no reflective background.
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4.2. Detection Success with Aluminium Reflector

The second trial was conducted with the use of an aluminium reflector.
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Due to the optical properties of aluminium, it reflects near-infrared radiation and per-
mits measurements in transflection mode. Since less radiation is lost to transmission, more
pixels contain useable spectral information for classification. This effect permits the detec-
tion of the 2D materials, independent of their thickness and coloring. Optically transparent
materials are detectable and, therefore, sortable with a reflective surface. This improved
sortability is shown in Figure 12, which depicts the detection rate for all materials using an
aluminium reflector and compares it to the initial results without a reflector. After the trial,
74% of all multilayer materials were ejected correctly, which is 61% more compared to the
measurement in reflection.

The aluminium reflector showed great promise as a reflective surface, although its
tendency to accrue an oxide layer that diminishes its reflective capabilities needs to be
considered.

4.3. Detection Success with Copper Reflector

The third trial was conducted using a copper plate as a reflective surface. The high
reflectivity of copper facilitated the model creation. Due to the high reflectivity, the number
of useable spectra for model creation was increased. The copper’s reflectivity enabled a
sorting model that successfully distinguished the majority of mono and multilayer materials
used in the trials. Figure 12 shows a comparison between all three setups.

4.4. Comparison of the Detection Experiments

In addition to its inherent higher reflectivity in the NIR spectrum compared to alu-
minium, copper does not tend to create an oxide layer, and this property may make it
more viable as a reflector despite its higher cost relative to aluminium. Figure 12 shows
the overall detection rate for all materials on all reflectors as a comparison and the total
percentage of detected objects. The formation of verdigris was not encountered during the
trials but will most likely pose an issue when using the reflective surface in an industrial
setting and must be included in planning.

4.5. Evaluation of Differences in Ejection Rate between Polymer Types

This chapter explains the differences in detection and subsequent ejection between
the polymer types. The spectral differences causing this lack of uniformity in ejection
are explored. For this purpose, spectra were taken in each measurement mode (RAW),
standard measurement without reflector, transflectance with aluminium reflector (AL-TR),
and transflectance with copper reflector (CU-TR), are shown and compared with each other.
In addition to the mean spectrum of the specimen, the variability of the spectrum is shown.
The lower this spectra variability is, the easier the specimen can be assigned to one material
group. In Table 3, the results of the trials are presented in tabular form for ease of reference
in the comparison.

Table 3. Ejection rates with different reflectors.

Film Material Ejection Rate
Copper Reflector [%]

Ejection Rate
Aluminium [%]

Ejection Rate
No Reflector [%]

Average Ejection Rate
[%]

PE 93 93 60 82
PP 77 90 83 83
PET/PE 76 71 24 57
PE/PA 100 100 40 80
PP/PET 53 20 27 33
PE/PP 76 72 40 63
PP/PA 100 80 60 80
Total 78 74 46 66
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4.5.1. PE

It can be seen that 40% of PE films were falsely classified as multilayer materials and
ejected when using no reflector. Figure 13 shows the spectra of a PE specimen used in the
trials and shows that the variability of the spectrum taken without a reflector is comparably
high. Especially in the area of 1200 nm, the second characteristic PE section is absent and
diffuse. The spectra recorded using the copper reflector show very sharp characteristic
sections at 1200 nm and 1400 nm with little variability. The spectra are shown in Figure 13.
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reflector.

4.5.2. PP

PP was recognised much better than other plastics in the trials. Without a reflector,
83% of the specimen were correctly sorted. Implementing an aluminium reflector raised
this to 90% while implementing a copper reflector reduced the result to 77%. The answer to
this abnormal behavior can be found in the spectral analysis. Examining the spectra taken
in AL-TR, it can be seen that three characteristic peaks are present, namely at 1300 nm,
1400 nm and 1550 nm. In RAW, only one of those characteristics is present. In CU-TR, two
of these three sections are present and can be used for classification, with the dip at 1550 nm
absent. Irrespective of the used reflector, the quality of the PP spectra is more susceptible to
the thickness of the specimen. PP specimens exhibit sine wave-like noise disturbances of
the spectra at a higher thickness than other polyolefins such as PE [8,17]. The spectra are
shown in Figure 14.
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reflector.

