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Abstract

All behaviors of an organism are rooted in sensory processing of signals from its environment, and nat-

ural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness.

Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environ-

ments, has been a useful hypothesis for describing sensory adaptations, but its current scope has pri-

marily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread

sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolu-

tion and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfac-

tion and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here,

we examine why chemosensory systems have been overlooked and discuss the potential of chemo-

sensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions

for developing a framework to better incorporate studies of chemosensory adaptation that have the po-

tential to shape a more complete, coherent, and holistic interpretation of the sensory drive.
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Introduction

All animals must find food and reproduce while avoiding predators

and pathogens that threaten their survival. Sensing, perceiving, and

processing environmental cues are critical to these fitness-related

behaviors (Dangles et al. 2009). However, environmental stimuli

must be filtered in cluttered environments in which relevant cues

may be drowned out by many extraneous signals (Endler 1992).

Fine-tuned sensory systems are required to filter and maximize the

detection of cues and signals that are important for survival and re-

production. In a heterogeneous world, signal and noise can be highly

habitat-specific. Sensory systems can play a critical role in control-

ling the functional ecology of an organism as a response to new or

changing environments, leading to local adaptation, sexual

selection, and eventually speciation (Endler 1992; Endler and Basolo

1998; Boughman 2002).

The sensory drive hypothesis, first presented by Endler (1992),

provides a framework to articulate how evolution influences signal

production and signal detection in a dynamic world and predicts that

selection favors mechanisms that facilitate communication depending

on the environmental background. The coadaptation of highly specif-

ic signals and sensory systems with respect to background “noise”

may even establish barriers to gene flow between populations in dif-

ferent environments and eventually lead to speciation (Boughman

2002; Fuller et al. 2005). Although there are numerous examples of

visual and acoustic sensory systems that evolved via sensory drive

(Kingston et al. 2001; Scott 2001; Fuller et al. 2005; Seehausen et al.

2008; Tobias et al. 2010; Wilkins et al. 2013; Price 2017), the effects
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of sensory drive on the evolution of other sensory modalities have

been largely neglected in this context (Dangles et al. 2009; Cummings

and Endler 2018). Chemosensation, although arguably the most com-

monly used sensory modality in animals (Hildebrand and Shepherd

1997; Yarmolinsky et al. 2009), has received little attention in the

sensory drive literature, and we argue that this is largely due to a com-

bination of methodological difficulties in assessing environmental

chemical diversity and the complexity of chemical signals and percep-

tion mechanisms relative to acoustic and visual systems.

Chemosensation involves the transduction of a chemical stimulus

from the environment into a neurological signal interpreted by the or-

ganism. Chemosensory systems directly interact with environmental

chemical cues and regulate behaviors essential for survival and repro-

duction, such as finding food, avoiding predators, identifying conspe-

cifics, caring for offspring, and attracting mates (Hart and Chao 2010;

Hansson and Stensmyr 2011; Li and Liberles 2015; Meister 2015).

Chemosensation is ubiquitous across the Tree of Life, from a unicellu-

lar budding yeast that initiates mating with a chemical signal

(Bardwell 2004), to male orchid bees collecting environmental scents

to produce their own “perfume” (Vogel 1965; Eltz et al. 1999;

Roubik and Hanson 2004); from a female garter snake that chemically

signals reproductive viability (Parker and Mason 2014), to felines rub-

bing facial pheromones to mark territory (Soini et al. 2012). This great

diversity highlights the important role of chemosensation in fitness-

related behaviors (Figure 1), and it is highly likely that the sensory

drive hypothesis influences the evolution of the senses of smell and

taste and chemical signaling in animals. Rapid rates of molecular evo-

lution and exceptional gene turnover through duplication and loss of

chemical-detecting receptor genes lay the groundwork for rapid local

adaptation that may even influence sexual selection and facilitate re-

productive isolation. Yet, how environmental conditions and the

chemical background interfere with or facilitate signal transmission

and detection are relatively unexplored. Here, we highlight the under-

estimated, yet pervasive role of chemosensation in sensory adaptation

and how it can be tested in light of the sensory drive hypothesis.

Challenges in Bringing Chemosensation to
Sensory Drive

Variation in signal production, signal transmission, and signal detec-

tion is shaped by natural selection in heterogeneous environments.

