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Abstract
Purpose  Protein misfolding and aggregation result in proteotoxic stress and underlie the pathogenesis of many diseases. 
To overcome proteotoxicity, cells compartmentalize misfolded and aggregated proteins in different inclusion bodies. 
The aggresome is a paranuclear inclusion body that functions as a storage compartment for misfolded proteins. Choroid plexus 
tumors (CPTs) are rare neoplasms comprised of three pathological subgroups. The underlying mechanisms of their pathogen-
esis remain unclear. This study aims to elucidate the prognostic role and the biological effects of aggresomes in pediatric CPTs.
Methods  We examined the presence of aggresomes in 42 patient-derived tumor tissues by immunohistochemistry and we 
identified their impact on patients’ outcomes. We then investigated the proteogenomics signature associated with aggresomes 
using whole-genome DNA methylation and proteomic analysis to define their role in the pathogenesis of pediatric CPTs.
Results  Aggresomes were detected in 64.2% of samples and were distributed among different pathological and molecular 
subgroups. The presence of aggresomes with different percentages was correlated with patients’ outcomes. The ≥ 25% cutoff 
had the most significant impact on overall and event-free survival (p-value < 0.001) compared to the pathological and the 
molecular stratifications.
Conclusions  These results support the role of aggresome as a novel prognostic molecular marker for pediatric CPTs that 
was comparable to the molecular classification in segregating samples into two distinct subgroups, and to the pathologi-
cal stratification in the prediction of patients’ outcomes. Moreover, the proteogenomic signature of CPTs displayed altered 
protein homeostasis, manifested by enrichment in processes related to protein quality control.
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Introduction

Choroid plexus tumors (CPTs) are rare intraventricular neo-
plasms that account for 0.2% to 0.4% of all central nervous 
system neoplasms, with up to 20% during the first year of 
life [1]. CPTs are pathologically classified into three sub-
groups; benign choroid plexus papilloma (CPP, WHO grade 
I), intermediate atypical CPP (ACPP, WHO grade II), and 
the aggressive malignant choroid plexus carcinoma (CPC, 

WHO grade III) that is associated with poor prognosis [2]. 
CPPs have a favorable prognosis after surgical resection and 
rarely require additional treatment [3], while CPCs usually 
require surgical removal with adjuvant chemotherapy and 
radiotherapy [3]. The molecular stratification of pediatric 
CPTs identified two subgroups that distinguished high-risk 
patients regardless of their pathological classification [4, 
5]. Current evidence supports the involvement of TP53 [4], 
Notch signaling [6], and Sonic Hedgehog (SHH) [7] in the 
pathogenesis of these tumors; however, the underlying etiol-
ogy is yet to be identified.

The cellular proteome is a highly complex system 
that requires the coordination of protein quality control 
(PQC) machinery to balance protein synthesis, folding, 
and degradation [8]. Continual proteotoxic stress imposed 
by an imbalance in protein levels or protein aggregation 
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causes cells to compartmentalize misfolded/ aggregated 
proteins into distinct quality control compartments [8]. 
The aggresome is a single juxtanuclear inclusion body 
wherein misfolded proteins are delivered by the dynein-
mediated retrograde transport and ensheathed by the inter-
mediate filament vimentin [9]. Aggresome formation has 
emerged as a drug resistance mechanism to overcome 
proteotoxic stress caused by proteasome inhibition-based 
therapy in selective tumors such as multiple myeloma [10, 
11], pancreatic cancer [12], breast cancer [13], and lym-
phoma [10]. We have previously identified aggresomes in 
pediatric CPTs [14] and pediatric medulloblastoma (MB) 
[15]. They were inherently present in both tumors before 
therapy and were associated with poor outcomes in the 
non-WNT/SHH molecular subgroup of MB [15], suggest-
ing that they provide a survival advantage to these tumors.

In the current study, we report the role of aggresomes 
as a prognostic molecular marker in pediatric CPTs. Addi-
tionally, we explore the molecular signature of aggresome-
positive CPTs using genome-wide methylation profile in 
correlation to cellular proteome which implicates altered 
proteostasis in the pathogenesis of pediatric CPTs.

