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Abstract: Unmanned aerial vehicles (UAVs) are frequently adopted in disaster management. The
vision they provide is extremely valuable for rescuers. However, they face severe problems in
their stability in actual disaster scenarios, as the images captured by the on-board sensors cannot
consistently give enough information for deep learning models to make accurate decisions. In many
cases, UAVs have to capture multiple images from different views to output final recognition results.
In this paper, we desire to formulate the fly path task for UAVs, considering the actual perception
needs. A convolutional neural networks (CNNs) model is proposed to detect and localize the objects,
such as the buildings, as well as an optimization method to find the optimal flying path to accurately
recognize as many objects as possible with a minimum time cost. The simulation results demonstrate
that the proposed method is effective and efficient, and can address the actual scene understanding
and path planning problems for UAVs in the real world well.

Keywords: unmanned aerial vehicle (UAV); path planning; scene understanding

1. Introduction

The unmanned aerial vehicle (UAV) is often used in disaster management. For exam-
ple, after a disaster, people can use the UAV to detect the disaster area to find the damaged
buildings and residents; and in the disaster recovery stage, the UAV can be used to assess
the severity of the disaster, the feasibility, and cost of the reconstruction. They are utilized
to assist people in disaster reconstruction planning, as shown in Figure 1. However, a
serious problem with UAV is that their battery is limited and cannot be used for long-term
or large-scale survey tasks. Therefore, how to develop a feasible flight path for efficiently
and accurately target detection has become a very important issue.

This task mainly includes two aspects, namely path planning [1] and scene under-
standing [2]. People have done a lot of research on both sides and got some results; however,
some problems still exist. For example, most of the previous methods consider this task
as two totally-separated problems. Therefore, they may not be well applied to real-world
detection tasks in disaster management. In fact, for path planning, the result of scenario
understanding is very important feedback. In one single shot, some of the buildings or
objects in the picture are not easily discernible and it tends to cause the failure of the scene
understanding model. The unclear zone of this area can be used as the key consideration
area for the next shooting, based on that, planning the flight path for the UAVs.

Deep learning methods for object detection have been applied in many areas including
automatic driving, medical application, urban research, and so on [3–5]. These kinds of
technology can also be utilized on scenes understanding for path planning. For the flight
planning of drones, previous methods mainly considered coverage and total flight time.
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In our approach, we also need to consider the confidence of the recognition. This is to
ensure that the deep learning network [6] can accurately and reliably identify buildings,
pedestrians, and other objects in the video data collected by the drone. In the optimization
process, the traditional method mainly uses a heuristic algorithm based on the traveling
salesman method. This algorithm optimizes the performance of the entire model by
minimizing the cost of reaching the current state and the cost of going from the current
state to the next state. In our approach, we also chose a similar method to optimize the
path. Since we added the elements of confidence, the overall optimization algorithm is
more complex.

In this paper, we present an UAV path planning approach for target detection and
location tasks using depth models. We want to construct a real-time route planning system
by detecting the crucial information. With the information detected, our model can analyze
the information density of each area and thus develop an optimal search route. Compared
to previous works, our approach achieves more accurate image processing and efficient
path planning. The main contributions of our work include:

1. A drone planning algorithm. In this algorithm, based on the traditional heuristic
method, we introduce information density. The confidence of object detection can be
extracted by a pre-trained detection model and optimized during route planning;

2. By using an object recognition deep learning model. For the video frames captured by
drones, our method can simultaneously detect and locate pre-selected objects, such as
buildings, pedestrians, and so forth. All the detected information will contribute to
the route planning;

3. A drone image dataset. The dataset was collected from real drones. All buildings in
each video frame were manually annotated and the exact location mask was marked.
It is a first-released dataset for UAV route planning.

The rest of the paper is organized as follows. Section 2 introduces the existing research
in related area. Section 3 presents some notations and the problem definition. It gives an
overview of the proposed system. In Section 4, we present a scene understanding method
and propose the core algorithm of path planning. The experimental evaluation is shown in
Section 5. Finally, discussions and conclusions are drawn in Sections 6 and 7.

