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Abstract

Mining relations between chemicals and proteins from the biomedical literature is an

increasingly important task. The CHEMPROT track at BioCreative VI aims to promote the

development and evaluation of systems that can automatically detect the chemical–

protein relations in running text (PubMed abstracts). This work describes our

CHEMPROT track entry, which is an ensemble of three systems, including a support

vector machine, a convolutional neural network, and a recurrent neural network. Their

output is combined using majority voting or stacking for final predictions. Our

CHEMPROT system obtained 0.7266 in precision and 0.5735 in recall for an F-score of

0.6410 during the challenge, demonstrating the effectiveness of machine learning-based

approaches for automatic relation extraction from biomedical literature and achieving

the highest performance in the task during the 2017 challenge.

Database URL:http://www.biocreative.org/tasks/biocreative-vi/track-5/

Introduction

Recognizing the relations between chemicals and proteins is

crucial in various tasks such as precision medicine, drug dis-

covery and basic biomedical research. Biomedical researchers

study various associations between chemicals and proteins

and disseminate their findings in scientific publications.

Although manually extracting chemical–protein relations

from the biomedical literature is possible, it is costly and time-

consuming. Alternatively, text-mining methods could auto-

matically detect these relations effectively. The BioCreative VI

track 5 CHEMPROT task (http://www.biocreative.org/tasks/

biocreative-vi/track-5/) aims to promote the development and

evaluation of systems that can automatically detect and clas-

sify relations between chemical compounds/drug and proteins

(1) in running text (PubMed abstracts).

Figure 1 shows an example of chemical–protein annota-

tions in PMID 12244038. The relation encoded in the text

is represented in a standoff-style annotation as follows.

Note that, the organizers used ‘gene’ and ‘protein’ inter-

changeably in this task.
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The annotation T17 identifies a chemical, ‘Gemfibrozil’,

referred by the string between the character offsets 0 and

11. T18 identifies another chemical, ‘nitric-oxide’ and T68

identifies a protein, ‘nitric-oxide synthase’. Line 4 then rep-

resents the chemical–protein relation with type ‘downregu-

lator’ (CPR: 4) and the arguments T17 and T68. Line 5

represents a ‘substrate’ (CPR: 9) relation with arguments

T18 and T68. Note that T18 is enclosed in T68 in this ex-

ample which is allowable in the task.

The goal of the CHEMPROT task is to find the full rep-

resentation as in Lines 4 and 5. From the machine-learning

perspective, we formulate the CHEMPROT task as a mul-

ticlass classification problem where discriminative classi-

fiers are trained with a set of positive and negative relation

instances. Although various discriminative methods have

been studied, in the last decade, support vector machines

(SVMs) with a set of features or rich structural representa-

tions like trees or graphs have achieved the state-of-the-art

performance (2, 3).

Deep neural networks have recently achieved promising

results in the biomedical relation extraction task (4). When

compared with traditional machine-learning methods, they

may be able to overcome the feature sparsity and engineer-

ing problems. For example, various convolutional neural

networks (CNNs) were found to be well-suited for

protein–protein interaction and chemical-induced disease

extraction (5–7). Furthermore, recurrent neural networks

(RNNs) with multiple attention layers have been used to

extract drug–drug interactions from text (8, 9). For the

CHEMPROT task in BioCreative VI, we observed both

CNNs and RNNs were widely used (10–16).

In this article, we describe our approaches and results

for the CHEMPROT task at BioCreative VI. The contribu-

tion of our project is to propose an ensemble of three state-

of-the-art systems: SVMs, CNNs and RNNs. The outputs

of the three systems are combined using either majority

voting or stacking.

During the CHEMPROT 2017 shared task, the organiz-

ers released human-annotated training and development

sets, but not the test set. Based on the released dataset, first

we trained three individual systems using 80% of the combi-

nation of training and development datasets. Then we used

the remaining 20% for choosing the ensemble methods.

Experiments on the official test set show that we obtained

the best performance in F-score. After the challenge, we con-

ducted further analysis on different characteristics of posi-

tive pairs such as the sentence length and the entity distance.

Our observation indicated that pairs are more difficult to

classify in longer sentences and the RNN model can detect

distant pairs better than other individual models.

Materials and methods

Dataset

In the CHEMPROT track, the organizers developed a

chemical–protein relation corpus composed of 2432

PubMed abstracts, which were divided into a training set

(1020 abstracts), development set (612 abstracts) and test

set (800 abstracts) (1). Table 1 shows the dataset statistics.