Materials and methods

Patient and tissue samples

CPT samples were retrospectively collected from the 
Pathology Department at the Children’s Cancer Hospital 
Egypt 57357 (CCHE) after the approval of the Institutional 
Research Ethics Board (IRB) for waiver of consent. None 
of the patients had previously received chemotherapy or 
radiotherapy. Histopathologic review of all CPT samples 
was performed according to the WHO guidelines. Our 
cohort was comprised of 23 patient formalin-fixed-paraffin 
embedded (FFPE) tissue samples, 2 fresh frozen (FF), and 
17 patients represented by both FFPE and their matched 
FF tissue samples. Treatment protocol of CPT patients was 
adopted from CPT-SIOP-2009 study [16].

Immunohistochemical analysis (IHC)

IHC was performed using the Ventana Benchmark XT 
automated system (Ventana Medical System). Antibodies 
against the following antigens were used: TP53 (Clone 
DO-7, N1581, Dako; ready to use), vimentin (Ventana 
790-2917; dilution 1:100), and pan-keratin (Ventana 760-
2595; dilution 1:100). Aggresome-positivity was con-
sidered only for cells exhibiting juxtanuclear staining of 
vimentin.

Sample processing and the Infinium methylation 
EPIC array

Genomic DNA was extracted from FFPE tumor samples 
using QIAamp DNA FFPE tissue kit (Qiagen) and FF 
tumor samples using the Gene JET genomic DNA (Thermo 
Fisher) according to the manufacturer’s instructions. DNA 
was quantified using the DENOVIX Fluorometer (ds DNA 
High Sensitivity). The quality of the extracted FFPE DNA 
samples was assessed by Illumina FFPE QC kit (Illumina 
Inc.). Bisulfite conversion of extracted DNA was per-
formed using the EZ DNA methylation kit (D5002, Zymo 
Research) according to the manufacturer’s instructions 
using the alternative incubation conditions recommended 
for the Illumina Infinium methylation arrays. Bisulfite-
converted FFPE DNA was then restored with Infinium HD 
FFPE DNA Restore Kit (WG-321-1002, Illumina Inc.). 
Restored bisulfite-modified DNA samples were hybridized 
to the Illumina Infinium Human Methylation EPIC bead 
chips and scanned using the Illumina iScan microarray 
scanner according to the manufacturer’s recommendations 
(Illumina Inc.). Methylation data are available through 
Gene Expression Omnibus (GEO: http://www.ncbi.nlm.
nih.gov/geo/), accession number GSE156090.

Methylation data analysis

Methylation analysis was performed using R statistical 
language v.3.5.2. Raw signal intensities were obtained 
from Illumina intensity data (IDAT) files using the minfi 
Bioconductor package v. 1.29.3 [17]. Samples quality 
control steps were performed including; sample swap 
using the pairwise comparison of 59 genotyping probes 
and detection of p-value. Samples with p-value > 0.01 
(n = 2) were excluded from further analysis. Each sample 
was individually normalized using functional normaliza-
tion (FunNorm) [18]. Batch effect prediction was done by 
singular value decomposition (SVD) using the ChAMP 
Bioconductor package v.3.10 [19], subsequent correction 
for the type of tumor samples (FFPE or FF) was performed 
by ComBat algorithm [20]. Probes failed in the detec-
tion of p-value > 0.01 in at least one sample (n = 91,679) 
and probes located on sex chromosomes (n = 15,413) were 
removed. Probes containing SNPs (n = 24,747) in their 
bodies, or at a CpG, or single base extension site (SBE) 
with minor allele frequency (maf) ≥ 0.01, were excluded 
and those showing cross-reactivity (n = 38,077) [21, 
22] were eliminated. Beta (β) and M values were generated 
from the remaining probes (n = 696,293). The most vari-
ably methylated probes (n = 36,279) were selected based 
on the standard deviation (SD > 0.7). The t-distributed 
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stochastic neighbour embedding (t-SNE) analysis was per-
formed using Rtsne package v.0.11 [23] with non-default 
parameters [theta = 0, pca = F, max_iter = 2000] based on 
pairwise Pearson’s correlation. Unsupervised hierarchical 
clustering was done using Euclidean distance and ward.
D2. The next-generation molecular neuropathology (MNP) 
platform was used to check the methylation-based classi-
fication of our CPT samples [24]. All duplicates samples 
(n = 17) were removed from any further analysis. Differen-
tially methylated positions (DMPs) were identified using 
champ.DMP function from ChAMP Bioconductor package 
v.3.10 [25] at the significance of adjusted p-value < 0.05. 
Differentially Methylated Regions (DMRs) were identi-
fied by Bumphunter with default settings [26]. Circos plot 
of DMRs was performed by Circlize package v0.4.8 with 
default parameters [27]. Three stratification approaches 
of CPTs (methylation-based classification, aggresome-
positivity, and the ≥ 25% aggresome cutoff) were used to 
examine the correlation of aggresomes with methylation 
signature.

