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Abstract
Pre-eclampsia (PE) is a serious multi-factorial disorder of human pregnancy. It is associated

with changes in the expression of placental genes. Recent transcription profiling of placental

genes with microarray analyses have offered better opportunities to define the molecular

pathology of this disorder. However, the extent to which placental gene expression changes

in PE is not fully understood. We conducted a systematic review of published PE and normal

pregnancy (NP) control placental RNAmicroarrays to describe the similarities and differences

between NP and PE placental gene expression, and examined how these differences could

contribute to the molecular pathology of the disease. A total of 167 microarray samples were

available for meta-analysis. We found the expression pattern of one group of genes was the

same in PE and NP. The review also identified a set of genes (PE unique genes) including a

subset, that were significantly (p < 0.05) down-regulated in pre-eclamptic placentae only.

Using class prediction analysis, we further identified the expression of 88 genes that were

highly associated with PE (p < 0.05), 10 of which (LEP, HTRA4, SPAG4, LHB, TREM1,

FSTL3, CGB, INHA, PROCR, and LTF) were significant at p < 0.001. Our review also sug-

gested that about 30% of genes currently being investigated as possibly of importance in PE

placenta were not consistently and significantly affected in the PE placentae. We recommend

further work to confirm the roles of the PE unique and associated genes, currently not being

investigated in the molecular pathology of the disease.

Introduction
Pre-eclampsia (PE), a major cause of perinatal mortality complicates up to 8% of all pregnan-
cies in Western countries [1–3]. It is one of the top 4 causes of maternal mortality and morbid-
ity worldwide, causing 10 to 15% of maternal deaths [2–4]. PE is characterised by new
hypertension (blood pressure of�140/90 mmHg) on two separate readings at least 6 hours
apart presenting after 20 weeks' gestation in conjunction with clinically relevant proteinuria
(�300mg) per 24 hours [5].
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PE is a multifactorial disease, and while there is a cautious acceptance of links between
familial concordance and maternal polymorphism in the pathogenesis of the disease [6–13],
the placenta is suggested as the primary cause of PE [14,15], Nonetheless, there is a degree of
uncertainty, especially about the roles of gene regulation and expression in the molecular path-
ogenesis of the disease. Expectedly, knowledge on placental gene expression is advancing [16–
18]. And while recent meta-analysis of Relative Gene Expression (RGE) in NP and PE placen-
tae have linked the changes in specific genes in the placenta to PE [13,19], these studies have
often focused on identifying genes that are either highly up-regulated or down-regulated
between the case and control matched samples. Traditionally, this approach is suggested as
highly suitable for candidate gene discovery or class prediction studies [20–22]. However, this
methodology is lately suggested as less sensitive for microarray studies that seek to account for
variability in gene expression across sample within same class or to map the molecular pathol-
ogy of a disease from 'noisy' data sets [23–26]. We therefore examined whether RGE analysis
would identify same PE genes as Absolute Gene Expression (AGE) analysis, and also to deter-
mine the functional roles of gene sets or families that are equally expressed at high or low levels
in both NP and PE placentae.

Therefore, in this study we provide evidence that AGE analyses identify gene sets whose
combined expression patterns could uniquely characterise biological and functional phenotype
for PE placentae. We further provide evidence for putative inter-relationships and contributory
roles of equally low or high level expressed genes in the molecular pathology of PE.

Materials and Methods

Study selection
Public data repositories Gene Expression Omnibus (GEO) and ArrayExpress Archive were sys-
tematically searched in accordance with PRISMA and MIAME in December 2014, and
repeated in June 2015. No time limit for data publication was set. Search terms used were NP
placenta, PE and Term placenta explant. Study series with no report on placental tissue but
other tissues such as Chorionic villous tissue, Decidua, Trophoblast cell lines and Basement
membrane were excluded. Similarly, study series with no matched control group; control
group composed of pregnancies complicated by small for gestational age fetuses; gestational
diabetes, Non-homo sapiens control; and Non-term placentae were excluded. Also, duplicate
samples; Methylation profiling array; Protein profiling array; Long non-coding RNAs (long
ncRNAs, lncRNA); and all complications of human pregnancy other than PE were excluded.

Array Processing and Quality Control
Data for each sample included were downloaded from GEO (or from ArrayExpress if not avail-
able in GEO). The series data were prepared according to INMEX [27] requirement for meta-
analysis, and exported into INMEX. Probe IDs from the different platforms were re-annotated
in INMEX using the November, 2012 annotation information obtained from the NCBI Gen-
Bank and Bioconductor into Entrez gene IDs. Multiple probes mapping to the same gene were
presented as an average for combined probes and thence referred to as genes.