In the dataset, both chemical and protein mentions were

pre-annotated, and there are five types of chemical–protein

relations, the biological properties upregulator (CPR: 3),

downregulator (CPR: 4), agonist (CPR: 5), antagonist (CPR:

6) and substrate (CPR: 9). Hence, given all chemical–protein

pairs as candidates, the goal of this task is to predict whether

the pair is related or not. Also, if the chemical–protein pair

is related, then we must predict the relation type.

Unlike other relation corpora (17, 18), cross-sentence

relations are rare in this corpus, appearing in <1% of the

training set. We also noticed that some chemical–protein

pairs have multiple labels, but they only appear less than

ten times in the training set. As a result, our system treated

the relation extraction task as a multiclass classification

problem, and to simplify the problem, our system only

focused on the chemical–protein relations occurring in a

single sentence.

Figure 1. Chemical–protein annotation example.

1 12244038 T17 CHEMICAL 0 11 Gemfibrozil

2 12244038 T18 CHEMICAL 62 74 nitric-oxide

3 12244038 T68 GENE-N 62 83 nitric-oxide

synthase

4 12244038 CPR: 4 Arg1: T17 Arg2: T68

5 12244038 CPR: 9 Arg1: T18 Arg2: T68

Table 1. Statistics of the CHEMPROT dataset

Training Development Test

Document 1020 612 800

Chemical 13017 8004 10810

Protein 12752 7567 10019

Positive relation 4157 2416 3458

CPR: 3 768 550 665

CPR: 4 2254 1094 1661

CPR: 5 173 116 195

CPR: 6 235 199 293

CPR: 9 727 457 644

Positive relation in one sentence 4122 2412 3444
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Methods

During the shared task, we hypothesized that an ensemble

system that combines results of different methods could

lead to better predictive performance than using a single

method (19, 20). Hence, we addressed the CHEMPROT

task using two ensemble systems that combined the results

from three individual models, similar to our previous

BioCreative submissions (21). An overview of the system

architecture is shown in Figure 2. The individual systems

included are an SVM, a CNN and an RNN (2, 22, 23). We

will describe these models together with the ensemble algo-

rithms in the following subsections.

Feature rich SVM

An SVM is a discriminative classifier formally defined by a

separating hyperplane that uses hinge loss (2). Given a set

of training examples, linear SVMs find the hyperplane

that separates positives and negatives with a maximum

margin. If the two sets are not linearly separable, the SVM

uses the kernel trick to implicitly map inputs into high-

dimensional feature spaces where the examples might be

separable. In our SVM system, the following features are

exploited.

• Words surrounding the chemical and protein mentions

of interest: These features include the lemma form of a

word, its part-of-speech tag, and chunk types. We used

the Genia Tagger to extract the features (24). We set the

window size to five.

• Bag-of-words between the chemical and protein men-

tions of interest in a sentence: These features include the

lemma form of a word and its relative position to the tar-

get pair of entities (before, middle and after).

• The distance (the number of words) between two entity

mentions in a sentence.

• The existence of a keyword between two mentions often

implies a specific type of a relation, such as ‘inhibit’ for

relation ‘CPR: 4’ and ‘agonism’ for relation ‘CPR: 5’.

Therefore, we manually built the keyword list from the

training set and used them as features as well.

• Shortest-path features include vertex walks (v-walks)

and edge walks (e-walks) between the target entities in

a dependency parse graph (25). An e-walk includes

constituents with each word and its two dependencies.

Each v-walk’s constituents include two words and the

connecting dependency relation. For example, the short-

est path of <Gemfibrozil, nitric-oxide synthase>

extracted from the sentence ‘GemfibrozilCHEMICAL,

a lipid-lowering drug, inhibits the induction of

nitric-oxide synthasePROTEIN in human astrocytes.’ is

‘Gemfibrozil nsubj inhibits! dobj! induction!

nmod: of ! nitric-oxide synthase’. Thus the e-walks are

‘nsubj—inhibits—dobj’ and ‘dobj – induction – nmod:

of’. The v-walks are ‘Gemfibrozil – nsubj – inhibits’,

‘inhibits – dobj – induction’ and ‘induction – nmod: of –

nitrix-oxide synthase’.

We trained the SVM system using a linear kernel (http://sci

kit-learn.org/). In our submissions, we set the penalty pa-

rameter C to 1 and the tolerance for stopping criteria to

1e-3. We also balanced the feature instances by adjusting

their weights inversely proportional to class frequencies in

the training set and used the one-vs-rest multiclass

strategy.