Methylation data GO and KEGG enrichment analyses

The gene lists derived from DMPs with adjusted 
p-value < 0.05 and log FC (1.5, − 1.5) were used for gene set 
enrichment analysis using ToppFun in the ToppGene suite 
[28]. Genomic Regions Enrichment of Annotations Tool 
v3.0.0 (GREAT) was utilized for the gene ontology (GO) 
enrichment analysis of the DMRs using default settings 
[29]. Bed files denoting the start, the end positions of the 
DMRs, as well as the chromosome numbers were uploaded 
and mapped against the hg19 human reference genome. Net-
work analysis of the DMPs’ genes was performed by Net-
workAnalyst 3.0 using STRING interactome with 700 confi-
dence score cutoff, and experimental evidence criterion was 
required [30]. Analyses for enriched Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways of those networks 
were performed. Only terms with false discovery rate (FDR) 
less than 0.05 using the Benjamini-Hochberg (BH) method 
were considered significant for all analyses.

Survival analysis

All statistical analyses were performed using R statistical 
environment v3.3.2. Overall survival (OS) was calculated 
from the initial diagnosis to last follow-up or death due to 
disease. Event-free survival (EFS) was calculated from the 
initial diagnosis to the time of an event. An ‘event’ was 
defined as tumor progression, recurrence or death. OS and 
EFS were estimated by the Kaplan–Meier method, and dif-
ferences between groups were assessed by the log-rank test. 
Survival estimates referred to 2 years from diagnosis and the 

related 95% confidence intervals (95% CI) were calculated. 
One patient died shortly after surgery before assigning any 
protocol and was removed from the analysis.

Protein extraction

Twenty  one frozen samples were collected and sample 
sections were homogenized in urea extraction buffer (8 M 
urea, 500 mM Tris–HCl pH 8.5, and protease inhibitors) 
using Dounce homogenizer. Lysates were incubated at room 
temperature for 1 h before centrifugation at 10,000 rpm for 
30 min. Supernatants containing extracted proteins were col-
lected and proteins were quantified using the Pierce BCA 
protein assay kit (23225, Thermo Fisher).

In‑gel digestion

Forty micrograms of proteins from each sample were sepa-
rated using 12% SDS-PAGE. Proteins were fixed by adding 
a fixing solution (50% methanol and 12% acetic acid) with 
overnight incubation at 4 °C. Gel pieces were washed using 
gel-wash buffer (50% acetonitrile in 50 mM ammonium 
bicarbonate) and dried using speed vacuuming. Reduction 
buffer (10 mM dithiothreitol in 50 mM ammonium bicarbo-
nate) was added to dried gel pieces and incubated at 60 °C 
for 30 min. Alkylation buffer (55 mM iodoacetamide in 
50 mM ammonium bicarbonate) was then added and incu-
bated in dark at room temperature for 30 min. Gel pieces 
were washed using 25 mM ammonium bicarbonate before 
adding acetonitrile for 15 min. Digestion solution (10 ng/μL 
trypsin in 25 mM ammonium bicarbonate) was added to gel 
pieces until gel hydration and incubated overnight at 37 °C. 
Extraction buffer (66 acetonitrile: 33 milliQ water: 1 formic 
acid) was then added to extract digested peptides.