The sensory drive hypothesis predicts that the local adaptation of

signals and signal detection can evolve within populations of the

same species in differing environments due to environmentally medi-

ated divergent selection on signaling specialization. There are three

predictions of the sensory drive hypothesis:

1. habitat-induced background “noise” influences efficient signal

transmission and signal detection;

2. divergent selection on sensory perception in response to hetero-

geneous sensory environments leads to local adaptation of sen-

sory systems; and

3. altered perception abilities and specializations select for signals

that match changes in perception, which in turn may eventually

lead to reproductive isolation between lineages.

The past and current focus on visual and acoustic systems has

revealed convincing evidence for sensory drive as a mechanism in

sensory-mediated local adaptation and also reproductive isolation

(Boughman 2002; Dangles et al. 2009). Yet, chemosensory evolu-

tion has been virtually untested under the sensory drive hypothesis,

despite its relevance in the functional ecology across animals. We

argue that there are two main reasons for this: 1) chemical back-

ground, chemical signals, and chemosensory gene function and evo-

lution are highly complex in comparison to vision and hearing,

which makes the connection between environmental changes and

sensory evolution more convoluted and 2) sophisticated methods to

reliably determine chemical background, signals, and gene function

are only recently emerging. We argue that with the development of

methods to analyze and integrate environmental chemicals and

chemical signals with the molecular evolution and function of che-

mosensory genes, we are at an exciting point in time where it is

becoming increasingly feasible to test the extent of sensory drive in

chemosensory evolution and thus better understand the role of sen-

sory drive in sensory evolution in general.

Challenge #1: the complexity of the chemical

background
A key component of sensory drive is the influence of the environ-

ment on the evolution of signals and signal detection. Chemical sig-

nals and cues must stand out against the chemical background, and

the recipient must detect the cue in time before the signal is diffused

(Figure 1). The chemical environment is a dynamic and complex sys-

tem influenced by various abiotic and biotic factors. Besides spatial

variation of the abundance and composition of biotic chemicals be-

tween (micro-) habitats (Guenther 1997; Kesselmeier and Staudt

1999), the chemical environment varies across time (Proffit et al.

2008; Riffell et al. 2008), and is significantly influenced by rapidly

changing and highly interconnected abiotic conditions including

temperature, humidity, and wind (Cetin et al. 2003). Diurnal con-

vection dynamics of the atmosphere influence how chemicals move

through the air, such that the movement of chemicals at sunrise will

not be the same as at sunset (Riffell et al. 2008). Similarly, water tur-

bulence has a critical impact on chemical concentrations in aquatic

systems (Weissburg and Zimmer-Faust 1993; Zimmer-Faust et al.

1995). Furthermore, while influencing atmospheric movements and

air pressure, temperature alters the chemical background on the

basis of volatility (the tendency of a chemical to evaporate), which

varies with molecular weight and functional groups.

In addition to the chemical background, abiotic factors also affect

animal physiology and perception abilities. Humidity has been shown

to be critical to olfaction in hermit crabs leading to low eletrophysio-

logical responses of the antenna when humidity is low (Krång et al.

2012). Although this might present a special case due to a recent shift

from a marine to terrestrial lifestyle, it demonstrates how the chemical

environment not only changes but also is perceived differently with re-

spect to changes in physical abiotic factors.

This complexity renders the characterization and quantification of

the chemical background and the transmission efficiency of chemical

signals through the background of a nontrivial task (Riffel et al.

2008). The demonstration of empirical evidence of sensory drive and

the effects of the chemical background on signal transmission will re-

quire the determination of multiple complex environmental factors

that are highly specific to the organism, locality, and time. Although

the qualification and quantification of light and sound are highly

standardized through measurements of well-known physical proper-

ties (i.e., waves, wavelengths, and amplitudes), there is presently no

unbiased way of capturing the entire breadth of chemicals from the en-

vironment, presenting a significant challenge for testing the effects of

sensory drive on chemosensory evolution. The detection of chemicals

with current scent-trapping methods is highly dependent on the type

of trap, adsorbent, and solvent used, not only complicating
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replication, but also biasing the outcome of the analysis (Agelopoulos

and Pickett 1998). Nevertheless, these methods have been successfully

implemented to study chemical ecology in a plethora of organisms

(Raguso et al. 2015), and recently they have been modified for the de-

termination of the chemical environment. Methods to capture the

breadth of the volatile and nonvolatile chemical environment are

emerging and becoming slowly available and applicable to macrohabi-

tats (Barreira et al. 2017; Hellén et al. 2017). It is now possible to

study the temporal changes in atmospheric volatile organic com-

pounds across large spatial scales of the rainforest (Jokinen et al.

