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A very commonmechanism to trap pathogens is the release of DNA. Like flies in a spider’s

web, pathogens are enclosed in a sticky chromatin meshwork. Interestingly, plants

already use this mechanism to catch bacteria. In mammals, especially neutrophils release

their DNA to prevent an invasion of bacteria. These neutrophil extracellular traps (NETs)

are equipped with antimicrobial molecules, including, for instance, histones, antimicrobial

peptides, lactoferrin, and neutrophil elastase. Thus, in a defined area, pathogens and

toxic molecules are directly adjacent. However, several of these antimicrobial substances

are also cytotoxic for endogenous cells. It is, therefore, not surprising that distinct

control mechanisms exist to prevent an exaggerated NETosis. Nevertheless, despite

these endogenous control instruments, an extraordinary NET release is characteristic for

several pathologies. Consequently, NETs are a novel target for developing therapeutic

strategies. In this review, we summarize the roles of glycans in the biology of NETs;

on the one hand, we focus on the glycan-dependent strategies of endogenous cells

to control NET formation or to inactivate its cytotoxic effects, and, on the other hand,

the “sweet” tricks of pathogens to inhibit the release of NETs or to prevent NET-mediated

killingmechanisms are examined. Understanding both, the forces of good and evil, allows

the development of novel glycan-based approaches to combat the harmful side of NETs

during distinct pathologies.
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INTRODUCTION

Neutrophil granulocytes possess a panel of different mechanisms to combat invading pathogens.
As first line of defense neutrophils can combat pathogens by phagocytosing them, by releasing
antimicrobial peptides or reactive oxygen species (ROS) and by the release of neutrophil
extracellular traps (NETs), a process first described in 2004 by Brinkmann et al. (1, 2). NET release
can be induced by bacteria, viruses, fungi or non-physiological stimuli, such as ionophores and
phorbol-myristate acetate (PMA) (3, 4). It seems to be that different pathways can be used to
induce the formation of NET and evenmore than 13 years after the first description of NETs several
mechanisms are controversially discussed and numerous open questions still need to be answered
[excellently summarized in Boeltz et al. (5)]. What we know is that NET consists of a meshwork
of decondensed DNA fibers, cytotoxic histones, and antimicrobial peptides and has the ability to
catch and render invading pathogens harmless (3, 5, 6). Since NET contains several biomolecules,
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which are also cytotoxic for endogenous cells, in addition to the
desired antimicrobial effects, NETs are associated with numerous
pathologies (7–16). Therefore, an exaggerated release of NET has
to be prevented, leading to the necessity of control mechanisms
to regulate the formation of NETs.

Within the last few years, interest in glycans and how they
modulate different functions has increased immensely (17–
19). Since all of our cells are surrounded by a glycocalyx
consisting of highly glycosylated proteins and lipids, it is
obvious that glycan-dependent processes occur frequently (19,
20). Indeed, glycans have essential roles within various biological
processes, such as cell proliferation, cell differentiation, the
development of organs, and within the immune system (19, 21).
In the field of immunology, glycans drive diverse mechanisms,
ranging from the discrimination of the self and non-self, using
for instance sialic acid-binding immunoglobulin-like lectins
(Siglecs), to glycosaminoglycan (GAG)-mediated chemokine
presentation (22).

GAGs are a number of long, unbranched polysaccharides
composed of repeating disaccharide units, whereby, the repeating
disaccharides consist of uronic acid or galactose and an amino
sugar, which can be additionally modified. Prominent members
of the GAG family are: hyaluronic acid, heparin/heparan sulfate,
chondroitin sulfate/dermatan sulfate, and keratin sulfate (23).
Besides their role in chemokine presentation, GAGs are also
involved in several other biological processes, like cell signaling,
angiogenesis (24), metastasis, tumor progression (25, 26) and
coagulation (27, 28).