LC–MS/MS

The nanoflow reverse-phase liquid chromatography (LC) 
followed by mass spectrometry (MS/MS) analysis was car-
ried out using Triple TOF 5600 + (AB SCIEX) interfaced at 
the front end with an Eksigent nano-LC 400 auto-sampler 
with an Ekspert nano-LC 425 pumps. Samples were auto-
matically injected into a peptide trap column Chrome XP; 
C18-CL, 5 µm (Chrome XP; C18-CL, 0.5 mm I.D. × 10 mm, 
5-μm particle size, 120-Å pore size; SCIEX). The MS and 
MS/MS ranges were 400–1250 m/z and 170–1500 m/z, 
respectively. A 55-min linear gradient of 3–40% solution 
B (80% acetonitrile, 0.2% formic acid) was applied. The 
mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE [1] 
partner repository with the dataset identifier PXD021076 
and 10.6019/PXD021076. RAW files were converted into 
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mascot generic format (mgf) using AB-SCIEX MS data con-
verter v.1.3 and searched using X!Tandem in peptide shaker 
v. 1.16.38 against human UniProtKB/Swiss-Prot database 
(2018 release; 173361 proteins). Proteins identified with a 
minimum of one unique peptide and a minimum of two con-
fident spectra were selected for further statistical analyses.

Proteomics data analysis

Twenty one exported CSV files containing Uniprot accession 
number and label-free protein abundance based on normal-
ized spectral abundance factor (NSAF) were merged into a 
single file using ProteoSelector (www.57357​.org/prote​omics​
-unit). A sanity check was performed to evaluate the accu-
racy of the sample, class labels, and data structure. Then 
the data imputation was conducted based on the minimum 
NSAF protein value [31] followed by the filtration process 
based on non-relative standard deviation (NRSD) [32]. 
Samples were then normalized using probabilistic quotient 
normalization (PQN) [33] then log-transformed, and auto-
scaled. Data was subjected to unpaired t-test and the sig-
nificant output was considered only when p-value ≤ 0.05. 
The significant differentially expressed proteins (DEPs) were 
analyzed using UniProtR [34]. The biological processes, 
molecular functions, and cellular components of identified 
protein were obtained by ToppFun in the ToppGene suite 
[28]. Protein–protein interactions (PPI) and network analy-
ses were carried out by Cytoscape [35].

Results

Aggresome predicts poor prognosis CPT patients

The clinicopathological characteristics of all patients are 
summarized in (Supplementary Table  1). Methylation 
EPIC array was used to molecularly stratify CPT samples 
(Fig. 1a). Sample swap affirmed the concordance between 
matched FFPE and FF tissue samples (Supplementary 
Fig. 1a). Two samples were excluded from further analy-
sis based on a high p-value compared to background sig-
nals of control probes (Supplementary Fig. 1b). Technical 
batch effects were excluded by singular value decomposi-
tion (SVD) (Supplementary Fig. 1c). Normalized and fil-
tered data of 57 tumor samples were used for the selection 
of the most variable methylated probes (n = 36,279). These 
probes were distributed across all chromosomes and differ-
ent genomic features, with the majority in the open sea and 
gene bodies (Supplementary Fig. 1d). Subsequent t-SNE 
analysis and hierarchical clustering across the dataset using 
most variable probes identified two distinct groups with all 
paired samples of FFPE and FF clustered together (Fig. 1b 

and Supplementary Fig. 2). Methylation cluster “A” com-
prised 19 CPPs (63.33%) and 11 ACPP (36.67%.) with no 
CPC samples. In contrast, cluster “B” contained all CPC 
samples (n = 14, 51.8%), 3 CPPs (11.11%), and 10 ACPP 
(37.09%). The MNP classifier was used to validate the 
methylation-based classification of CPT samples (Fig. 1c 
and Supplementary Table 2).