To prepare the data for differential expression analysis using Linear Model for Microarrays
(Limma), the data was log transformed into additive scale, and then quantile normalised.
Microarray quality appraisal was further performed using INMEX built-in protocol. Firstly,
study series with low quality samples was defined as samples with>60% missing data, and
were rejected. Using the INMEX inbuilt re-annotation protocol, study series with less than 10
common genes were also excluded from further analysis.
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Finding Significantly Expressed Genes in Pre-eclampsia
Significantly expressed gene was defined as a gene that shows consistent stronger aggregated dif-
ferential expression (DE) profile across the multiple datasets [24,27]. Therefore the DE genes
were identified by combining P-values from the multiple studies using Fisher's method (-2�∑Log
(p)) (p<0.05) for Relative expressions or RankProduct analysis for Absolute expressions.

RankProduct analysis, a non-parametric statistic [24], was used to identify genes that were
consistently up-regulated or down-regulated in PE or NP placentae. The RankProduct analysis
combined the gene rank from the different arrays together instead of using actual expression
data to select genes that were consistently ranked high or low [24,26]. The product ranks from
all samples were then calculated as the test statistic in100X permutations with False Discovery
Rate (FDR) Confidence at 1 –alpha = 95.0%. Genes with consistently high ranks (smaller rank
product) across the different microarrays were classified as up-regulated. Genes with consis-
tently low ranks (larger rank products) across the different arrays at the stated FDR were classi-
fied as down-regulated, whereas genes with inconsistent rank product across the different
studies were classified as non-significant [28].

Gene-Disease Association Analysis
Gene-Disease Association analysis was performed to identify genes whose expression could be
associated with PE placentae [29]. Using BRBArray Tools five prediction methods were per-
formed: Compound covariate predictor, Diagonal linear discriminant analysis, K-nearest
neighbours (for K = 1 and 3), Nearest Centroid, and Support vector machines. With a fixed
internal random seed, genes were selected using a combination of univariate F-test (p< 0.05),
and Leave-one-out cross-validation at 100 permutations, and further evaluated with ROC
curve analysis.

Functional Role Assignment
Biological relevance of the differentially expressed genes was determined using gene enrich-
ment analysis programmes in WebGestalt [30]. Briefly, Kyoto Encyclopedia of Genes and
Genomes (KEGG) Homo sapiens genome pathways database [31] was probed with the differ-
entially expressed genes to identify statistically enriched pathways. The Benjamini & Hochberg
(BH) hypergeometric test [32] was used for all enrichment evaluation analyses, with adjusted p
values based on R function p.adjust.

Results
Following the systematic search, a total of 41 microarray study series were identified (Fig 1).
Twelve of the study series met the inclusion criteria, and 29 series (S1 Table) were excluded
based on the eligibility criteria. Of the 12 series that met the eligibility criteria, 6 series (GSE
30186, GSE25906, GSE35574, GSE43942, GSE4707, GSE47187) (Table 1) passed the quality
and integrity checks. The remaining six failed the INMEX microarray quality and integrity
assessments and were further excluded (S2 Table). Altogether 167 samples, consisting of 68 PE
and 99 NP met the sample inclusion criteria for the meta-analysis. A total of 16701 genes
passed filtering criteria.

Patterns of Gene Expression in NP and PE Placentae
The samples were analysed to determine the patterns of gene expression in NP and PE placen-
tae. We used AGE and RGE analyses to characterise the respective patterns in PE and NP
placentae.
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AGE analysis for NP and PE placental genes. RankProd meta-analysis was used to iden-
tify AGE in NP or PE (Table 2). Significant AGE was defined as genes whose product of expres-
sion were persistently ranked as positively (up) or negatively (down)-regulated across all PE

Fig 1. PRISMA flow chart of NP and PE Gene Expression Systematic Review.

doi:10.1371/journal.pone.0161504.g001
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only or NP only placentae, at a given false discovery rate (FDR<0.05). Data output was
expressed as rank product of mean expression levels. For NP, a total of 1922 genes were identi-
fied as consistently significant (FDR< 0.05). Of these, 846 genes were negatively regulated and
1076 were positively regulated (Table 2). The expression levels of 14779 genes in NP placentae
were inconsistent and were classified as non-significant. In contrast, the expression of 9540
genes in PE placentae was consistent and significant (FDR< 0.05) (Table 2). Of these, 5146
(54%) genes were significantly down-regulated and 4394 (46%) genes were up-regulated in the
PE placentae. The expression levels of 7161 genes in PE placentae were inconsistent and thus
were classified as non-significant (Table 2).