In addition to GAGs, sialylated glycans play an important
role during immunological events. In mammals, glycans are
frequently terminated by these sugar residues (29). Sialic acids
are negatively charged and modulate both immunological
processes and organ development (30–33). Sialylated structures
can be recognized by Siglecs (34–36), which are transmembrane
receptors expressed in different cells of vertebrates that can
mainly either inhibit or activate the immune response (35,
37–39). Although Siglecs are meant to be a valuable tool to
distinguish between self-associated molecular patterns (SAMPs)
and pathogen-associated molecular patterns (PAMPs), several
pathogens are already known to elude the immune system by
mimicking host sialylation and, therefore, masking themselves
as SAMPs.

This review is therefore focusing on the role of
glycoconjugates of endogenous cells in controlling NET
releases and impairing the negative outcome of NETs as well
as on the role of glycoconjugates of pathogens that influence
NET formation or that directly influence NET release and the
biological activity of NETs.

THE INTERACTION BETWEEN GLYCANS
AND NEUTROPHILS: A PHYSIOLOGICAL
CONTROL SYSTEM IN CIRCULATION

An impaired NET release and missing NET clearance are, for
instance, associated with the formation of a thrombus (7, 40,
41). Not only do the NET fibers serve as a scaffold for the

formation of a thrombus. Furthermore, neutrophil elastase is
released in the extracellular area and inhibits among others the
anticoagulants antithrombin and tissue factor pathway inhibitor.
In addition, extracellular histones are known to increase the
thrombin generation, causing platelet activation and coagulation
(40–43). Therefore, it is not surprising that an impaired NET
release within circulation needs to be prevented.

Lizcano et al. investigated the reason why isolated neutrophils
are more susceptible to undergoing NETosis than neutrophils
within circulation (44). They determined that glycophorin A, a
sialoglycoprotein that is located on the surface of erythrocytes,
is a candidate that might be responsible for this effect.
It is able to bind Siglec-9 on the surface of neutrophils,
inhibiting neutrophil activation within circulation (Figure 1A).
Remarkably, modification of the sialic acid on the surface of
the erythrocytes prevents the outlined inhibitory effects (44).
Interestingly, also cancer cells, which are characterized by
hypersialylation, seem to use Siglec-5 and Siglec-9 to evade
entrapment by activated neutrophils [excellently reviewed by
Adams et al. (45) and Rodrigues and Macauley (46)].

Besides sialylated glycoconjugates, heparin, a well-known
anticoagulant, inhibits neutrophil degranulation and aggregation
in vitro (47). Furthermore, the influence of low molecular
weight heparin, unfractionated heparin, O-desulfated heparin,
hyaluronic acid, dextran sulfate, and poly-L-glutamic acid on
neutrophil activation was investigated (48). The activation
of neutrophils with different stimuli induced the release of
neutrophil elastase. However, the application of the different
stimuli in combination with low molecular weight heparin
as well as dextran sulfate inhibited neutrophil activation and,
therefore, the release of neutrophil elastase (Figure 1A) (48,
49). In contrast, the non-sulfated dextran and poly-L-glutamic
acid showed no effect on neutrophil activation, leading to the
assumption of a sulfate-dependent process. Furthermore, Xu
et al. investigated the role of heparan sulfate in the biology
of NETs (50). In heparan sulfate uronyl 2-O-sulgotransferase
deficient mice less NET is formed after stimulation with group
B streptococcus (GBS). Remarkably, when NET was treated with
heparan lyase, its antimicrobial activity decreased (50). Thus, the
formation and the activity of NETs seem to be modulated by
heparan sulfate.

Besides heparan sulfate, other glycans are known to influence
the biological activity of NETs. In this context, Brown et al.
focused on neutrophil elastase and neutrophil-induced human
bronchial epithelia cell detachment (48). Whilst hyaluronic acid
had no effect, low-molecular-weight heparin, unfractionated
heparin, O-desulfated heparin, and dextran sulfate significantly
inhibited the neutrophil elastase-induced detachment (48).
Furthermore, Fuchs et al. published that the treatment of NETs
with heparin destroys their scaffold and prevents the formation of
a thrombus (Figure 1B). Heparin has a high-charge-dependent
affinity to histones (51, 52) and is able to release histones from
chromatin fibers, therefore, destabilizing NETs (Figure 1B) (40).
Since histones that are released during NETs are able to damage
negatively charged cell membranes, histones are often described
as antimicrobial peptides (AMPs) that are released during NETs
alongside with other antimicrobial biomolecules like lactoferrin
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FIGURE 1 | Mechanisms of endogenous cells and naturally occurring components to enhance bacterial entrapment, to decrease impaired NET release, and to