Figure 1. Path Planning for Scene Understanding with UAVs.
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2. Related Works
2.1. Scene Understanding for UAVs

In the early stage of UAVs planning, the performance is limited by the detection
accuracy [7–9]. Minaeian et al. propose a novel target detection and location scheme, which
is based on vision [10] and treats each UAV as a different function of the cooperation team.
The authors built a team of UAV and multiple unmanned ground vehicles (UGVs) that track
and control the population in the border field. An algorithm, which can detect the custom
motion, is used in the crowd detection by a mobile camera installed on a drone. Since
a single drone owns low analysis ability but a wide range for detection, UGV has better
analysis and higher accuracy. Thus a separate body detector is used and the landmark
is moved to locate an unknown independent movement at each point in time. The UAV
positioning algorithm proposed in this paper uses a perspective transformation to translate
the crowd position in an image into a position in the real world. Moreover, a thumb
positioning method determined by UGV is introduced, which makes the prediction for the
geographical location in the detection.

The machine learning method seems to be another way to solve the detection problem [11].
Liu et al. propose a framework [12] combining trajectory detection based on support vector
machine and tracking tracker to realize direction estimation. It can realize tracking with low
computational cost and real-time. In addition, in their system framework, a simple linear
iterative clustering super-pixel segmentation algorithm is adopted to ensure the accuracy
of scene segmentation. The visual detection of important objects or people is realized by a
single-shot multi-box detector algorithm.

How to recognize the target in a spatial dimension is important [13–16]. Combined
with the low-quality attitude-heading reference system (AHRS) on UAVs, Zhang et al. [17]
propose a new vision-based positioning method to determine the three-dimensional po-
sition of the target. The usual positioning method must rely on many requirements (i.e.,
geo-referenced terrain database, precise attitude sensor). If the drone system does not
meet these requirements, the geographic location of the target cannot be achieved. On the
contrary, the location method proposed in this paper only uses computer vision technol-
ogy to accurately estimate the target height and yaw angle measurement deviation. The
purpose of this method is to eliminate requirements in current systems while maintaining
high target positioning accuracy. Zhu et al. present a superior estimation method for
urban traffic density [18], which can efficiently deal with ultra-high resolution video shots
obtained from UAVs. Driving drones during peak hours, they first obtain the traffic video
in ultra-high resolution for nearly one hour at five crowded areas in big cities. Then, they
randomly sample pixel patches and annotate vehicles to form the data set, which can also
be used in other research. In the innovative method of urban traffic estimation, they use a
deep neural network to detect vehicles and obtain information, such as location, identifica-
tion of the vehicle. In addition, they claim that there is other information included in an
ultra-high resolution video, making vehicle detection and recognition more accurate than
low-resolution content. Fan et al. [19] propose a plant detection method using UAVs. This
method consists of three phases. In the first stage, some candidate tobacco plant areas are
extracted from the drone image by morphological operation and watershed segmentation.
There are tobacco plants or non-tobacco plants in each candidate area. In the second phase,
a deep convolutional neural network is established and trained to classify candidate areas
as tobacco growing areas or non-tobacco plant areas. In the third stage, post-treatment is
carried out to further remove non-tobacco plant areas.

Most of the previous works are not designed for the UAVs nor optimized for detection
and localization tasks during flying on the air. It is important to realize the real-time
understanding of frames’ contextual information [20,21].