2015; Yá~nez-Serrano et al. 2015; Alves et al. 2016) or to characterize

the “volatilome” of an animal (Amann et al. 2014; Angle et al. 2016),

paving the way for sensory drive research.

The relevance of the sensory drive hypothesis has become in-

creasingly important as discoveries show that chemical cues can in-

deed be drowned out by environmental changes and hinder the

detection of relevant odorants (Atema 1995; Riffell et al. 2008,

2014). For example, the male tobacco budworm Heliothis virescens

must identify females located on host plants from long distances,

but some host plant volatiles interfere with the efficient detection of

pheromones emitted by females (Pregitzer et al. 2012). Conversely,

the silkmoth Bombyx mori demonstrates a synergistic response with

host plant cues, in which pheromone detection is enhanced by the

presence of specific plant volatiles (Namiki et al. 2008). Human-

produced pollutants can mask floral scents, drastically reducing sig-

nal transmission and impacting navigation in foraging moths (Riffell

et al. 2014). It is becoming more obvious that the chemical back-

ground has a strong effect on signal transmission, and this is not

only restricted to terrestrial habitats. In marine systems, pesticide-

derived chemical pollutants disrupt olfactory signals used in naviga-

tion by salmon Oncorhynchus mykiss in British Columbia depend-

ing on concentration and pollutant mixtures (Tierney et al. 2008).

Lobsters Homarus americanus generate their own currents of urine

signal delivery for precise dispersal of chemical cues, creating

Figure 1. The three components of sensory drive through the perspective of olfaction and how they may relate to one another in a mammalian community. Chemical

signals must be transmitted through a complex chemical background composed of a general background of volatile organic compounds (VOCs) and intra- and inter-

specific chemical signals, all interacting with abiotic conditions such as wind and humidity. The perceiver expresses hundreds of different genes in a number of differ-

ent chemosensory receptor gene families under selection to maximize individual fitness. Sensory drive research in chemosensory systems is required to understand

how changing environments influence the evolution of chemical communication. Abbreviations of mammalian chemosensory receptors: ORs: olfactory receptors;

TAARs: Trace amine-associated receptors; V1Rs: vomeronasal type-1 receptors; V2Rs: vomeronasal type-2 receptors; FPRs: formyl peptide receptors.
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odorant “patches” that can be more readily sampled by conspecifics

in a turbid marine environment (Atema 1995).

Identification and quantification of environmental chemicals and

their dynamics with respect to atmospheric and aquatic conditions

over different temporal and spatial scales are essential to test the

role of sensory drive in chemosensory evolution. Although quantifi-

cation of the chemical background is nontrivial, substantial techno-

logical advances have been made to facilitate our understanding of

chemical signaling in nature.

Challenge #2: the complexity of chemical signals
Visual and acoustic sensory systems process signals that can be

readily quantified through well-understood inherent physical prop-

erties (e.g., electromagnetic waves and air pressure), and it is often

straightforward to predict and test how these signals change in

time and space. Chemosensory systems, in contrast, process signals

composed of chemical molecules from a multidimensional chem-

ical space that is virtually infinitive. Chemosensory signals can

range from a single compound to complex mixtures of different

compounds with diverse functional groups and varying concentra-

tions. Pheromones, chemical signals emitted by many animal spe-

cies to mediate intraspecific behaviors (Karlson and Lüscher 1959;