IHC identified aggresomes in 64.2% of samples (n = 27) 
distributed among all pathological and molecular subgroups. 
The cytokeratin-positive paranuclear stain was detected in 
most of the samples, however; its percentage did not coin-
cide with the level of vimentin (Fig. 2a and Supplementary 
Table 2). Aggresomes-based classification identified two 
groups, where aggresome-positive tumors comprised all 
CPCs (n = 12), ACPPs (n = 10), CPPs (n = 5), and 77.7% 
of cluster “B” tumors (n = 21). On the other hand, CPPs 
(n = 10), ACPPs (n = 5), and 71.4% of cluster “A” tumors 
(n = 15) fell in the aggresome-negative group (Fig. 2b). 
The overexpression of TP53 was observed in 26.19% of all 
tumors (n = 11). TP53-positive tumors all had aggresomes, 
fell in cluster “B” and distributed among all pathological 
subgroups (Supplementary Table 2). TP53 had a significant 
impact on both OS and EFS (p-value = 0.03) (Supplemen-
tary Fig. 3). In addition, the proliferation indices of Ki-67/
MIB-1with ≥ 30% cutoff aslo had a significant effect on OS 
and EFS; p-value < 0.0001) (Supplementary Table 3). Sur-
vival analysis using different percentages of aggresomes 
ranging from 10 to 30% was performed to test the impact 
of aggresome on patient outcome compared to pathological 
and molecular classifications, and TP53 status (Supplemen-
tary Table 4 and Supplementary Fig. 3). Aggresome-posi-
tivity correlated significantly with patients’ outcomes and 
maintained significance at all proposed cutoffs. The ≥ 25% 
aggresomes cutoff had the highest impact on both OS and 
EFS (p-value < 0.001) (Fig. 2c). Analysis of clinical vari-
ables including age at diagnosis (OS p-value = 0.53 and 
EFS; p-value = 0.54), and extent of resection (OS and 
EFS; p-value = 0.97) had no significant effect on outcomes 
(Supplementary Table 3).

DNA methylation signature implicates proteostasis 
in the pathogensis of CPTs

Statistically significant DMPs of the three stratification 
approaches were identified (Supplementary Tables 5 and 
6) and used for gene set enrichment analysis (GSEA) 
(Supplementary Table 7). Methylation-based classifica-
tion using DMPs with adjusted p-values < 0.05 and log FC 
(1.5, −1.5) identified 1840 genes that showed enrichment 
in developmental processes like regulation of cell morpho-
genesis, neuron development and generation in addition to 
regulation of protein localization, and cytoskeleton protein 
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binding organization (Fig. 3a and Supplementary Fig. 4a). 
Aggresome-positivity identified 358 genes that had a func-
tional enrichment of protein binding and microfilament 
motor activity, as well as intracellular protein transport and 
localization (Fig. 3b and Supplementary Fig. 4b). Further-
more, the 25% aggresomes cutoff comparison identified 
1243 genes enriched in developmental processes, protein 
binding, voltage-gated ion channel, and protein localization 
(Fig. 3c and Supplementary Fig. 4c).

PPI network of aggresome-positivity was included within 
the methylation-based classification network (Fig. 3d, e, 
f, and Supplementary Table 8). The PPI networks of the 

differentially methylated genes of the three comparisons 
were enriched in the mTOR signaling pathway, MAPK, 
autophagy, apoptosis, and PI3K-Akt signaling pathway, 
mitophagy, pancreatic, prostate, and breast cancers in addi-
tion to chronic myeloid leukemia pathways (Fig. 3g, h, and 
i). Despite having the lowest number of genes in the PPI sub-
network, aggresomes positivity identified the highest num-
ber of enriched pathways with a 30.8% concordance with 
methylation-based classification (Supplementary Fig. 4d).