2.2. Path Planning of UAVs

When we can well understand the scenes, the next stage is to plan an optimal route.
Some works [22–24] introduce a solution named collaborative path planning, which utilizes
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UAV and UGV to track moving targets in urban environments. The most significant
advantage of these kinds of algorithms is that it considers the visual occlusion caused by
obstacles in the environment. The algorithm models the target state using a dynamically
occupied grid, which is refreshed according to the data obtained from the Bayesian filter.
Hence, the current behavior and its prediction can be analyzed, based upon which, a
single-vehicle path planning method is presented. The method can maximize the sum of
detection probabilities and has been applied to various scenarios due to its portability. In
this scenario, the auction-based decentralized programming algorithm is designed to plan
a limited forward-looking path, maximizing the combined probability of detection and
the vehicle. Wen et al. [25] propose a new way to obtain a feasible and safe path. First,
based on the intuitionistic fuzzy set (IFS), static threats (STs) are modeled to represent the
uncertainty in STs. Based on the fast detection of the random tree (RRT), the reachability set
(RS) is supposed to predict the value of threats. Secondly, the main purpose that putting a
sub-target selector into the planning scheme is to reduce planning costs and improve the
efficiency of searching. Furthermore, a back horizon (RH) is introduced, aiming to deal with
online path planning in more complex environments. Therefore, local planners are designed
based on the dynamic domain fast detection random tree (DDRRT). And RRT is adopted
to achieve the optimization of the path in the planning program. Yin et al. [26] introduce
a scheme for multi-objective path planning (mopp), which searches the appropriate path
in complex urban scenarios, taking into account the level of safety within the proposed
scheme to ensure security of drones. In particular, the security index maps (SIM) are first
utilized to detect various obstacles in geographic maps. Thus, the offline search and online
search method based on static sim cards are proposed. Offline search is supposed to detect
static obstacles, thereby reducing the driving time; however, online search is supposed to
deal with other dynamic obstacles. Using the monitoring sensors is another possible way
for efficient route planing [27]. Just et al. [28] solve the problem of optimizing the UAV
path by considering the sensor nodes to reduce the flight time. This method can greatly
improve the efficiency of UAVs planning and maximize the lifetime of sensor nodes.

An evaluation metric is necessary to compare the performance among different meth-
ods [29–31]. One most utilized way is making statistical comparisons between existing
UAV path planning methods to determine the best benchmark function [32–34]. Using the
approximate optimization technique determined in the first step, namely the multi-verse
optimizer (mvo), they formulate the path planning problem of determining the minimum
deviation trajectory of the minimum collision of the drone from the mathematical point
of view. They also compare with other existing approaches to verify the proposed path
planning method. In addition, Yang et al. [35] propose a new approach to individual
evaluation and evolution methods. By using this new idea, people can take advantage
of high-quality way-points. In the evaluation phase, a new set of evaluation functions
is derived from existing targets and constraint functions to evaluate them. Basically, the
derivation can only be made if the original function is separable on the way-point. To
further improve the performance of the proposed planner, the way-points are encoded
in a rotating coordinate system with external constraints. In order to test the ability of
new planners in planning barrier-free paths, five scenarios with increasing barriers were
constructed. Planners use three existing planners and four alternatives for comparison,
which can prove that they can be executed efficiently and effectively.

Most previous works do not consider the prediction confidence when choosing the fu-
ture path. Therefore, their prediction performance is not so satisfactory during actual tasks.

3. Path Planning

With the development of robotics, the path planning problem of UAVs in a 3D envi-
ronment is a hot spot. It is one of the basic links in the autonomous navigation of drones
and refers to the environment in which obstacles are used according to certain evaluation
criteria. The optimal path should be established when facing obstacles. Generally, path
planning can be summarized as follows: modeling the environment, executing the path
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search and building the optimal path. Modeling the environment means abstracting the
actual spatial environment information mathematical model. By doing this, the 3D struc-
ture information can be processed by computer algorithms. In other words, environmental
modeling is path planning, as shown in Figure 2. Consider the 3D environment as an
xyz coordinate system. A drone starts from the initial point o and reach the first sub-area
S0. Each drone has its sensor coverage, which represents the capability of the camera. It
decides the time needed to fully scan the sub-area. After scanning the S0, the drone will fly
to the next sub-area S1 and continue to do the same operation. The path planning is to find
the most efficient path to finish the scanning of the whole area.

o x

y

z

S0
S1 S2 S3 S4

Sensor Coverage

Figure 2. Path Planning for UAVs.

Actually, the traditional grid method plays the most basic role among the various
modeling methods [36,37]. When modeling the environment, the scenarios are transformed
into the traditional grids by which information is beneficial to be preserved in a computer. In
addition, the adjacency relationship among the grids is pretty intuitive. It is easy to write a
program implementation in practical applications and we can obtain better planning results
when combined with the planning algorithm. In the field of robot path planning [38,39], the
grid method has been widely regarded by researchers as a typical environment modeling
method. With the continuous complexity of environmental information and the continuous
improvement of robot autonomy, the grid method is still being used. Compared with the
two-dimensional environment, the traditional grid method is used to directly model the
environment in the three-dimensional environment. In order to improve the accuracy of
modeling, the grid has to be designed into a small size, which leads to a large increase in
the number of grids, resulting in the need for an efficient planning algorithm.