decrease the cytotoxic outcome of NETs. (A) Natural occurring components preventing NET release/neutrophil degranulation. Glycophorin is a sialoglycoprotein

located at the surface of erythrocytes that inhibits NET release/neutrophil activation via sialic acid binding to Siglec-9 within circulation. Furthermore, the GAG heparin

as well as dextran sulfate inhibit neutrophil activation in a sulfate-dependent manner. The interaction of lactoferrin with polySia increases the inhibition of NET releases.

(B) Mechanisms to decrease the cytotoxic outcome of NETs for a body’s own cells as well as to increase bacterial entrapment. PolySia as well as GAGs, such as

heparin, bind to released histones, reducing histone-mediated cytotoxicity. The cartoons of all polysaccharides show only exemplary parts of these polymers and may

differ from the actual structure (e.g., chain length and composition).
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and neutrophil elastase (1, 6, 53–56). Unfortunately, these
properties of all histones (H1, H2A, H2B, H3, and H4) are
toxic not only for pathogens but also for endogenous cells (57–
60). Within the plasma, the cytotoxicity of histones is reduced
by the inter-alpha-inhibitor-protein (IAIP) associated with high
molecular weight hyaluronic acid and chondroitin sulfate. IAIP
as well as high molecular weight hyaluronic acid and chondroitin
sulfate bind recombinant histone H4, contributing to reduced
histone mediated cytotoxicity (Figure 1B) (61).

In addition to GAGs, such as hepain (52), another linear
carbohydrate, polysialic acid (polySia), is a naturally occurring
inhibitor of the cytotoxic effects of histones (59, 62, 63).
Remarkably, polySia was detected in the plasma of different
species, from fish to humankind, and may represent a
natural buffer system for the inactivation of the cytotoxicity
of extracellular histones in blood (Figure 1B) (64). PolySia
influences histone-mediated cytotoxicity in a concentration as
well as in a chain-length-dependent manner (65, 66). In line
with that, polysialylated nanoparticles and in vitro polysialylated
cervical mucins represent tools to counteract histone-mediated
cytotoxicity during an exaggerated NET formation (65, 66).
Interestingly, quite recently, Kühnle et al. (67, 68) published
that polySia interacts with lactoferrin. Lactoferrin is known to
inhibit a NET release by forming a “lactoferrin-shell” around the
activated neutrophils (69). In vitro experiments suggested that
the efficiency of lactoferrin in preventing the release of NETs was
enhanced in the presence of polySia (67).

Thus, the presented examples show endogenous glycan-
dependent ways to control the release of NETs in addition
to decreasing their damaging effects, indicating, once more,
the widespread function of glycosylation within the field of
immunology. However, it has to be considered that a medal
always has two sides. Some pathogens exploit the previously
describedmechanisms for their own purposes, as described in the
next chapter.

THE GLYCOSYLATION OF PATHOGENS: A
POWERFUL TOOL TO ESCAPE NETS

Bacteria
During their evolution, several pathogens have “learned” to use
carbohydrate-dependent mechanisms to modulate the immune
system. For instance, distinct bacteria strains target Siglecs to
circumvent the release of NETs by neutrophils. Pseudomonas
aeruginosa (P. aeruginosa), for example, can use sialic acids
from its hosts to decorate their glycoconjugates with sialic
acids. On the surface of P. aeruginosa, N-acetylneuraminic
acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and 9-O-
acetyl-N-acetylneuraminic acid (Neu5,9Ac2) have been found,
enabling P. aeruginosa to inhibit neutrophil activation via
the activation of Siglec-9 (70). According to Khatua et al.
P. aeruginosa directly binds to the neutrophil via Siglec-
9, stimulating the production of cytokine IL-10 and TGF-
β (71). The generation of ROS is inhibited, and a decrease
of the release of neutrophil elastase is detected. Since ROS
production can be an initial step of NETosis, it is not

surprising that the release of NETs is inhibited by the binding
partners of Siglec-9 on the surface of P. aeruginosa (Figure 2)
(72, 73).