RGE analysis for PE placental genes. RGE was defined as the relative quantitation of the
differences in the expression level of a gene between the PE and NP placental samples [27]. The
data output was expressed as a fold-change of expression levels in PE relative to NP. Using fish-
er’s method to combine p values, the expressions of 4349 genes were identified as significant in
PE (p<0.05), relative to NP (Table 2). Of these, 2197 (13%) genes were negatively regulated,
and 2152 (13%) were positively regulated (Table 2). Fig 2 shows that 2071 of these genes were
differentially expressed across the study series before meta-analysis, and a further 2278 genes
were significant (p<0.05) only after meta-analysis. The expression of 172 other genes lost sig-
nificance after meta-analysis.

Trends in placental gene expression and PE unique genes. Trends in the changes to PE
placental gene expression were determined by examining the relationships between PE and NP
Absolute and Relative gene sets. First, we compared the gene counts in the respective gene sets
from the Absolute PE and NP analyses. Fig 3 shows a 6 fold increase in the number of negative
significant genes in PE than in NP. Similarly, there was a 4 fold increase in positive significant
genes in PE than in NP (Fig 3). The proportion of non-significant genes in NP following AGE
was twice the concentration found in PE non-significant gene set.

Table 1. Profile of Microarray Series included in Pre-eclampsia Meta-gene Analysis.

GEO Accession Type Organism Assays included Platform Release Date

GSE47187 transcription profiling by array Homo sapiens 10 GPL14550 01/10/2013

GSE43942 transcription profiling by array Homo sapiens 12 GPL10191 01/02/2013

GSE30186 transcription profiling by array Homo sapiens 12 GPL10558 24/06/2011

GSE25906 transcription profiling by array Homo sapiens 60 GPL6102 10/12/2010

GSE4707 transcription profiling by array Homo sapiens 14 GPL1708 07/05/2008

GSE35574 transcription profiling by array Homo sapiens 59 (IUGR samples excluded) GPL6102 07/02/2012

doi:10.1371/journal.pone.0161504.t001

Table 2. Differentially Expressed Genes in NP and PE Placentae.

Absolute PE only Absolute NP only Relative PE/NP

Negatively Significant Genes # of Negatively Significant Genes 5146 846 2197

% of Negatively Significant Genes 31% 5% 13%

Positively Significant Genes # of Positively Significant Genes 4394 1076 2152

% of Positively Significant Genes 26% 6% 13%

Non-Significant Genes # of Non-Significant Genes 7161 14779 12352

% of Non-Significant Genes 43% 88% 74%

A total of 167 microarray samples (PE = 68; NP = 99) were meta-analysed as case-to-control matched samples with Fisher’s method or as case (PE) only

and control (NP) only with RankProd analysis. About 31%more genes were identified as differentially expressed (DE) in PE only than in case matched

baseline (NP) subtraction PE. RankProd analysis Confidence at (1—alpha): 95.0%; False Significant Proportion: 0.05 or less; p value threshold for fisher’s

metaP = 0.05. PE = Pre-eclampsia Placentae; NP = Normal Placentae.

doi:10.1371/journal.pone.0161504.t002
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Interestingly, while the proportions of genes identified as positive or negative significant
from RGE were twice less than those identified from AGE (Table 2), the number of the Relative
PE non-significant genes was similar to the Absolute NP non-significant genes. We therefore
examined further, whether there was any relationship between the Absolute NP non-signifi-
cant genes, Absolute PE significant and Relative PE significant genes.

Using BioVenn [33] we identified four sets of genes. First, the comparison of the PE and NP
Absolute genes (Fig 4A & 4B) showed 2 sets of down-regulated gene: (1) a set of genes that
were significantly (p< 0.05) down-regulated in both NP and PE (n = 846; Fig 4A; S4 Table);
(2) a second set of genes that were significantly (p< 0.05) down-regulated only in PE placentae
(n = 4300; p< 0.05; S5 Table). The third set of genes consisted of a group of 1076 genes signifi-
cantly (p<0.05) up-regulated in both NP and PE (S6 Table). The fourth set was a group of
3318 genes, that were significantly (p< 0.05) up-regulated only in PE (S7 Table).

Further comparison of the PE negative and positive significant gene sets with NP non-sig-
nificant gene sub-group showed that all the PE unique genes were not significantly regulated in
NP placenta (Fig 4C & 4D). Altogether, there were 7618 more significantly regulated genes in
PE than were in NP at the FDR Confidence of 1 –alpha = 95.0%.