This paper mainly considers three kinds of planning indicators, namely the total
information density of sub-areas R, the coverage time of sub-areas TC, and the time of
transition TV . Suppose a drone or unmanned boat i (0 ≤ i ≤ N) is assigned a sub-areas
collection Ki = {kij}

Mi
j=1 (Mi is the number of the assigned sub-areas for drone i), and the

total information density of the j-th sub-area is:

Rkij
= ∑

o∈Objects
Con f idence(o), (1)

where the Con f idence(o) is the confidence of a detected object by our detection method
(will be introduced in Section 4). The sub-area coverage time represents the ideal time
required for the drone or unmanned boat to completely cover the sub-area:

TC,kij
=

S′

C
, (2)

where C represents the sensor coverage of the drone (this is the area that the drone can scan
per unit time), and S′ represents the subarea area.
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The transition time represents the ideal flight required from the initial point P0 to the
center of the j-th sub-area (j = 1), or from the center of the j− 1 sub-area to the center of the
j-th sub-area (j > 1):

TV,kj
=


||P0 − uki(j−1)

||
V

, j = 1

||uki(j−1)
− ukij

||
V

, j > 1.

(3)

Among them, V represents the speed of movement of the drone and u is the center of
a sub-area. It depends on the machine and the environment. We consider the speed as V
under an ideal condition for all the drones.

Therefore, the expected observed benefit of a drone i for a sub-area k j is:

EPi
kij

=
Rkij

TC,kij
+ TV,kij

. (4)

According to the above formulas, the Ki sub-areas are iteratively sorted to determine
the optimal observation order. It is generally expected that the larger the observed benefit,
the higher the information density of the area or the less the ideal observation time, the
higher the priority.

After determining the optimal observation order for each sub-area, we get a new
sub-areas collection K′i = {k′ij}

Mi
j=1 with sorting and the expected observed benefits of the

drone or unmanned boat i are available:

EAi =
Mi

∑
j=1

EPi
k′ij

. (5)

In addition, define the ideal observation time for each drone:

Ti =
Mi

∑
j=1

(TC,k′ij
+ TV,k′ij

). (6)

The total allocation indicator for the drone is:

EA = α
N

∑
i=1

EAi + β
N

∑
i,i′=1
|Ti − Ti′ |. (7)

Among them, the first part represents the total expected observation gain (a higher
value means better information efficiency), and the second part is used to balance the task
execution cost among the various observation forces such as drones (we want each drone to
be distributed tasks evenly). α and β are weight coefficients. The larger the EA, the higher
the regional observation efficiency, so the optimal allocation objective is as follows:

max(EA). (8)

After the sub-areas are allocated, each drone or unmanned boat adopts a parallel reced-
ing horizon control (RHC) route planning method aiming at maximizing the observation
gain, so that the planned route meets the task time constraint. Assuming that the center
position of the sub-area to which the drone is assigned is Si = {sj}

Mi
j=1, the route planning

procedure based on the parallel RHC is as follows.
First, each route segment is initialized, including the shortest route segment φ0 (time t0)

from the starting point P0 to the center of the sub-area s1, and the coverage observation route
φj = {sj} of each sub-area in Si (time tj = 1), the shortest transition route φj→j+1(j < Mi)
(time tj→j+1) in each sub-area.



Sensors 2022, 22, 891 7 of 15

Then, if the sum of the time of each of the above-mentioned route segments is less
than the task time T, then a certain route segment needs to be selected and a new way-point
is added. The specific implementation strategy is as follows: adopt the RHC method to
pre-plan a new way-point for each route segment φj, and select from it. The destination
point Pj∗ of the largest single observation gain is added to the internal route segment φj∗ of
the corresponding sub-area sj∗ , and the time tj∗ = tj∗ + 1 is updated; if j∗ < Mi, the slave is
updated the point Pj∗ is the shortest transition route φj∗→j∗+1 of the center of the sub-area
sj∗+1, and the flight time. Repeat the above steps to gradually expand each covered route
segment until the sum of the time periods is equal to the mission time T.