Liberles 2014; Stowers and Kuo 2015), are often composed of doz-

ens of compounds that may vary between individuals (Wyatt

2003). Determining which compounds are relevant with respect to

sexual communication versus territoriality versus parental care ver-

sus metabolic byproduct (i.e., noise) is not trivial and often impos-

sible. The isolation of behaviorally active compounds or

compound mixtures in signals can be a tedious endeavor, due to

often-unknown chemical structures of naturally occurring chemi-

cals new to science. Although the manipulation of complex signals

in visual and acoustic communication systems is relatively straight-

forward, the manipulation of chemical blends depends on the abil-

ity to produce or isolate the involved single compounds, which is

often impossible and thus may be unfeasible. However, manipula-

tions of signal mixtures are necessary to disentangle signal function

in behavioral experiments, which may take considerable effort to

conduct. For example, the functional characterization of the be-

havioral agents of the queen pheromone bouquet in honey bees

Apis mellifera required decades of focused investigation, highlight-

ing the difficulty in identifying the function of single components

of signal mixtures. Early chemical analysis of the mandibular

pheromone excreted by the queen revealed 9-oxo-(E)-2-deconoic

acid as the dominant compound (Butler and Fairey 1963; Slessor

et al. 2005). However, 9-oxo-(E)-2-deconoic acid alone is neither

attractive to drones (male honey bees) nor does it lead to a re-

sponse from worker bees. Behavioral experiments showed that for

a response in workers to occur, four additional compounds are

required (Slessor et al. 1988). However, it became evident that

these results were not applicable to all honey bees. Although the

five-ingredient mixture elicits behavioral responses in some subspe-

cies, multiple additional subspecies-specific compounds were

required to consistently elicit attraction in workers of other subspe-

cies (Keeling et al. 2003; Slessor et al. 2005). This example further

highlights how signal mixtures may vary between populations of

the same species, which might be a result of local adaptation due to

sensory drive. Although rarely studied, it is becoming more appar-

ent that signals used in the same behavioral context can vary geo-

graphically within species (Ramı́rez et al. 2010; Pokorny et al.

2013; Duménil et al. 2014; Groot et al. 2014). In order to disentan-

gle the evolutionary mechanisms driving this interpopulation

variation in chemical signaling, future investigations must explicit-

ly test how the environment contributes to the evolution of vari-

ation in signaling and signal perception.

Challenge #3: the complexity of the genetic basis of

chemosensation
Once the chemical cue is emitted and transmitted through time and

space, it must be detected and processed by the perceiver. In verte-

brates and invertebrates alike, the detection of volatile and nonvola-

tile chemicals is based on the interaction of chemicals with proteins

encoded by genes of large multi-copy chemosensory gene families

expressed in sensory neurons and supporting cells of the olfactory

and gustatory systems (see Kaupp 2010 for review). Although the

number of genes underlying vision and acoustics is comparatively

small and stable among lineages (Parker et al. 2013; Ramirez et al.

2016), the number of genetic loci involved in chemoreception can

vary by orders of magnitude (Niimura 2012). Throughout animal

evolution, the number of opsin paralog copies, for example, is highly

conserved and rarely exceeds 10 per gene family (Ramirez et al.

2016). In contrast, tens to thousands of chemosensory genes of sev-

eral fast evolving multigene families are involved in chemosensation

(Nei et al. 2008; de Bruyne et al. 2010; Ota et al. 2012; Brykczynska

et al. 2013; Niimura et al. 2014; Yoder et al. 2014; Derby et al.

2016). The origin of gene families involved in chemical detection

occurred at different points in phylogenetic history independently in

vertebrates and invertebrates (Eisthen 1992; Strausfeld and

Hildebrand 1999; Grus and Zhang 2006, 2009; Sánchez-Gracia

et al. 2009; Eyun et al. 2017; Brand et al. 2018). This includes sev-

eral mostly G-protein-coupled receptor gene families in vertebrates

(Grus and Zhang 2006; Niimura 2009, 2012) and non-G-protein-

coupled receptor gene families in invertebrates (Sato et al. 2008;

Cummins and Degnan 2010; Derby et al. 2016). New chemorecep-

tor gene families are still being discovered (Benton et al. 2009; Greer

et al. 2016), emphasizing how much more there is still to learn about

the molecular basis of chemosensation.