Links between Relative and Absolute PE Significant Genes
We further examined the relationship between the PE significant Relative and Absolute genes.
All 4394 PE Absolute positive (up-regulated) significant genes were compared with the 2152
PE Relative positive significant genes. We expected all Relative PE genes to be identified amidst
the Absolute PE gene sets. However, only 79% (n = 1688) of the Relative positive significant
genes were identified in the PE Absolute positive genes. A much smaller number (24%,
n = 524) of the total PE Relative negative (down-regulated) significant genes (n = 2197) were
identified in the Absolute PE negative significant genes. Overall, only 51% of the Relative sig-
nificant genes were identified in the Absolute gene sets, with majority localised within the posi-
tive significant gene set. Further examination showed that the expression signals of the

Fig 2. Venn Diagram of Differentially Expressed Genes in Pre-eclampsia. Fig shows differentially expressed
(DE) genes in PE. Meta-analysis of ‘p’ values was performed using Fishers method. MetaDE = differentially
expressed genes following metaP-analysis. Gain = DE gene only found in meta-analysis result but not in any
individual analysis. Loss = DE genes identified in any individual analysis, but not in the meta-analysis. Gain and
Loss genes were calculated by comparing DE genes identified by meta-analysis to those from analysing individual
datasets.

doi:10.1371/journal.pone.0161504.g002
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significant Relative genes unmatched to Absolute genes were previously classified as inconsis-
tent and non-significant by the AGE analysis. In contrast, the Absolute genes not matched to
Relative genes typically showed low level expression profile or were similarly expressed in both
NP and PE placentae.

PE Placental Associated (PPA) Genes and Current Research
We tested the hypothesis that NP and PE placental gene expression profiles do not differ, and
that a prediction analysis would not discriminate between the NP and PE genes but only pick
up the random noise in the data set. To examine this, all 16701 genes from 99 NP placentae
and 68 PE placental microarrays samples were tested and the expression of 88 genes (Table 3)
was significantly (p<0.05) associated with PE placentae (Pre-eclamptic Placenta Associated,
PPA).

A ROC evaluation of the prediction accuracy was performed by plotting the sensitivity
against 1– specificity for each result value of the test with tools available in BRBArray Tools.
Three prediction algorithms were used to generate the ROC, including compound covariate
predictor (CCP), diagonal linear discriminant analysis (DLDA), and Bayesian compound
covariate predictor (BCCP). The analysis yielded a very modest but comparable ROC (Fig not
shown) for all three algorithms with AUC of (0.226 (CCP), 0.246 (DLDA), 0.227 (BCCP)).

Fig 3. Absolute Gene Expression in Normal and Pre-eclamptic Placentae.Counts of genes significantly regulated in PE and NP placentae.
Gene ratios for PE:NP are 6:1, 4:1 and 1:2 respectively for negatively significant, positively significant and non-significant genes. Genes identified
with Rankprod statistics in100X permutations (FDR Confidence at 1 –alpha = 95.0%).

doi:10.1371/journal.pone.0161504.g003
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Nonetheless, the association of 10 genes (LEP, HTRA4, SPAG4, LHB, TREM1, FSTL3, CGB,
INHA, PROCR, and LTF) with PE placentae was highly consistent and significant at p< 0.001
(Table 3).

We further evaluated the currency of gene-to-publication ranks of these PPA genes by prob-
ing the scientific literature with GLAD4U (Gene List Automatically Derived For You, [34]).
The search retrieved 6,288 publications, of which 642 contained information on 493 genes
related to PE placenta. After ranking, 76 genes were significant (p<0.01) and prioritised as
highly relevant to PE placenta (Table 4). The overlap between GLAD4U genes and PPA genes
showed that only 6 of the latter genes (FLT1, ENG, INHA, LEP, PAPPA2, and HTRA4) were
scored as significant and highly relevant from GLAD4U. Interestingly, 3 of these genes (LEP,
HTRA4, INHA) also appeared in the top 10 of the PPA genes (Table 3). Similarly, fewer than
expected GLAD4U genes (Table 5) were respectively identified in the PE Relative genes (22

Fig 4. Relation between NP and PE Placental Gene Expression. Significantly down-regulated (a) or up-regulated (b) genes in PE were compared with
down (n = 864) or up-regulated (n = 1076) genes in NP respectively. All genes significantly up or down regulated in NP were respectively regulated in PE. In c
& d, non-significantly differentiated genes in NP were compared with PE up or down-regulated. PE = pre-eclamptic placenta; NP = normal placenta;
-ve = down-regulated; +ve = up-regulated

doi:10.1371/journal.pone.0161504.g004
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Table 3. Pre-eclamptic Placental Associated Genes.