Finally, each route segment is sequentially connected, that is, {φ0, φ1, φ1→2, · · · ,
φMi−1→Mi , φMi}, as a planning route.

4. Perception Method
4.1. Deep Learning Model

After obtaining frames of captured video, the system can work on the scene under-
standing. Compared to other perception methods, which manually design the feature map
for the deep model, we directly map the input frames to object categories and localization.
Our model is based on Mask-RCNN [40] (the structure is shown in Figure 3).

Input

Feature Maps

Backbone

softmax

bbox reg

RPN

Proposals

Roi Pooling
FC layers Regression

Classification

bbox reg

softmax

Head

Mask

FCN

Figure 3. Structure of the adopted Mask-RCNN model.

The ResNet-101 [41] is adopted as the backbone module for the network. We also
tried with other network structures (e.g., VGG-16), but the results were no better than
ResNet-101. As shown in Figure 3, an input image is first processed by the backbone to
generate feature maps. We remove the last pooling layers (pool5) of the original design
of ResNet.

The next part is a region proposal network (RPN) [42] for the analysis of the feature
maps and proposing candidate building regions (bounding boxes). It estimates the proba-
bility of building/non-building on a fixed set of anchors on each position of the feature
maps. Meanwhile, the position and size of each anchor are fine-tuned by bounding box
regression (bbox reg). After investigating the sizes of the bounding-boxes for buildings,
we use three anchor scales (64, 128, and 256) and three anchor ratios (1:2, 1:1, and 2:1) in
this study.

The feature maps cropped by the building proposals (256 in our paper) are sent to
a region of interest (Roi) pooling layer which will turn all feature maps into a fixed size
(7 × 7 in this study). These feature maps are fed into a full-convolutional (FC) layer for
further modification. After that, two different FC layers are set to predict the bounding
box regression for further fine-tuning and the confidence scores for each building proposal,
respectively. Nonmaximum suppression (NMS) [42] is applied to the bounding boxes
to decide the final predictions. The intersection-over-union (IoU) thresholds for NMS
are 0.7 and 0.1 for training and testing, respectively. Another branch (marked by red) is
attached with an FCN [43] model for the semantic segmentation of building masks.
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In order to realize the model defined above, a multi-task loss is adopted as the
loss function.

L = λ1Lcategory + λ2Lregression + λ3Lmask, (9)

where Lregression and Lmask are cost functions for two different objectives (localizations and
masking), and λ1, λ2 and λ3 can decide their importance for the whole cost value.

Lcategory represents the loss value to judge the selected data samples as correct category
categories, that is, whether or not there is the specific kind of category in the video frames.
Lcategory is indeed a softmax cost function.

There are n input images X = {x1, x2, . . . , xn} in the deep model, and some different
labels for them xi, which are called the ground-truth Y = {yx1 , yx2 , . . . , yxn} and localiza-
tions R = {rx1 , rx2 , . . . , rxn}. The labels can be valued from y ∈ {y∗1 , y∗2 , . . . , y∗m}. r is the
real localizations value.

Lcategory = − 1
n

[
n

∑
i=1

m

∑
j=1

1{yxi = y∗j } log
eh(j)

category(xi)

∑m
φ=1 eh(φ)category(xi)

]
, (10)

where h(j)
category(xi) belongs to [0, 1], representing the confidence that one specific area is

a true object, for example, building, car, human, and so forth. n represents the number
of input samples, i is the sample id of one input sample, m represents the total category
number, j is the specific category id, hcategory(xi) is the Softmax result, and hregression(xi)
is the Smooth L1 result.

Lregression is utilized to find the object localization of one object. According to the
smooth L1 loss in of Faster-RCNN [42], Lregression can be written as:

Lregression =
1
n

n

∑
i=1

smoothL1(h
(r)
regression(xi)− rxi ). (11)

Lmask is calculated in the same way defined by Mask-RCNN [40], which aims at
semantic prediction for each foreground object.

4.2. UAV Image Dataset

We created a new drone image dataset ourselves to train our deep neural network.
The training set for neural networks comes from the video that is actually captured on the
drone. We extract key frames for it, and then perform image calibration and area marking
on each image. The marking tool we chose is LabelMe. LabelMe is an annotation markup
software made by Python and drawn with GUI by Qt. It can greatly improve the efficiency
of image marking.