However, P. aeruginosa is not the only pathogen using Siglec-9
to circumvent the activation of neutrophils. Carlin et al. (74) also
showed that GBS is able to inhibit neutrophil activation through
Siglec-9. GBS eluded the human immune system, causing
invasive infections in human newborns by hosting the common
terminus of human glycoproteins, Siaα(2,3)Galβ(1,4)GlcNAc, on
their capsular polysaccharide. Here, the sialic acid binding of
GBS to neutrophil Siglec-9 also initiated the production of the
NET-suppressive cytokine IL-10 (74).

In addition to these findings, glycans of GBS interact with
Siglec-5 and Siglec-14 (75). These Siglecs are an example of an
antagonistic interplay between Siglecs. The sialic acid binding
of Siglec-14 counteracts the pathogen-induced suppression of
neutrophil activation (Figure 2). Intriguingly, the absence of
Siglec-14 due to Siglec-14 null-polymorphism in humans leads
to the increased susceptibility of neutrophils to GBS. The
relevance of this pathogen-induced inhibition of neutrophil
activation becomes apparent through the discovery of the Siglec-
5 and Siglec-14 expressions on amniotic epithelium (75). These
epithelial cells are the site of the initial contact area of the
fetus and the pathogens. Ali et al. suggested that Siglec-14 null-
polymorphism might relate to the risk of prematurity during
GBS invasion.

In 2016, a surprising discovery was made by Secundino
et al. (76). While investigating GBS and its capability to
bind and activate Siglec-9 via its sialylated glycans, they
observed that Siglec-9 also bound high molecular weight
hyaluronan, consisting of repeating disaccharide units of N-
acetylglucosamine (GlcNAc) and glucuronic acid (GlcA), with
alternating β1,4- and β1,3-linkages. Intriguingly, they detected a
new, specific binding site, apart from the V-set Ig-like domain.
Since the capsular polysaccharide of group A streptococcus
(GAS) contains high-molecular-weight hyaluronan units, NETs’
formation and oxidative bursts were prevented (Figure 2)
(76). Remarkably, a single inhibitory Siglec recognizes two
different glycan motifs as SAMPs, leading to the suppression of
neutrophil activation.

Although GBS seems to be the best studied pathogen
regarding sialic acids and NETs inhibition, several more
pathogens, like Campylobacter jejuni, Neisseria gonorrhoeae, and
Escherichia coli K1, are also able to synthesize sialylated glycans,
leading to the assumption that comparable strategies are also
used here to escape NETs (70, 77–79). Since polySia is also able
to modulate NET formation and the activity of NETs, it seems
likely that polySia-positive bacteria, like Escherichia coli K1 and
distinct Neisseria meningitides strains, are able to trigger polySia-
dependent mechanisms (80, 81). However, until now, no study
has examined the impact of polySia during their invasion in the
context of NETs.

Interestingly, obstructing NET release is not the only tool of
bacteria, to elude the immune system. Several pathogens are able
to circumvent NET-mediated killing. Streptococcus pneumoniae
(S. pneumoniae) for instance, which is one of the major
causes of mortality and morbidity, circumvents NET-mediated
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FIGURE 2 | Glycosylation of pathogens- a powerful tool to circumvent NET-mediated entrapment and killing. Bacteria circumventing NET release or NET-mediated

killing. S. pneumoniae induces NET release, but NET-mediated killing and entrapment is bypassed due to the capsular polysaccharide (CPS). Pathogens like GBS,

(Continued)
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FIGURE 2 | GAS, and P. aeruginosa exploit Siglecs for their own purposes. Via sialic/hyaluronic acid binding to Siglecs, IL-10 as well as TGF-β production are

upregulated and NET release is inhibited. Also fungi circumvent NET release/ NET entrapment by glycans. Compared to the less pathogenic A. nidulans, surrounded

by galactosaminogalactan with a low amount of GalNAc, A. fumigatus, surrounded by galactosaminogalactan with a high GalNAc content, inhibits NET release and