Symbol Name EntrezID Accession P Value

LEP leptin 3952 NM_000230 0.0003

HTRA4 HtrA serine peptidase 4 203100 NM_153692 0.0009

SPAG4 sperm associated antigen 4 6676 NM_003116 0.003

LHB luteinizing hormone beta polypeptide 3972 NM_000894 0.003

TREM1 triggering receptor expressed on myeloid cells 1 54210 NM_001242589 0.005

FSTL3 follistatin-like 3 (secreted glycoprotein) 10272 NM_005860 0.005

CGB chorionic gonadotropin, beta polypeptide 1082 NM_000737 0.005

INHA inhibin, alpha 3623 NM_002191 0.006

PROCR protein C receptor, endothelial 10544 NM_006404 0.007

LTF lactotransferrin 4057 NM_001199149 0.008

FLT1 fms-related tyrosine kinase 1 2321 NM_001159920 0.011

CORO2A coronin, actin binding protein, 2A 7464 NM_003389 0.011

S100A14 S100 calcium binding protein A14 57402 NM_020672 0.012

LPL lipoprotein lipase 4023 NM_000237 0.012

GP6 glycoprotein VI (platelet) 51206 NM_001083899 0.012

SIGLEC6 sialic acid binding Ig-like lectin 6 946 NM_001177547 0.013

ZNF114 zinc finger protein 114 163071 NM_153608 0.017

BHLHE40 basic helix-loop-helix family, member e40 8553 NM_003670 0.017

EPS8L1 EPS8-like 1 54869 NM_017729 0.018

QPCT glutaminyl-peptide cyclotransferase 25797 NM_012413 0.018

BTNL9 butyrophilin-like 9 153579 NM_152547 0.019

PLIN2 perilipin 2 123 NM_001122 0.019

NTRK2 neurotrophic tyrosine kinase, receptor, type 2 4915 NM_001007097 0.019

KRT15 keratin 15 3866 NM_002275 0.019

NEK11 NIMA-related kinase 11 79858 NM_001146003 0.019

PAPPA2 pappalysin 2 60676 NM_020318 0.019

BCL6 B-cell CLL/lymphoma 6 604 NM_001130845 0.020

SAPCD2 suppressor APC domain containing 2 89958 NM_178448 0.020

ENG endoglin 2022 NM_000118 0.020

HK2 hexokinase 2 3099 NM_000189 0.020

NDRG1 N-myc downstream regulated 1 10397 NM_001135242 0.021

GBA glucosidase, beta, acid 2629 NM_000157 0.022

CYP2J2 cytochrome P450, family 2, subfamily J, polypeptide 2 1573 NM_000775 0.022

PLA2G16 phospholipase A2, group XVI 11145 NM_001128203 0.023

SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporter), member 1 6556 NM_000578 0.023

NPNT nephronectin 255743 NM_001033047 0.023

MS4A15 membrane-spanning 4-domains, subfamily A, member 15 219995 NM_001098835 0.023

HILPDA hypoxia inducible lipid droplet-associated 29923 NM_001098786 0.023

GPT2 glutamic pyruvate transaminase (alanine aminotransferase) 2 84706 NM_001142466 0.024

GREM2 gremlin 2, DAN family BMP antagonist 64388 NM_022469 0.024

TMEM178A transmembrane protein 178A 130733 NM_001167959 0.024

RASEF RAS and EF-hand domain containing 158158 NM_152573 0.024

LRG1 leucine-rich alpha-2-glycoprotein 1 116844 NM_052972 0.025

ERO1L ERO1-like (S. cerevisiae) 30001 NM_014584 0.025

SLC16A3 solute carrier family 16 (monocarboxylate transporter), member 3 9123 NM_001042422 0.026

SH3BP5 SH3-domain binding protein 5 (BTK-associated) 9467 NM_001018009 0.027

PPL periplakin 5493 NM_002705 0.027

(Continued)
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genes), and PE Absolute genes (49 genes). Collectively, about 36% of genes identified from lit-
erature as highly relevant for PE placenta could not be confirmed as significant or consistently
expressed in PE placentae following a large scale microarray meta-analysis.