Convolutional neural networks

We followed the work of Peng and Lu (5) to build our

CNN model. Instead of using multichannels, we applied

one channel but used two input layers (Figure 3). One is

the sentence sequence and the other is the shortest path be-

tween the pair of entity mentions in the target relation. For

example, we use two inputs of the above example in the

CNN: the original sentence ‘Gemfibrozil, a lipid-lowering

drug, inhibits the induction of nitric-oxide synthase in hu-

man astrocytes’ and the shortest path ‘Gemfibrozil inhibits

induction nitric-oxide synthase’.

In our model, we represent each word (in either a sen-

tence or a shortest path) by concatenating embeddings of

its words, part-of-speech tags, chunks, named entities,

dependencies and positions relative to the two mentions of

Figure 2. Architecture of the systems for the CHEMPROT task.
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interest. We learned the pre-trained word embedding vec-

tors on PubMed articles using the gensim word2vec imple-

mentation with the dimensionality set to 300 (26). We

obtained the part-of-speech tags, chunks and named enti-

ties from the Genia Tagger (24).

We extracted the dependency information using the

Bllip parser with the biomedical model and the Stanford

dependencies converter (27–29). For each word, we used

the dependency label of the “incoming” edge of that word

in the dependency graph. We encoded the dependency

features using a one-hot scheme, and their dimensionality

is 101.

For each input layer, we applied convolution to inputs

to get local features with window sizes of 3 and 5. For

each convolution, we subsequently applied the rectified lin-

ear unit activation function and performed 1–max pooling

to get the most useful global feature from the entire sen-

tence. In the fully connected layer, we concatenated the

global features from both the sentence and the shortest

path and then applied a fully connected layer to the feature

vectors and a final softmax to classify the six classes (five

positive þ one negative). We also used the dropout of 0.5

to prevent overfitting.

We trained all parameters using the Adam algorithm to

optimize the cross-entropy loss on a mini-batch with a

batch size of 32 (30). We updated the embeddings (word,

part-of-speech, chunk, position, dependency and distance)

during training.

Recurrent neural networks

For our RNN model, we built on the work of Kavuluru

et al. (9). Specifically, we trained a bi-directional long-

short term-memory (Bi-LSTM) recurrent model (Figure 4),

where the input to the model is a sentence (hence the corre-

sponding word embeddings).

Like our CNN model, we concatenated the word em-

bedding with the part-of-speech, IOB-chunk tag and two

position embeddings. The two position embeddings repre-

sent the relative location of the word with respect to the

two entity mentions. It is important to note that we

updated the embeddings (word, part-of-speech, chunk and

position) during training.

After passing a sentence through our Bi-LSTM model,

we obtained two hidden representations for each word—

one representing the forward context and the other

representing the backward. We concatenated the two rep-

resentations to obtain the final representation of each

word. To obtain a representation of the sentence, we used

max-over-time (1–max) pooling across hidden state word

representations.

Next, we passed the max-pooled sentence representa-

tion to a fully connected output layer. Unlike our CNN,

we only applied a linear transformation without a softmax

operation. Furthermore, the output layer only had five

classes, where we completely discarded the negative class.

Specifically, we used the pairwise ranking loss proposed

by (31). Intuitively, the negative class would be noisy

Figure 3. Overview of the CNN model.
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compared with the five positive classes. Rather than learn-

ing to predict the negative class explicitly, we forced the

five outputs to be negative. At prediction time, if all posi-

tive class scores were negative, we predicted the negative

class. Otherwise, we predicted the class with the largest

positive score.

Before training our model, we preprocessed the dataset

by replacing each word in the corpus that occurs less than

five times with an unknown (UNK) token. Also, given each

instance was comprised of a sentence and two entity men-

tions, we replaced each entity with the tokens CHEMICAL

or PROTEIN dependent on what the specific mention

represented.

Finally, we trained our RNN model using the Adam op-

timizer with a mini-batch size of 32. For the Adam opti-

mizer, we set the learning rate to 0.001, beta1 to 0.9 and

beta2 to 0.999. In addition, we applied recurrent dropout

of 0.2 in the Bi-LSTM model and standard dropout of 0.2

between the max-pooling and output layers. We used pre-

trained word vectors (6B Token GLOVE (https://nlp.stan

ford.edu/projects/glove/)) with a dimensionality of 300.

Likewise, the POS, position, and chunk vectors were ran-

domly initialized, and each had a dimensionality of 32. We

should note that both the POS and chunk tags were

extracted using NLTK (http://www.nltk.org/). Last, we set

the hidden state size of the LSTM models to 2048.