4.5.3. PE/PA

PE/PA showed a slight improvement in spectral quality. The characteristic regions at
1200 nm and 1400 nm are present without or with the reflector. The dismal ejection rate
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without the reflector was due to misclassification as a monolayer since the PE is dominant
in the PE/PA spectrum. It can be seen that an aluminium reflector alters the spectrum in
the region of 1200 nm by extending the peak in comparison to measurements without a
reflector or with a copper reflector. The spectra are shown in Figure 15.
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4.5.4. PE/PET

PE/PET had the worst detection rate, with an average of 33% of all specimens correctly
ejected in all trials. The cause is that PE makes up the central part of PE/PET composites.
Since the intensity of any spectral component is proportional to the material’s thickness,
what little spectral information is detected resembles PE [26]. This dominance of the PE
spectrum leads to the misclassification of the multilayer material as PE monolayer and,
subsequently, the low sorting accuracy. These spectra can be seen in Figure 16. In the spectra
recorded in RAW, the characteristic PET dip at 1500 nm is blurred by the variance. Measured
with AL-TR, the characteristic PE peak is blurred, and the PET dip is diminished while the
dip at 1400 is present. In CU-TR, all characteristic features of the PE PET multilayer are
sharp and easily distinguishable, leading to the correct results.
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4.5.5. PP/PET

PP/PET was one of the films with the lowest ejection rate. It can be seen in Figure 17
that the characteristic PET peak at 1650 nm only starts to appear when a copper reflector
is used. The spectra recorded without a reflector exhibit no spectral information and are
unsuitable for classification. The inclusion of an aluminium reflector improves the spectra
to a limited extent. More pronounced improvements are reached after a copper reflector was
installed. After this installation, the characteristic peaks of PP and PET become apparent,
reducing the risk of misclassifying the films as PP. The spectra are shown in Figure 17.
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4.5.6. PE/PP

PE/PP multilayer specimens were sorted out without a reflector 40% for the time, and
the introduction of AL-TR raised this to 72%, and CU-TR further increased this result to
76%. PE PP multilayer is especially susceptible to high variability in the spectrum since it
is a composition of two materials exhibiting similar NIR spectra. All peaks overlap the PE
and PP spectra and are present in CU-TR; thus, the material can correctly be classified as a
multilayer film. The spectra are shown in Figure 18.
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4.5.7. PP/PA

PP/PA was comparatively well separable without a reflector. The spectra taken in
RAW exhibit the material’s characteristic peaks and minimal variability. The sharpness
of the characteristic peaks and the variability of the spectra were further improved when
measuring in AL-TR or CU-TR, mirrored by the improved results in the sorting trials.
The spectra are shown in Figure 19.
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4.6. Application of Machine Learning Algorithms to Classify Film Spectra into Multilayer and
Monolayer Categories Results

As a precursor to the classification via machine learning algorithms, a PCA and
a comparison between the mean spectra of monolayer and multilayer materials were
conducted to determine whether discernible differences between the two material groups
exist, which can be exploited for their differentiation into the classes monolayer and
multilayer material.

The application of PCA onto the spectral information yielded three clear clusters.
The evaluation of the PCA showed that the first principal components could explain
approximately 80% of the variance. This result successfully classified multilayer, monolayer,
and the sorter’s background into the three categories by machine learning algorithms.
Figure 20 shows the result of this PCA. Here the three clusters can be seen. Green represents
monolayer spectra, red represents multilayer spectra, and black represents the background
material used in the trials. The monolayer and multilayer materials variance is described in
dominant parts by the first principal component, further shown in the Pareto distribution
diagram in the lower right corner. The first three principal components correspond with
the spectral wavelengths of the separately examined spectra of 1038 nm, 1187 nm and 1309
nm that correspond to the second overtone of CH vibrations typical of CH2, CH3 and C=C
chemical structures [27].

The evaluation of the spectral differences in the mean spectra taken from the mono-
layer and multilayer fraction yielded three spectral regions in which the mean spectra of
monolayer and multilayer materials differ significantly. The comparison is visualised in
Figure 21, which shows the mean multilayer spectrum in yellow, the mean monolayer spec-
trum in red and the three most pronounced differences. The first region where significant
spectral differences can be seen is 1230 nm, corresponding to the second overtone of the CH
bond [27]. Here the multilayer spectrum exhibits a more prominent peak than the mono-
layer fraction, possibly because of a different CH content within the two fractions. A similar
difference can be observed at 1380–1410 nm, where the monolayer spectrum experiences
a more pronounced dip than the multilayer fraction. This spectral region corresponds to
the stretching and deformation vibrations of the CH bond of CH2 structures [27]. While
these two differences expressed a similar characteristic, namely a dip or a peak, the third
difference sees the two spectra deviating strongly from each other [27]. Between 1410 nm
and 1440 nm, the multilayer spectrum exhibits a wave-like pattern while the monolayer
spectrum rises until a peak is reached. This spectral region can be associated with vibrations
of several chemical bonds as the first overtone of OH stretching vibrations, stretching and
deformation vibrations of CH in CH2 and aromatic structures and the first overtone of NH
vibrations. In particular, the shape of the spectra for the multilayer material would suggest
that multiple peaks are present, and they might correspond to vibrations of aromatic or NH
bonds typical of PET and PA, respectively. The spectra of the monolayer material would
suggest possible vibration of one chemical bond type.
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Figure 21. Differences in the mean spectra of multilayer and monolayer materials.