The widespread chemosensory receptor diversity is a result of

rapid evolutionary rates through high gene turnover and rapid se-

quence diversification of homologous genes (Nei et al. 2008;

Sánchez-Gracia et al. 2009; Bear et al. 2016; Brand and Ramı́rez

2017). The convergently evolved odorant receptor gene families in

vertebrates and insects (Sato et al. 2008; Dehara et al. 2012;

Niimura et al. 2014), for example, demonstrate some of the most

extraordinary patterns of gene duplication and pseudogenization

(i.e., gene turnover) in animals, constantly expanding and contract-

ing over time (Nei et al. 2008). This birth–death evolution and the

subsequent diversification are responsible for odorant receptors

accounting for the largest gene families in animals encoding for up

to 5% of the protein-coding genome in mammals, for example

(Hayden et al. 2010; Niimura 2012; Niimura et al. 2014).

Although the evolutionary dynamics of chemosensory gene fami-

lies in animals are well described based on an ever-increasing

amount of genomic data for a diverse array of taxa (Guo and Kim

2007; Young et al. 2010; Brykczynska et al. 2013; Niimura et al.

2014, 2018; Picone et al. 2014; Yoder et al. 2014; Brand et al. 2015;

Derby et al. 2016; Brand and Ramı́rez, 2017; Yohe et al. 2018),

linking molecular patterns of sequence evolution to gene function is

still a nontrivial task. One contributing factor is that the identifica-

tion of ligands which individual chemosensory receptors respond to

was initially limited to model organisms and experiments focused

mainly on the mechanistic understanding of chemosensation

(Dobritsa et al. 2003; Hallem and Carlson 2006; Touhara 2007;
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Wang et al. 2010; Launay et al. 2012; de Fouchier et al. 2017; Pask

et al. 2017; Slone et al. 2017; Fleischer et al. 2018). Early experi-

ments functionally characterizing the entire chemosensory receptor

repertoires in mice and vinegar flies revealed that the encoding of

the senses of smell and taste is more complex than the number of

genes initially indicated (Malnic et al. 1999; Dobritsa et al. 2003;

Hallem and Carlson 2006). The detection of a single chemical can

either be dependent on a single highly specialized receptor or mul-

tiple receptors acting in a combinatorial fashion (Malnic et al. 1999;

Hallem and Carlson 2006; Malnic 2007; Ullah et al. 2015). Thus,

the number of compounds detected by an animal is likely vastly

exceeding the number of receptor genes in the genome (Malnic et al.

1999; Hallem and Carlson 2006; Nara et al. 2011; Magklara and

Lomvardas 2013; Rodriguez 2013; McClintock et al. 2014; Bushdid

et al. 2016; Haverkamp et al. 2018), and the loss or gain of receptor

genes might have severe effects on the sensory ecology of an organ-

ism. Indeed, the high gene turnover of chemosensory gene families

among animal lineages has been linked to changes in sensory abil-

ities including the adaptation of novel food resources (McBride

2007; McBride and Arguello 2007; Hayden et al. 2014; Goldman-

Huertas et al. 2015) or specializations in the pheromone communi-

cation system (Gould et al. 2010; Ferrero et al. 2011).

With neurophysiological methods being constantly refined and

adapted for use in nonmodel species (de Fouchier et al. 2017; Pask

et al. 2017; Slone et al. 2017), the field is moving toward a better

understanding of how selection influences chemosensory evolution on

a functional level. For example, it has become evident that even single

mutations in olfactory receptors can lead to adaptive shifts in olfactory

tuning (Pellegrino et al. 2011; Leary et al. 2012; McBride et al. 2014).

Furthermore, chemosensory genes can be highly diverse within popu-

lations of the same species, leading to variable sensitivity to chemical

stimuli (Rollmann et al. 2010; Logan 2014; Mainland et al. 2014),

and thus representing variation for natural selection to act on when

environments and/or signals change. With an increasing understanding

of the molecular dynamics and a methodological toolkit becoming

available for broad application, it will be possible to understand how

chemosensation is evolving with response to local environments.

Future Opportunities in Bringing
Chemosensation to Sensory Drive

Through a combination of genomic, biochemical, and neurophysio-

logical advances, the integrated study of chemosensory evolution is

Figure 2. The Iberian wall lizard Podarcis hispanicus illustrates a strong candidate for sensory drive promoting chemosensory divergence and local adaptation.