Table 3. (Continued)

Symbol Name EntrezID Accession P Value

ULBP1 UL16 binding protein 1 80329 NM_025218 0.028

FBXL16 F-box and leucine-rich repeat protein 16 146330 NM_153350 0.029

FCRLB Fc receptor-like B 127943 NM_001002901 0.029

SLC6A8 solute carrier family 6 (neurotransmitter transporter), member 8 6535 NM_001142805 0.031

CCR7 chemokine (C-C motif) receptor 7 1236 NM_001838 0.033

SFN stratifin 2810 NM_006142 0.034

MID1 midline 1 (Opitz/BBB syndrome) 4281 NM_000381 0.034

GLIS3 GLIS family zinc finger 3 169792 NM_001042413 0.034

STBD1 starch binding domain 1 8987 NM_003943 0.035

TNFAIP2 tumor necrosis factor, alpha-induced protein 2 7127 NM_006291 0.036

DSCR4 Down syndrome critical region gene 4 10281 NM_005867 0.037

MTSS1L metastasis suppressor 1-like 92154 NM_138383 0.038

TPBG trophoblast glycoprotein 7162 NM_001166392 0.038

KIAA1919 KIAA1919 91749 NM_153369 0.038

EBI3 Epstein-Barr virus induced 3 10148 NM_005755 0.038

CLC Charcot-Leyden crystal galectin 1178 NM_001828 0.038

GPIHBP1 glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 338328 NM_178172 0.041

TSNARE1 t-SNARE domain containing 1 203062 NM_145003 0.042

FAM184A family with sequence similarity 184, member A 79632 NM_001100411 0.043

ANKRD37 ankyrin repeat domain 37 353322 NM_181726 0.044

ODF3B outer dense fiber of sperm tails 3B 440836 NM_001014440 0.044

PPP1R16B protein phosphatase 1, regulatory subunit 16B 26051 NM_001172735 0.045

NIM1K NIM1 serine/threonine protein kinase 167359 NM_153361 0.045

LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 4067 NM_001111097 0.045

DNAJC3 DnaJ (Hsp40) homolog, subfamily C, member 3 5611 NM_006260 0.045

GFOD2 glucose-fructose oxidoreductase domain containing 2 81577 NM_001243650 0.045

C8orf58 chromosome 8 open reading frame 58 541565 NM_001013842 0.045

KCNA5 potassium voltage-gated channel, shaker-related subfamily, member 5 3741 NM_002234 0.046

SLCO4A1 solute carrier organic anion transporter family, member 4A1 28231 NM_016354 0.046

NTF4 neurotrophin 4 4909 NM_006179 0.046

PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 5063 NM_001128166 0.048

EPB42 erythrocyte membrane protein band 4.2 2038 NM_000119 0.048

SLC44A3 solute carrier family 44, member 3 126969 NM_001114106 0.048

HPCAL1 hippocalcin-like 1 3241 NM_001258357 0.049

AOX1 aldehyde oxidase 1 316 NM_001159 0.049

MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) 4282 NM_002415 0.049

PMEL premelanosome protein 6490 NM_001200053 0.049

ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4 50649 NM_015320 0.049

PNCK pregnancy up-regulated nonubiquitous CaM kinase 139728 NM_001039582 0.049

C5orf46 chromosome 5 open reading frame 46 389336 NM_206966 0.049

WDR60 WD repeat domain 60 55112 NM_018051 0.05

doi:10.1371/journal.pone.0161504.t003
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Table 4. Highly Relevant Pre-eclamptic Placentae Genes from GLAD4U.