While the comparison of mean spectra of different materials cannot determine whether
the differentiation of individual materials into the categories monolayer and multilayer is
possible, it shows that differences between the two materials exist, which may be used to
classify them accordingly.

After these preliminary examinations, the respective machine learning algorithms
were used to classify the spectral data. Table 3 shows the success rate of each respective
algorithm in correctly classifying the material into the classes multilayer, monolayer and
background. All used algorithms show promising results apart from the k-means algorithm.
This algorithm could not correctly identify the material, reaching an accuracy of only 60%.
Amongst the others, the SVM and the SNN reached the highest accuracy.
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Prediction Speed

The NIR sorter can achieve a refresh rate of approximately 500 Hz, which can effec-
tively be halved without substantial loss of information while recording 320 spatial pixels
with a spectral resolution of 220 points. This recording speed means that approximately
80,000 spectra must be evaluated every second. A machine learning algorithm’s prediction
speed is given as the number of observations processed per second, and its inverse would
be the time taken for one prediction in seconds. The fastest examined machine learning
algorithms were capable of prediction speeds of 83,000 observations per second, which
would be fast enough to classify every pixel the spectral imaging camera recorded. It has
to be noted that no pre-processing steps and additional computing time were considered
for this calculation, reducing the number of spectra processable per second.

After evaluating the prediction speed and accuracy, a hierarchy of machine learning
algorithms was established. Table 4 shows the percentage of correctly identified pixels and
respective machine learning algorithm. With a PCA leaving three principal components
for classification, the SVM outperformed the other algorithms regarding prediction speed
and accuracy. This comparison is shown in Figure 22, which compares the examined
algorithms and their success in classifying the test set. On the left, the prediction accuracy
is presented. Here it can be seen that while all algorithms were able to label the spectra
correctly in at least 80% of cases, the SVM, after PCA using the one versus one approach,
could predict the material in 93% of cases correctly. Because these examinations aim to
evaluate the algorithms for their applicability in a sorting operation, accuracy without
prediction speed is irrelevant. Figure 22 shows on its right the comparison of the machine
learning approaches concerning their time requirements per correct prediction. It can be
seen that the introduction of a PCA prior to model generation decreased the time necessary
to predict the label of a spectrum. Further, the PCA did not decrease accuracy. Therefore,
the fastest algorithm was the SVM and the SNN with prior PCA using three principal
components for prediction.

Table 4. Correctly identified pixels and respective machine learning algorithm.

Algorithm Correctly Identified Pixels

Decision tree 98.15%
k-nearest neighbour 98.17%
Neural net 99.47%
Support vector machine 99.63%
Shallow neural network 99.90%
k-means ~60%
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4.7. Visualisation of the Classification Results of the Shallow Neural Network

The comparison of the applied machine learning tools yielded two methods especially
well suited to the classification of films. The SVM and the SNN were almost identical
in prediction accuracy and speed when presented with unknown data. Though both
methods are on equal footing on these metrics, the SNN is superior in terms of training
time. The SVM took 260 s to train, while the SNN only took 16 s. While these specific times
are highly dependent on the hardware used for training, the ratio between the training
times is independent of the hardware used for training. It took almost 18 times longer to
train the SVM. Due to this advantage of the SNN, it was used to classify film specimens.
In the following, the classification results of the SNN are shown.

The following figures show the classification results of the films. Each pixel identified
in the evaluated rectangle as monolayer is displayed in green, multilayer pixels are shown
in red and pixels identified as background are black.

Figure 23 shows the classification of a PE monolayer film. The SNN correctly identified
most of the material. Areas with low spectral intensity were classified as background and
are shown in black. A small number of pixels was wrongly classified as multilayer material.
This issue is caused by the close resemblance of PE monolayer material´s spectra with
PE/PP multilayer films, which can lead to misclassification.
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Figure 23. Classification of a PE monolayer film with the SNN.