A majority voting system

In our first ensemble system, we combined the results of

the three models using majority voting. That is, we selected

the relations that were predicted by >2 models. If we could

not get a majority vote on a relation instance (e.g. SVM

predicted CPR: 3, CNN CPR: 4 and RNN CPR: 5), we

predicted the ‘negative’ class for this instance.

A stacking system

In our second system, we used the stacking method to com-

bine the predictions of each model. Stacking works by

training multiple base models (SVM, CNN and RNN),

then trains a meta-model using the base model predictions

as features.

For our meta-model, we trained a random forest (RF)

classifier (http://scikit-learn.org). First, to train the RF, we

computed the scores for each class from all three models

on the development set. In total, we had the following 17

features: 6 from the SVM, 6 from CNN and 5 from the

Figure 4. Overview of the RNN model.
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RNN (because we used a ranking loss). For the CNN

scores, we used the unnormalized scores for each class be-

fore passing them through the softmax function. Finally,

we trained the RF on the development set using 50000

trees and the gini splitting criteria.

Results

We prepared our submissions with an ensemble of three

models. The training and development sets (a total of 1632

articles) were made available to participating teams during

their system development and validation phase. As shown

in Figure 5, we built every SVM, CNN and RNN model

using 60% total data, built the ensemble system using the

20% and tested the systems using the remaining 20%.

Table 2 shows the cross-validation performance of our sys-

tems, where ‘P’, ‘R’ and ‘F’ denotes precision, recall and F1

score, respectively.

For our final submission, we built every SVM, CNN

and RNN model using 80% total data in the training and

development sets and built the ensemble system using the

remaining 20% of the total data. To reduce variability, we

performed 5-fold cross-validation using different partitions

of the data. As a result, we obtained five SVMs, five CNNs

and five RNNs in total. Table 2 shows the cross-validation

performance of our systems, where ‘P’, ‘R’ and ‘F’ denotes

precision, recall and F1 score, respectively. Table 3 shows

the overall performance of our systems on the official test

set, where ‘TP’, ‘FP’ and ‘FN’ denotes true positive, false

positive and false negative, respectively.

During the CHEMPROT task, we submitted five runs

as our final submissions (bolded in Table 3). For each

method we trained five models using different training/test

splits (based on 5-fold CV). Each of our final submissions

is based on the best method for each of the folds. For ex-

ample, Submissions 1 and 2 use a majority voting system.

These runs were chosen based on their respective folds per-

formance on the validation dataset. Thus, voting was the

20% 20% 20% 20% 20%

Training + development sets (1632 ar�cles)

Official Test

Cross-valida�on
during development

Train individual models Train RF Valida�on

20% 20% 20% 20% 20%Final results submission

Train individual models Train RF

Test set (800 ar�cles)

Figure 5. Data partition of 5-fold cross-validation and final submission.

Table 2. Results for our individual and ensemble systems

with training and development sets

System P R F

SVM 0.6291 0.4779 0.5430

CNN 0.6406 0.5713 0.6023

RNN 0.6080 0.6139 0.6094

Majority voting 0.7408 0.5517 0.6319

Stacking 0.7554 0.5524 0.6378

Macro-average results are reported using 5-fold cross validation.

Table 3. Results for our ensemble systems on test set

System Fold TP FP FN P R F

SVM 1 1646 875 1812 0.6529 0.4760 0.5506

2 1654 1001 1804 0.6230 0.4783 0.5411

3 1668 932 1790 0.6415 0.4824 0.5507

4 1679 911 1779 0.6483 0.4855 0.5552

5 1646 963 1812 0.6309 0.4760 0.5426

CNN 1 2040 1280 1418 0.6145 0.5899 0.6019

2 1996 1075 1462 0.6500 0.5772 0.6114

3 2031 1254 1427 0.6183 0.5873 0.6024

4 1961 1073 1497 0.6463 0.5671 0.6041

5 1970 1107 1488 0.6402 0.5697 0.6029

RNN 1 2085 1333 1373 0.6100 0.6029 0.6065

2 2255 1601 1203 0.5848 0.6521 0.6166

3 2112 1390 1346 0.6031 0.6108 0.6069

4 2097 1316 1361 0.6144 0.6064 0.6104

5 2322 1845 1136 0.5572 0.6715 0.6090

Majority voting 1 1966 723 1492 0.7311 0.5685 0.6397

2 1983 746 1475 0.7266 0.5735 0.6410

3 1962 715 1496 0.7329 0.5674 0.6396

4 1934 697 1524 0.7351 0.5593 0.6352

5 2020 784 1438 0.7204 0.5842 0.6452

Stacking 1 1890 641 1568 0.7467 0.5466 0.6312

2 1756 530 1702 0.7682 0.5078 0.6114

3 1912 659 1546 0.7437 0.5529 0.6343

4 1903 710 1555 0.7283 0.5503 0.6269

5 1861 645 1597 0.7426 0.5382 0.6241

Submitted runs are reported in bold text.
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best method on folds 1 and 2 and stacking was best for