DMRs of the three stratification approaches displayed 
a similar pattern across all chromosomes (Fig.  4a and 
Supplementary Table  9).  ZIC1  and  ZIC4  genes were 

Fig. 1   Methylation-based classification of pediatric CPTs identified 
two molecular subgroups. a Overview flow chart of sample popula-
tion and analyses. b t.SNE plot of the CPT dataset (n = 57) using the 
most variable methylated probes (n = 36,279), showing two distinct 

molecular entities compared to pathological classification. c Heatmap 
of β-values of the most variable methylated probes after the assign-
ment of CPTs subgroups into clusters "A" and "B", combined with 
age, pathology, MNP classification, and TP53 status
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identified in the top significant DMRs in the three stratifica-
tion approaches (p-values < 0.000). DMPs that annotated to 
those genes were found in the body and promoter regions 
and were hypermethylated in all positions and all compari-
sons. The GO analysis of DMRs mainly showed enrichment 
in developmental processes (Fig. 4b and Supplementary 
Table 10). Furthermore, pathway enrichment analysis iden-
tified, the intrinsic apoptotic signaling pathway by p53 class 
mediator pathway, and the ATF6-mediated unfolded protein 
response (Supplementary Table 10).

Proteomics support DNA methylation signature 
in CPTs

A total of 2147 proteins were identified from all samples, 
filtered into 784 non-redundant proteins for subsequent 
normalization and differential analysis (Supplementary 

Table 11). DEPs among the three stratification approaches 
were identified (Supplementary Fig. 5a, b, c, and Supple-
mentary Table 12) and segregated CPT samples into two 
distinct subgroups using partial least square regression anal-
ysis (PLS) (Supplementary Fig. 5d, e, and f). Hierarchical 
clustering using the top 50 DEPs showed a clear separation 
between samples specifically within the aggresome-positiv-
ity stratification (Fig. 5a, b, and c).

The GO analysis of the DEPs derived from methyla-
tion-based classification showed enrichment in terms of 
protein localization and transport, chaperone-mediated 
autophagy, unfolded protein response, RNA binding, and 
lysosomal degradation (Fig. 5d, Supplementary Table 13). 
DEPs of aggresome-positivity showed enrichment in the 
cellular response to unfolded protein along with chap-
erone binding, microtubule-based movement, and inter-
mediate filament remodeling (Fig. 5e, Supplementary 

Fig. 2   Characterization of aggresomes in CPTs and their association 
with the clinical outcomes. a Hematoxylin and eosin (H&E) staining 
of CPP, ACPP, and CPC FFPE tissues and IHC analysis of vimen-
tin and cytokeratin. Juxtanuclear dot-like staining of vimentin and 
cytokeratin were detected in all pathological subgroups with different 
percentages. b Distribution of aggresomes among different pathologi-

cal and molecular subgroups; NetworkD3 and dplyr packages were 
used to obtain the Sankey plot. c Kaplan–Meier plot of overall (OS) 
and event-free survival (EFS) for 41 CPT patients. Survival analysis 
was separated by aggresome-positivity (positive vs. negative), and 
the ≥ 25% aggresomes cutoff. P-values were calculated using the log-
rank test
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Table 13). Finally, DEPs based on the 25% aggresomes 
cutoff showed enrichment in cellular processes involved 
in late endosomal microautophagy, chaperone-mediated 
autophagy, lysosomal degradation, and calcium homeo-
stasis (Fig. 5f, Supplementary Table 13). The PPI net-
work of DEPs in the three stratifications were found to 
be differentially methylated genes and related to protein 
regulation machinery (Fig. 5g, h, and i).

Discussion

In this study, we assessed the prognostic impact of 
aggresomes in pediatric CPTs and examined their asso-
ciated proteogenomic signatures. CPT patients were 
molecularly stratified using genome-wide methylation 
profiling. Consistent with previous reports [4, 5] the 
methylation-based classification of pediatric CPTs identi-
fied two molecular subgroups with all CPCs clustered in 