We have marked a total of 1000 drone images, with dozens of buildings to be marked
on each image. The entire marking process took three months/person and marked more
than 30,000 different types of buildings with different appearances. Ten percent of the
random split data is used to form the test set and the rest are used for training the model.
For all the experiments, we trained our model with 10,000 iterations using a batch-size of 4.

The marked image is shown in Figure 4. Figure 4a–i are the samples from our UVA
dataset. Each building has clear boundaries and tag values. The annotators are required
to use poly-point to annotate each foreground building. The LabelMe software will au-
tomatically generate the bounding boxes and masks under the structure of the COCO
dataset. In the experimental part, we used this database for training and testing, and some
of the results are shown in the next section. Our best performance is achieved by using
Mask-RCNN with ResNet-101 as the backbone and the total model size is 358.46 M.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Labeled UAV dataset.

5. Performance Evaluation
5.1. Recognition of Building Objects

The training process is performed with some state-of-the-art deep learning frameworks
by detectron2 [44] and a modernized NVIDIA GTX 1080 GPU. The learning procedure
takes about 2 h due to the super-large data. We tried our network with a different backbone
and the best mAP of 0.921 on the split test set was achieved by ResNet-101. Thus, the
results of the continued experiment are shown with this setting. As shown in Table 1, we
also compare the adopted method to other object detection methods. We want to compare
the performance of different detection models for our dataset. We can observe that the
proposed method achieves the best mAP performance. Therefore, the proposed detection
method can better serve the Con f idence(o) defined in Equation (1). In addition, we present
some instances for the results of confidence value and visualization in the Subsections.

Table 1. The performance of different object detection methods in our dataset.

Method mAP Speed

YOLO-V3 [45] 0.791 0.082 s
DETR [46] 0.865 0.455 s

RetinaNet [47] 0.823 0.217 s
EfficientDet [48] 0.917 0.112 s

Ours 0.921 0.188 s
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5.2. Confidence Value

As mentioned above, the object is divided into different grids and is detected. We
analyzed the data obtained from the input image and made the prediction of whether it is a
building. In Figure 5, Figure 5a–f are the samples of performance evaluation of out method,
we show six results for the grid of ground truth objects (buildings) and their predictions.
Some examples have 25 grids while some examples have nine grids, eight grids, or other
numbers. The number of grids depends on the number of buildings in the background. The
more buildings for ground truth, the more grids should be generated. For example, if the
model predicts n building objects and the ground truth is m, we will show the result with a
n×m matrix which divides the image into grids. According to the coordinate predicted by
the model or ground truth, we can calculate the center of each building and assign them to
each grid. Generally, the grid colored with blue represents that there is a building in the
real world, and the other grid means there is not a building in the real world. As for the
value of each grid, it is the confidence value for the prediction. In our method, we estimate
that there is a building if the confidence value exceeds 0.6. The possibility that there is a
building is high when the confidence value is higher. The word match drawn on the grids
means the prediction is correct corresponding to the ground truth.

For example, in Figure 5a, the confidence value of the first grid in line 1 is 0, which is
lower than 0.6. Therefore, we make the prediction that there is no building in this grid. The
confidence value of the second grid in line 1 is 0.854 which is larger than 0.6. Then we make
the prediction that there is a building in this grid, which is proved to be true according to
the ground truth results. In general, a high confidence value in the grid means that there is
possibly a building in the real world. By using this kind of grid evaluation, we can directly
relate the detection accuracy to the route planning, which is also based on the grid division.

(a) (b) (c)

(d) (e) (f)

Figure 5. Grid of ground truth objects and their predictions.

5.3. Visualization

Figure 6a–i illustrate the visualization outcomes of the building predictions. The
background is the irrelevant things (e.g., tree, land) for the real scenario in each instance,
and the identified buildings are labeled with different colors. We show the visualization
outcomes for nine scenarios, including the commercial circle, the playground and the road
area. The buildings are dense in some scenarios, and others are not, which is related to the
number of grids generated in the method. Among the nine visualization outcomes, it can be
seen that the size and shape of the building can be drawn with the colored areas. In general,
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our method has recognized all the buildings and has high performance; however, there
exist some points to be improved. For example, there are ten buildings that are recognized
in Figure 6a and labeled with blue, purple, green, and so on. However, some corners and
boundaries are not completed in the visualization outcome when we check the results
in detail. Moreover, some results show errors in terms of recognizing the wrong object.
In Figure 6g, for example, it can be seen that the playground has been colored purple.
However, the playground is not a building. And in Figure 6i, the ring building, colored
blue, is not recognized accurately enough. The reason is possibly that the center area in the
ring building is not a part of the building.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Visualization of the building predictions.