Rank Gene ID Gene Symbol Species Score

1 2321 FLT1 Homo sapiens 98.65391

2 5228 PGF Homo sapiens 67.10936

3 2022 ENG Homo sapiens 41.58958

4 29124 LGALS13 Homo sapiens 22.95614

5 8521 GCM1 Homo sapiens 21.84667

6 219736 STOX1 Homo sapiens 16.71948

7 3135 HLA-G Homo sapiens 13.52779

8 6866 TAC3 Homo sapiens 9.593853

9 30816 ERVW-1 Homo sapiens 8.92392

10 3814 KISS1 Homo sapiens 7.901808

11 10761 PLAC1 Homo sapiens 7.26706

12 3491 CYR61 Homo sapiens 6.753044

13 7422 VEGFA Homo sapiens 6.501511

14 283120 H19 Homo sapiens 6.323999

15 3091 HIF1A Homo sapiens 5.995539

16 3291 HSD11B2 Homo sapiens 5.749669

17 3623 INHA Homo sapiens 5.683964

18 133 ADM Homo sapiens 5.396744

19 60676 PAPPA2 Homo sapiens 5.346197

20 5069 PAPPA Homo sapiens 5.329039

21 406992 MIR210 Homo sapiens 5.306165

22 405754 ERVFRD-1 Homo sapiens 5.283019

23 4856 NOV Homo sapiens 5.282213

24 94031 HTRA3 Homo sapiens 5.222811

25 666 BOK Homo sapiens 5.16531

26 4973 OLR1 Homo sapiens 4.838615

27 1906 EDN1 Homo sapiens 4.30502

28 3791 KDR Homo sapiens 4.239487

29 1647 GADD45A Homo sapiens 4.229643

30 366 AQP9 Homo sapiens 4.218389

31 84432 PROK1 Homo sapiens 4.218389

32 203100 HTRA4 Homo sapiens 4.195596

33 285 ANGPT2 Homo sapiens 4.056039

34 1839 HBEGF Homo sapiens 4.030243

35 7043 TGFB3 Homo sapiens 3.965444

36 3308 HSPA4 Homo sapiens 3.936441

37 308 ANXA5 Homo sapiens 3.913405

38 1506 CTRL Homo sapiens 3.903702

39 4838 NODAL Homo sapiens 3.871352

40 64073 C19ORF33 Homo sapiens 3.824958

41 11186 RASSF1 Homo sapiens 3.824184

42 185 AGTR1 Homo sapiens 3.818463

43 5806 PTX3 Homo sapiens 3.776246

44 3624 INHBA Homo sapiens 3.62444

45 284 ANGPT1 Homo sapiens 3.395681

46 92 ACVR2A Homo sapiens 3.378521

47 10887 PROKR1 Homo sapiens 3.326212

(Continued)
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Biological Relevance of the Significant Genes
Using the AGE results, we examined the biological relevance, the similarities and differences
between the NP and PE placental gene sets. KEGG pathway maps were probed with WebGes-
talt (WEB-based GEne SeT AnaLysis Toolkit). Altogether, 207 and 126 KEGG pathways (S8 &
S9 Tables) were significantly enriched respectively by PE and NP placental Absolutes genes
(p<0.05, with Hypergeometric tests: multiple testing correction (MTC) and BH; and a mini-
mum gene threshold of 2). All 126 pathways enriched by the NP placental genes were also
affected significantly in PE, but with higher enrichment ratios. We observed additional 81
pathways that were significantly affected only in PE placentae. The most highly affected path-
ways in PE include: Wnt signaling pathway; Long-term potentiation; Melanoma; TGF-beta sig-
naling pathway; T cell receptor signaling pathway; ErbB signaling pathway; mRNA
surveillance pathway; PPAR signaling pathway; Ubiquitin mediated proteolysis; and Hedgehog
signaling pathway (Table 6).

We repeated the analysis with the Relative significant genes, and 176 pathways were signifi-
cantly affected in PE placentae. Of these, 164 were correctly mapped to Absolute genes affected
pathways, but with variations in enrichment ratios. Examination of the 12 pathways affected

Table 4. (Continued)

Rank Gene ID Gene Symbol Species Score

48 811 CALR Homo sapiens 3.282796

49 3626 INHBC Homo sapiens 3.073992

50 6338 SCNN1B Homo sapiens 3.049242

51 10699 CORIN Homo sapiens 2.931029

52 3952 LEP Homo sapiens 2.826923

53 1E+08 PP13 Homo sapiens 2.819727

54 2689 GH2 Homo sapiens 2.808886

55 6870 TACR3 Homo sapiens 2.722579

56 719 C3AR1 Homo sapiens 2.722579

57 1392 CRH Homo sapiens 2.688973

58 7020 TFAP2A Homo sapiens 2.666521

59 6424 SFRP4 Homo sapiens 2.625932

60 186 AGTR2 Homo sapiens 2.527153

61 1491 CTH Homo sapiens 2.476149

62 6510 SLC1A5 Homo sapiens 2.446266

63 3162 HMOX1 Homo sapiens 2.423731

64 4012 LNPEP Homo sapiens 2.417434

65 284100 YWHAEP7 Homo sapiens 2.343263

66 391533 FLT1P1 Homo sapiens 2.343263

67 1096 CEACAMP8 Homo sapiens 2.343263

68 4543 MTNR1A Homo sapiens 2.336584

69 6515 SLC2A3 Homo sapiens 2.298985

70 9166 EBAG9 Homo sapiens 2.206506

71 4318 MMP9 Homo sapiens 2.15965

72 80831 APOL5 Homo sapiens 2.122071

73 2153 F5 Homo sapiens 2.046305

74 442899 MIR325 Homo sapiens 2.043218

75 259 AMBP Homo sapiens 2.039557

76 356 FASLG Homo sapiens 2.034258

doi:10.1371/journal.pone.0161504.t004
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only by the Relative Genes showed closer links with metabolism: (ID: Mismatch repair; Homol-
ogous recombination; Selenocompound metabolism; Sulfur relay system; Steroid biosynthesis;
Terpenoid backbone biosynthesis; Biotin metabolism; Vitamin B6 metabolism; Fatty acid bio-
synthesis; Riboflavin metabolism; Ubiquinone and other terpenoid-quinone biosynthesis; Caf-
feine metabolism).