Fig. 3   Enrichment analysis of DMPs. Volcano plot of the DMPs 
highlighting the hypomethylated and hypermethylated genes in a 
methylation-based classification, b aggresomes-positivity, and c 
the ≥ 25% aggresomes cutoff, with log2 FC on the x-axis and log10 
adjusted p-value on the y-axis. The horizontal line represents the cut-
off of the adjusted (p-value < 0.05) and the vertical lines represent the 

cutoff of the log2 FC (1.5 and -1.5). PPI network analysis of signifi-
cant DMPs of d methylation-based classification, e aggresomes-pos-
itivity, and (f) the ≥ 25% aggresomes cutoff. Enrichment analysis of 
KEGG pathways in g methylation-based classification, h aggresomes-
positivity, and (i) the ≥ 25% aggresomes cutoff with enriched path-
ways plotted on the y-axis versus their Log (1/p-values) on the x-axis
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one subgroup, while ACPPs and CPPs distributed among 
both subgroups. The molecular stratification of CPTs had 
a significant impact on patient prognosis; however, the 
pathological stratification maintained the highest signifi-
cance on patient outcomes. Despite having a lower signifi-
cance than pathology, molecular classification identified 
ACPPs and CPPs with different biologic features similar 
to CPCs. The ACPPs are a challenging entity compared to 
CPPs and CPCs subgroups. Therefore, methylation-based 
classification provided a mean to segregate atypical tumors 
into good outcome (group A) or poor outcome (group B). 
In agreement with studies by other group [4, 5], methyla-
tion-based analysis was the most appropriate way to make 
the distinction. The overexpression of TP53 protein was 

observed only in the "B" molecular subgroup regardless of 
the pathological subtypes. Meanwhile, aggresomes were 
detected in all pathological and molecular subgroups with 
different percentages from negative up to 90% of tumor 
cells. The presence of aggresome had a nearly significant 
impact on the patient’s outcome, while the ≥ 25% cutoff 
was comparable to the molecular classification in segregat-
ing samples into two subgroups, and to the pathological 
stratification in the prediction of patient outcomes. These 
results coincided with our previous study where a ≥ 20% 
aggresomes cutoff was a predictor of poor prognosis in the 
non-WNT/SHH molecular subgroup of pediatric MB [15]. 
The most commonly used model for assessing prognostic 
variables is multivariate survival analysis. Thereby, we 

Fig. 4   DMRs and their genomic 
context. a Circos plot of 
DMRs for the 3 comparisons 
and their distributions across 
chromosomes. b GO analysis 
of top significant (FDR < 0.05) 
biological processes, molecular 
functions, and cellular com-
ponents of DMRs in all each 
stratification approaches
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calculated the minimum sample size required for a multi-
variable proportional hazards model using the significant 
prognostic variables based on univariate analysis (pathol-
ogy, methylation-based classification, ≥ 25% aggresomes 
cutoff, the status of TP53, and the Ki67/MIB) per criteria 
proposed by Riley et al. [36]. Assuming estimated adjusted 
Cox-Snell R2 = 0.55, a minimum sample size of 71 
patients with at least 15 outcome events is needed. Hence, 
our cohort was not powered for such analysis owing to the 
scarcity of CPTs, especially in a single center.

To further explore the molecular signature of pediat-
ric CPTs and examine the correlation of aggresomes with 

genome-wide alterations we identified DMPs associated 
with aggresome formation in reference to the molecular 
subgroups. Various numbers of DMPs were associated 
with the three comparisons. The least number of DMPs in 
aggresome-based classification could be attributed to the 
fact that this comparison was based on a single biological 
feature; aggresomes. While the 25% cutoff applied more 
stringent criteria that increased the pathological and molecu-
lar uniformity of tumor populations. Interestingly, the meth-
ylation signature displayed by aggresome-positivity or the 
25% aggresomes cutoff was the same as the methylation-
based classification. Most of the enriched pathways were 

Fig. 5   Proteomic signature of CPTs. Hierarchical clustering heat-
map of the top 50 significant DEPs (p-values < 0.05) of a methyla-
tion-based classification, b aggresomes-positivity, and c the ≥ 25% 
aggresomes cutoff, with the y-axis represents samples analyzed and 
the x-axis denotes Uniprot accessions. GO enrichment analysis of 