Figure 24 illustrates the classification result of a PE/PET multilayer film. The specimen
in question had an elongated form and some overexposure occurred, as shown by the
bright sections in the image. The model had issues classifying the overexposed pixels,
which can be seen by the red and green pixels, misclassified as mono- and multilayer
film. Concerning classifying the specimen itself, the model was successful, shown by the
resulting classification in red and the small number of misclassified pixels in green.
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Figure 25 shows the classification result of a PE/PP multilayer packaging film. PE/PP
multilayer materials challenge the classification model due to the close resemblance of
the PE/PP multilayer spectrum and the corresponding monolayer spectra of PE and PP
monolayer materials. The result is a rather large proportion of misclassified pixels, as shown
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in the figure. Despite these unfavourable circumstances, the model managed to classify
most of the specimens correctly as multilayer material.
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Figure 25. Classification of PE/PP multilayer film with the SNN.

Figure 26 shows the unclassified specimen and the classification result of the multilayer
cheese packaging. The neural network had issues with the low intensity of the recording
in some areas, shown by the large proportion of pixels classified as background in black.
The neural network correctly classified most of the specimen´s pixels where the intensity
was sufficient for classification. Only a minuscule number of pixels were wrongly classified
as monolayer pixels, shown by the green pixels in the classified image.
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4.8. Application of FFT and Elimination of Frequencies

The application of FFT and subsequent elimination of interfering spectral abnormali-
ties yielded improved spectra. These spectra regained their specific form used to categorise
the respective materials. Figure 27 visualises the original spectrum before applying FFT
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and the following elimination of overlaying wave patterns. It can be seen that the spectrum
exhibits almost no discernible patterns which could be used for classification. The character-
istic peak at 1350 nm is insinuated but not pronounced. Contrarily, the characteristic peaks
at 1150 nm and 1410 nm, expressed by the reference spectrum, are absent. After eliminating
the overlying sine wave-like patterns, the fidelity of the spectrum to the reference spectrum
improves. Although the peak expressed by the reference spectrum at 1150 nm could not be
reproduced, the peak at 1350 nm becomes more pronounced and a second peak at 1410 nm
becomes apparent. Further, the sine wave begins to form in the original spectrum at around
1390 nm and becomes less pronounced.
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The deviation from the reference spectrum could be reduced by up to 30%. This way,
the information contained in PP spectra which were unuseable for the classification and
generation of a separation model, could be extracted.

Finding the correct place for the filter has been automated, significantly reducing the
workload for finding the correct filter placement.

4.9. Spectral Library of Film Materials

During the creation of the machine learning tests and the sorting trials, an abundance
of spectral information of film materials has been recorded. This spectral information
has been stored in MAT-files. MAT-files are binary files that store workspace variables.
This spectral library contains the spectral data of over 130 film specimens. These spectra
and the necessary MATLAB code library to visualise the spectral images and to extract
spectra from these files have been organised into a repository. This repository and the data
therein may be used to create proprietary film sorting models for further trials. This spectral
library expands the existing TrashNet-NIR library by adding film spectra. For access to the
repository, the corresponding author may be contacted.

5. Discussion

The sorting trials, the application of FFT and the machine learning approaches are
discussed in the following. Further, the limitations of using a chute sorter to separate film
specimens are evaluated and the possibility of incorporating the shown procedure in an
integrated film separation process is elaborated upon.
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5.1. Discussion of Sorting Trials

The sorting results indicate that the success rate of film sorting increases when reflect-
ing backgrounds are used. The detection rate with a traditional non-reflecting glass chute
did not reach 50%. With the introduction of a reflective chute, the detection rate reached
over 70%, with better sorting results in every material category. This result supports the
findings of previous experiments, which showed the improvement of film spectra using
measurements in transflectance [2].

The increase in the detection rate is due to better useable spectra when the measure-
ments are taken in transflectance mode. Furthermore, adding a reflective surface decreases
the amount of radiation lost to transmission and enhances the spectral data quality available
for classification and model creation.

The transflection mode was only evaluated with a chute sorter. However, in material
recovery facilities, belt sorters are usually used for their higher throughput and the contin-
uous speed of the particles. The specimen´s speed depends on its density and shape on
a chute sorter. While in this case the input material is film, it is not so much the particle
density as the particle shape that is a problem. Films, in particular, are difficult to sort, as
their low weight and large surface area make them prone to gliding, making their ballistics
hard to predict and their ejection difficult. Though the improvement in spectral quality
and sorting of films using the transflection mode could be shown, further evaluation of
transflectance measurements with a belt sorter would be advisable.