ROS production and forms more adherent biofilms, explaining the differences in virulence of these two fungi strains. In addition, the capsular strain of C. neoformans

inhibits the release of NETs due to its glucuronoxylomannan coating, whereas acapsular strains of C. neoformans induce NETosis. In addition, sialylated viruses like

HIV-1 prevent ROS-dependent NET release by DC-SIGN engagement and parasites, like Leishmania donovani circumvent NET mediated killing by lipopeptidoglycan

(LPG) on its surface.

killing through its polysaccharide capsule (82). Encapsulated S.
pneumoniae strains show significantly reduced trapping by NETs
compared to non-capsulated strains (Figure 2). Furthermore,
S. pneumoniae contain positively charged lipoteichoic acid on
their surface, which increases the electrochemical repulsion of
antimicrobial peptides (82).

Fungi
Moreover, it is not only bacteria that circumvent NET-
mediated entrapment and killing. In their research, Rocha
et al. (83) detected that the fungus Cryptococcus neoformans
(C. neoformans) is surrounded by capsular polysaccharides
containing glucuronoxylomannan. The wild type of strain
inhibits the release of NETs, whereas acapsular mutants or
mutants surrounded by glucuronoxylomannogalactan induce
NETosis (Figure 2) (83).

Furthermore, Aspergillus fumigatus (A. fumigatus), which
accounts up for around 80% of all invasive Aspergillus infections,
shows resistance against NET-induced damage due to the
production of cell-wall-associated galactosaminogalactan and a
secreted form of galactosaminogalactan. Galactosaminogalactan
consists of galactose and N-acetylgalactosamine (GalNAc)
residues. Since galactosaminogalactans play a certain role in
host-pathogen interactions, as they are required for biofilm
formation, a galactosaminogalactan-deficient mutant of A.
fumigatus exhibited reduced virulence (Figure 2) (84–88).

Interestingly, Aspergillus nidulans (A. nidulans), a strain
producing galactosaminogalactans with a lower content of
GalNAc residues in comparison to A. fumigatus, was found
to be less pathogenic, formed less-adherent biofilms, and was,
therefore, more susceptible to NET-induced damage. Since
A. nidulans is only known to induce pathologies in patients
with chronic granulomatous disease (CGD), characterized by
an impaired NADPH oxidase complex, further investigations
concerning the influence of NADPH oxidase revealed that
cell-wall-bound galactosaminogalactans in A. fumigatus enhance
resistance against NADPH-oxidase-dependent neutrophil
extracellular damage. This might explain the increased virulence
of A. nidulans in CGD patients (88).

Viruses
Interestingly, also viruses are able to evade immune control
mechanisms. The HIV-1 virus, for instance, counteracts NET
formation by engaging the C-type lectin DC-SIGN (CD209) on
dendritic cells via its envelope glycoprotein containing more
high mannose than complex N-glycan structures. The binding
induces the production of IL-10, contributing to the inhibition of

ROS-dependent NET release upon TLR7 and TLR8 engagement
(89) (Figure 2). This study let suggest that also glycans of other
viruses can target DC-SIGN, such as Ebola virus, the Japanese
encephalitis virus and of the hepatitis C virus, that may also
influence in an indirect way the formation of NET (90–92).

Parasites
Leishmania donovani, a protozoan parasite, contains
lipopeptidoglycan on its surface and mutants lacking
lipopeptidoglycan show less survival in NET in comparison
to the wild type strain (Figure 2) (93). In addition, virulent
strains of Leishmania donovani can contain high amount of
sialylated glycans representing binding partners for Siglec-5
leading to an inhibition of ROS production in macrophages (94).
Comparable mechanism of these Leishmania donovani glycans,
which are terminated with α2,3- and α2,6-linked sialic acid
residues, may also take place on neutrophils and might also be
used by other sialic acid positive parasites.

CONCLUSION

This review gives a short summary concerning the impact
of glycans to modulate the formation and activity of NET
describing glycan dependent mechanisms of endogenous cells to
prevent the activation of neutrophils or to inactivate cytotoxic
molecules of NET, which are, however, also used as an escape
strategy by distinct pathogens. All of the outlined examples
show that glycans play a key role in the biology of NET
and that they have great potential as a therapeutic tool in
NETs-associated pathologies.
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