Compounds of the male femoral gland excretions differ based on the environment, in which northern populations have waxier and bulkier compounds that are

less volatile and enable more viable signals in the given habitat. Receptors of the perceivers are unknown, but behavioral evidence has demonstrated female

preference and male–male recognition of signals based on their own environments. Silhouettes are from vecteezy and all-free-download.com.
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now becoming tractable, and testing the role of sensory drive in che-

mosensory system evolution represents a new frontier in evolution-

ary biology. We are only beginning to understand the extent of

variability in the chemical environment, chemical signals, and che-

mosensory genes and how their interplay is shaping the evolution of

chemical communication. Although challenging, we believe that

studying the role of sensory drive in chemosensory systems is pos-

sible with the careful choice of study systems in combination with

well-designed experiments.

As we outlined above, there is an increasing number of examples

of chemosensory-based local adaptation, chemical signal divergence,

and molecular signatures of selection on chemosensory receptors.

However, the majority of these studies focus on host-shift adaptation

or the evolution of pheromone communication and its role in speci-

ation, including analyses of intraspecific signaling variation among

geographically (and environmentally) distinct populations (see

Smadja and Butlin 2009 for summary). Although most systems par-

tially align with the predictions of sensory drive, it is usually not ex-

plicitly tested for in the system. One such example is the Iberian wall

lizard Podarcis hispanicus, a species complex that includes two popu-

lations that inhabit neighboring but differing environments

(Figure 2), in which one population inhabits cold and humid environ-

ments of the highlands in northern Iberia and the other population

inhabits a warmer and dryer Mediterranean climate of central and

southern Iberia (Sá-Sousa 2000; Sá-Sousa et al. 2002). These diver-

gent environmental conditions have led to differences in the chemical

composition of femoral gland excretions of male lizards used for

marking territory, conspecific identification, and female choice

(Martı́n and López 2006). Males in colder, wetter climates have less

volatile femoral gland excretions compared with those in drier cli-

mates, likely an environmentally driven adaptation for efficient signal

deposition and signal stability (Martı́n and López 2006; Martı́n et al.

2015). Males of each respective population elicit a more aggressive re-

sponse toward signals from conspecific in their own habitat (Martı́n

and López 2006; Gabirot et al. 2012), and similarly females show

preferences for signals specific to their habitat type (Gabirot et al.

2013; Martı́n et al. 2015). These preferences reinforce the boundaries

likely initially established by more efficient signaling based on their

habitat type, leading to reproductive isolation among the populations

and potential cryptic speciation (Gabirot et al. 2012; Martı́n and

López 2015; Martı́n et al. 2015). Accordingly, this system corrobo-

rates many of the criteria outlined by Boughman (2002) for speciation

via sensory drive (Figure 2), and we encourage follow-up studies on

neurophysiology and chemoreceptor evolution to test for selection

driving divergent chemical perception mechanisms between habitats

and to exclude genetic drift.

Similar to the Iberian wall lizard, many known cases of intraspecif-

ic pheromone evolution show patterns that meet the predictions of the

sensory drive theory, emphasizing the disparity between the study of

chemosensory adaptations and sensory drive literature. Environmental

changes are likely often a part of interpopulation divergence in che-

mosensory systems from latitudinal gradients (Lavagnino et al.

2008) to sympatric host shifts (Olsson et al. 2006; Tait et al. 2016)

and thus have the potential to be affected by sensory drive.

Concluding Remarks

Over the past 25 years, a focus on visual and acoustic systems has

generated convincing evidence for the role of sensory drive as a

mechanism in sensory-mediated local adaptation and potential re-

productive isolation. However, the importance of sensory drive as a

hypothesis that explains sensory adaptations based on environmen-

tal differences, in general, remains uncertain until the hypothesis is

rigorously tested in all sensory modalities, including chemosensa-

tion. The traditional lack of studies on sensory drive in chemosen-

sory evolution likely results from the complexity of chemosensory

signals and their detection alongside the only recently emerging tech-

nology needed for the combined analysis of both phenotypic and

molecular evolution of chemosensory communication. We find that

precisely these technological advances have led to a deeper under-

standing of chemosensation and the underlying molecular basis in

the recent past, paving the way for future research on chemosensory

evolution with respect to the variability of natural habitats.

Ultimately, we will need to link chemosensory evolution of signaling

and perception to the complex chemical background of the environ-

ment to truly demonstrate how sensory drive is a critical mechanism

of chemosensory evolution.
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