According to the results of comparison between ground truth and predictions in grids as
well as the visualization for building predictions, our method has achieved high performance.

6. Discussion
6.1. Analyse of Detection

As discussed in Section 5, our detection model owns high performance. However,
there are still some mistakes in the building prediction. We will analyze them in terms of
the following aspects:

Size of Anchor Generation We introduced the model structure in Section 4.1. The
RPN layer will physically generate the anchor for detecting building objects. We default
the initial anchor size as 64, 128, and 256. Generally, this setting covers most of the building
size on the image. However, there is also the situation that building as densely distributed
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(e.g., Figure 4). In this scene, some buildings can not be detected or even multiply buildings
detected as one entity.

Confusing Background There are some background things similar to buildings. They
will cause the prediction error during the detection. As shown in Figure 6g,h, the play-
ground is detected as a building and it is meaningless for a drone to search that area. We
find this error can be decreased by improving the confidence threshold set. Thus, we set
the confidence value as 0.6 which gives the best detection performance.

Scanning Distance The distance when drone capturing the images is really important
for the detection task. When giving the high perspectives, even a large building turns small,
which may make the information density bigger. In our dataset, we set a fixed camera
height to avoid this problem.

6.2. Computing Cost and Possible Application

For the inference of detection, the computing time for each image is 0.118 s on average
(shown in Table 1). This time can be shorter by using better GPU or decreasing the number
of proposals. However, the current running speed is enough for the real-time application.
For the computation of path planning, it depends on how many grids are divided and how
careful the searching is, which is a trade-off for UAVs problems.

Our approach is designed for real-world tasks and can be applied in many scenarios.
Considering the situation that there is fire in the community, a highly accurate and efficient
UAVs search is necessary. It can firstly detect all the foreground objects and plan the
best way for searching. During the search, the route can be further modified due to the
changes of the terrain or the people. We will test our method in a real-world experiment in
the future.

6.3. Limitation

An important factor for this method is the signal communication between the drone
and local server. Our model needs the computation power of GPU to realize real-time
detection. It is not practical to put a GPU on a drone. Thus, the images captured by the
drone need to be transferred to the local server. After computing, the detection can be
fedback to the drone. A good communication environment is important. Thus, it may not
work well in some extreme weather (e.g., thunderstorm). Another thing that needs to be
discussed is the image quality captured by a drone. Our method is highly dependent on
the results of building detection. A good camera is necessary. Even on the same scene,
different camera resolutions will show different imaging results. Some small buildings may
be difficult to recognize when the resolution is poorer. However, higher resolution brings
additional computational consumption.

The flight time of the drone and coverage of the area to be detected are dependent on the
machine and the environment. We consider the speed as V under an ideal condition for
all the drones. Con f idence(o) of object detection depends on the model performance and
the quality of captured images. Thus, our method is based on an ideal situation and those
three points cannot be guaranteed. However, it could work for most real-world situations.
For the optimization, the object detection uses a pre-trained model. Thus, path planning is
the only thing that needs to be computed. There may be a possible way to optimize them
at the same time; however, this needs to be further explored.

7. Conclusions

In this paper, we designed a new fly path task for UAVs, considering the actual
perception needs. A convolutional neural networks (CNNs) model is proposed to detect
and localize the objects, such as buildings. Taking the object confidence as a computing
factor, we proposed an optimization method to find the optimal flying path to realize
effective and efficient detection with a minimum time cost. To evaluate our detection
method, we also prepare a drone image dataset collected from real drones. The results
demonstrate that our detection model can realize high accuracy object recognition. We think
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our method has the potential to address the actual scene understanding and path planning
problems. We will further improve the current algorithm and explore the application of the
proposed method for real-world UAVs tasks in the future work.
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