In addition, some material classes have been underrepresented due to a lack of avail-
able specimens owing to low occurrence in the waste stream.

Finally, the created monolayer fraction could be further sorted into the respective
monolayer materials, PE and PP. Out of this monomaterial feedstock, recyclate and subse-
quently test pieces for mechanical examinations could be produced. These tests, for exam-
ple, tensile tests or Charpy tests, could then be used to assess the mechanical properties of
the recyclate.

5.2. Discussion of the Application of Machine Learning Approaches

Implementing machine learning algorithms such as an SVM or a deep neural network
showed great promise in classifying monolayer and multilayer materials. The prediction
speed without a preliminary dimension reduction was insufficient to even theorise about
their feasibility in an industrial setting. After implementing a dimension reduction using
principal component analysis, the prediction speed increased substantially. In addition to
an increase in prediction speed, prediction accuracy also saw an incremental increase.

The correct classification of multilayer material without creating a specific model for
each material class can be achieved by using common patterns among multilayer material.
This is because machine learning methods can use these shared properties to detect multi-
layered particles which can subsequently be ejected. Hence, machine learning is suited to
be used for this purpose.

5.3. Discussion of the Application of FFT to Improve Spectra Overlain by Sine Wave Abnormalities

Because the implementation of reflective background materials only reduced the
occurrence of sine wave noise, this issue still needed attention. The tedious search for the
ideal cut-off point was replaced by a simple algorithm that finds the optimal position where
the reconstructed spectrum comes closest to a reference spectrum.

The main problem with this approach is that it depends on knowledge of the polymer
type of the material. Its purpose was to elaborate on the possibilities of using FFT to
improve film spectra. Further research is needed to ensure that the system can improve a
spectrum without prior knowledge of its polymer type by having generic reference spectra
of polymers to compare the improved spectra against. It is not necessarily the case that
the recreated spectrum needs to adhere to a spectrum of the same material class. Instead,
the goal of the FFT process is to reduce or eliminate overlaying sine wave spectral noise.
So, comparing the spectra with an adroitly chosen generic reference spectrum exhibiting
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no sine wave disturbances could be sufficient. The improved spectrum could then be used
for the actual classifying process. Further, only the application of a low pass filter has been
described in this article as it extraordinarily improved the spectral quality. Additional trials
may show that a supplementary implementation of a high pass filter may improve the
spectral quality further though this has not been evaluated.

5.4. Discussion of an Integrated Process

Combining all processes shown in this work may be used to classify film spectra. First,
the spectral image is taken in transflection and evaluated. The spectra used for classification
are then classified either as suitable or unsuitable. If a spectrum is unsuitable for further
classification due to sine wave noise caused by destructive interferences, the spectrum
is improved via the shown FFT. Based on the spectra, the material is then classified by
an SVM or neural net. Depending on the classification result, monolayer or multilayer
film, the material is subsequently handled accordingly. In the case of monolayer material,
further classification into the respective material groups via NIR is undertaken to create
a monomaterial input stream for supplementary recycling processes. Two options are
available for discussion if the material is classified as a multilayer. The material can either
be thermally utilised or used as a feedstock for chemical recycling. Figure 28 shows a
flowchart for this method.
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6. Conclusions

NIR sorting success depends on the availability of high-quality spectral information.
Traditional approaches struggle to provide spectra with high fidelity, as shown in the
sorting trials lacking reflective backgrounds. Introducing reflecting backgrounds enables
measurements in transflection, permitting the separation of monolayer and multilayer
materials. This approach yielded an increase in detection rate from 46% to 74% with an
aluminium reflector. Implementation of a copper reflector improved the detection rate
further to 78%. Apart from an increase in the average detection rate, the recognition
of every individual material increased with the introduction of reflective backgrounds.
These findings support existing results that by increasing the reflectivity of the background
material and the coinciding measurements in transflection, the sorting success of 2D
materials can be increased.

Existing findings regarding the application of FFT to improve the spectral quality
further were deepened. We proposed a method to apply FFT to spectra in order to eliminate
destructive interference which in turn reduces the (manual) time demand. The improved
spectra can then be used in machine learning methods to separate monolayer from mul-
tilayer materials. This adoption of machine learning methods was performed after the
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applied PCA showed characteristic differences between the spectra of mono- and multilayer
films, regardless of their material composition. These overarching differences were used
to train machine learning models. The trained machine learning models could correctly
categorise mono and multilayer materials without the need to include every combination
of multilayer materials in the training set. The computation times were low enough to con-
sider the applicability of these methods for inline classification. Here, additional research is
needed with more potent hardware.
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