DEPs of d methylation-based classification, e aggresomes-positiv-
ity, and f the ≥ 25% aggresomes cutoff. PPIs of interacting DEPs in 
g methylation-based classification, h aggresomes-positivity, and i 
the ≥ 25% aggresomes cutoff
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related to p53 binding, protein binding, folding, localization, 
or degradation in addition to the autophagy-related pathways 
such as mTOR signaling pathway and chaperone-mediated 
autophagy. Sholler et al. showed an activation of mTOR 
pathway in a chemo-resistant CPC patient and it was chosen 
for targeted therapy [37]. Therefore, further investigation 
of mTOR pathway in CPTs is warranted. Other pathways 
were enriched in DMPs including; pancreatic, colorectal, 
prostate, breast cancers as well as chronic and acute myeloid 
leukemias. All of these tumors had been reported to have 
aggresomes [10, 12, 13, 38–40], which implicates protein 
quality control in CPT pathogenesis. The manifestation of 
altered PQC signature that associated with DMPs was fur-
ther confirmed by the enriched ATF6-mediated unfolded 
protein response in the DMRs. The enrichment analysis of 
DMRs revealed the TP53 signaling pathway which known to 
be involved in the development of CPTs [6, 37, 41, 42]. The 
top significant DMR in the three comparisons comprised 
of ZIC1 and ZIC4 genes. Interestingly, DMPs annotated to 
those genes were hypermethylated in the “B” molecular sub-
group and aggresomes positive tumors with positions either 
at the promoter sites or in the body of the gene. ZIC family 
genes are involved in a variety of developmental processes, 
including neurogenesis and morphogenesis [43]. Recently, 
ZIC1 gene was found to be silenced in colon cancer cell lines 
[44], primary colorectal cancer tissues [44], and gastric can-
cer [45]. Ectopic expression of ZIC1 suppressed cell prolif-
eration and induced apoptosis through the MAPK and PI3K/
Akt pathways, as well as the Bcl-xl/Bad/Caspase3 cascade 
[44, 45]. As an important transcription factor, ZIC1 is essen-
tial to the regulation of Hedgehog signaling (Hh), Bone mor-
phogenetic protein (BMP), and Notch signaling pathways 
in neural development [45, 46]. ZIC1 is also known to be 
interacting with GLI (glioma-associated oncogene homolog) 
genes,which function as both transcriptional activators and 
repressors downstream of the Shh signaling pathway and 
inhibitors of autophagy through the GLI2-PERK-eIF2 axis 
[47–49]. The hypermethylated signature of ZIC1 and the fact 
that ZIC1 is negative regulators of SHH and Notch signal-
ing pathways suggested the potential role of the ZIC1 in the 
pathogenesis of pediatric CPTs. This hypothesis could be 
supported by the detection of the notch signaling pathway 
in the enrichment analysis of DMRs and the hypomethyl-
ated signature of all DMPs that annotated to GLI2 gene in 
all comparisons. Accordingly, further examining the meth-
ylation status of ZICs transcription factors in the CPTs is 
required to establish their role in the pathogenesis of these 
tumors.

Proteomic analysis further supported the methylation sig-
nature, where most of the DEPs were related to heat shock 
proteins, ubiquitin, and the proteasome system. Enrich-
ment analysis of both DMPs and DEPs showed similar 
biological functions, notably unfolded protein response, 

chaperone-mediated autophagy, late-endosomal microau-
tophagy, protein binding, and cellular response to stress. 
Aggresomes-positivity expressed the highest number of 
DEPs and expressed the highest number of enriched path-
ways. This would suggest that aggresome-based classifica-
tion reflects a biological fingerprint of CPTs.

The pathogenesis of pediatric CPTs is not well under-
stood and the underlying mechanism of molecular altera-
tions in these tumors remains unknown. In the current study, 
we examined the proteogenomic signatures of these tumors 
and identified potential targets that may help to understand 
these tumors through further analysis. We also defined 
aggresomes as a mechanism used by CPTs to achieve proteo-
stasis. Aggresomes are thus not only a molecular prognostic 
marker but also a potential target for treatment of pediatric 
CPTs.
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