Folds 3–5 on each fold test split. Unfortunately, we found

that stacking overfit on the training dataset, and voting

performed best overall. Therefore, our best system was not

submitted in the competition. Based on our submitted

models, our CHEMPROT system obtained 0.7266 in pre-

cision and 0.5735 in recall for an F-score of 0.6410,

achieving the highest performance in the task during the

2017 challenge. Our best method in Table 3 (Majority vot-

ing on Fold 5) achieved the overall best F-score of 0.6452.

Discussion

In the following subsections, we perform error analysis for

each of our methods: SVM, CNN, RNN, voting and stack-

ing. To easily compare each method, we only focus on

models trained with the same dataset split, Fold 1. Overall,

we analyze how different the predictions are among the

methods. Detailed predictions are provided in the supple-

mentary document. Next, we look at how the length of

each sentence and the distance between entity pairs affects

each model’s performance.

Analysis of difficult pairs

In this experiment, we aim to determine the difficulty of

classifying chemical–protein pairs. We partitioned the pos-

itive chemical–protein relations into four groups based on

the number of approaches (SVM, CNN and RNN)

that correctly predict it. For example, if all the approaches

correctly predicted a given relation, then the number of

approaches that could correctly classify the relation is

three. We hypothesize that the fewer number of

approaches that can classify a pair correctly, the more diffi-

cult the pair. Figure 6 shows the distribution of pairs in the

four groups. Among 3458 positive chemical–protein rela-

tions, 1792 pairs were detected by all three models (called

easy pairs), whereas 492 pairs were not detected by any of

the models (called difficult pairs). Here, we show that

some pairs were inherently difficult to classify (across all

approaches). In Table 4, we count the number of times

each method correctly predicts relations in each group.

Among the 481 relations that could be classified correctly

by only one of the three basic methods (SVM, CNN and

RNN), the SVM correctly predicted 30 relations (CNN:

120, RNN: 331) in that group. If no models could predict

a pair, the majority voting method could not predict it ei-

ther (Table 4, row 0, column Majority voting). If only one

model could predict a pair, the majority voting method still

cannot predict it, because it needs one pair being predicted

by at least two models (Table 4, row 1, column Majority

voting). On the other hand, we observed that the stacking

method could select true positive pairs even if just one or

even when none of the models could predict it (Table 4,

row 0 and 1, column Stacking).

Relation between sentence length, inter entity

distance and pair difficulty

Figure 7 shows the characteristics of sentence difficulty in

terms of the average length of the sentence and the average

distance between entities. We observed that pairs were

more difficult to classify in longer sentences. On the other

hand, the distance between entities in a sentence seemed to

not have much impact on performance.

Figures 8 and 9 show the relation between sentence

length, inter entity distance and true positive instances pre-

dicted by individual models. Both figures suggest that the

Figure 6. The distribution of pairs according to the number of

approaches that can correctly classify a given pair.

Table 4. The distribution of pairs for each model according to the

number of approaches that can correctly classify a given pair

No. of

approaches

SVM CNN RNN Majority

voting

Stacking

0 0 0 0 0 3

1 30 120 331 0 91

2 187 565 634 602 534

3 1792 1792 1792 1790 1770

Figure 7. Average sentence length and entity distance in words by the

number of approaches that can correctly classify a given pair.
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RNN model can detect distant pairs better than other mod-

els. Intuitively, CNN models learn to extract informative

n-grams from text, while RNNs better model the sequen-

tial nature of each sentence.

Conclusion

In this article, we described our submission in the

BioCreative VI CHEMPROT task. The results demonstrate

that our ensemble system can effectively detect the chemical–

protein relations from biomedical literature. In addition, we

analyzed the results of both individual and ensemble systems

on the test set and demonstrate how well each model per-

forms across various characteristics (sentence length and dis-

tance between entities) of positive chemical–protein pairs.

In the future, we would like to investigate if an external

knowledge base can be used to improve our model, e.g. via

attributes of chemicals and proteins from PubChem and

the Protein Ontology. We are also interested in extending

the method to chemical–protein relations that manifest be-

yond the sentence boundaries. Finally, we would like to

test and generalize this approach to other biomedical rela-

tions such as protein–protein interactions (5).
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