Discussion
PE is a serious complication of human pregnancy. While previous studies have led to clear
descriptions of symptoms and diagnosis, our understanding of the genes altered in PE is still
limited. In an attempt to identify a common set of dysregulated genes in PE placentae, we sub-
jected a thoroughly screened subset of existing datasets to a robust set of analyses. Interestingly,
the data revealed that over a third of the genes identified in the literature as being implicated in
PE, were not identified as associated with or consistently expressed in PE placentae. This raises
the question of whether current trends in PE genomic investigations are accurately reflecting
the true nature of the molecular pathology of the condition.

In cognisance of this, we identified specific gene sets that have not been previously reported
for PE. Of these, there was an expectation that all the significant RGE genes would be mapped
to the AGE PE genes. Rather, only 51% of the RGE genes were identified from the AGE PE
genes. The remaining RGE significant genes showed varied levels of expression between PE
and NP placentae but were classified as inconsistent with RankProd analysis. In contrast, 77%

Table 5. Distribution of GLAD4UGenes in PE Gene Sets.

In PPA Genes In Relative Genes In Absolute Genes

FLT1 FLT1 FLT1 ANXA5

ENG ENG PGF NODAL

INHA TAC3 ENG AGTR1

PAPPA2 KISS1 LGALS13 PROKR1

HTRA4 PLAC1 GCM1 CALR

LEP VEGFA STOX1 INHBC

INHA HLA-G SCNN1B

PAPPA2 TAC3 LEP

KDR ERVW-1 GH2

HTRA4 KISS1 TACR3

ANXA5 PLAC1 CRH

AGTR1 CYR61 TFAP2A

INHBA HSD11B2 SFRP4

ANGPT1 INHA AGTR2

CALR ADM CTH

SCNN1B PAPPA2 SLC1A5

LEP PAPPA HMOX1

C3AR1 ERVFRD-1 LNPEP

CRH NOV MTNR1A

TFAP2A HTRA3 SLC2A3

SLC2A3 OLR1 APOL5

F5 EDN1 F5

HTRA4 AMBP

ANGPT2 FASLG

TGFB3

doi:10.1371/journal.pone.0161504.t005
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of the AGE genes did not match with the RGE genes. Of these, about 80% were genes that
showed low or similar levels of expression in both PE and NP but were consistently expressed
in PE placentae only.

Table 6. List of KEGG Pathways identified exclusively in PE Placenta.

Pathway Name

Wnt signaling pathway Intestinal immune network for IgA production

Long-term potentiation Valine, leucine and isoleucine biosynthesis

Melanoma One carbon pool by folate

TGF-beta signaling pathway Renin-angiotensin system

T cell receptor signaling pathway Alanine, aspartate and glutamate metabolism

ErbB signaling pathway African trypanosomiasis

mRNA surveillance pathway Fructose and mannose metabolism

PPAR signaling pathway Dorso-ventral axis formation

Ubiquitin mediated proteolysis Thyroid cancer

Hedgehog signaling pathway NOD-like receptor signaling pathway

Asthma Glycosaminoglycan biosynthesis—heparan sulfate

Valine, leucine and isoleucine degradation Nicotinate and nicotinamide metabolism

Pyrimidine metabolism Inositol phosphate metabolism

Type II diabetes mellitus Mucin type O-Glycan biosynthesis

Butanoate metabolism Other glycan degradation

RNA degradation Bladder cancer

Ribosome biogenesis in eukaryotes Nitrogen metabolism

Primary immunodeficiency Glycerophospholipid metabolism

Progesterone-mediated oocyte maturation Synthesis and degradation of ketone bodies

Amyotrophic lateral sclerosis (ALS) Glycosphingolipid biosynthesis—globo series

Glycosphingolipid biosynthesis—lacto and neolacto series RNA polymerase

Carbohydrate digestion and absorption SNARE interactions in vesicular transport

Galactose metabolism Primary bile acid biosynthesis

Fc epsilon RI signaling pathway Basal transcription factors

Propanoate metabolism Glycosaminoglycan biosynthesis—chondroitin sulfate

Allograft rejection Glycosylphosphatidylinositol(GPI)-anchor biosynthesis

Apoptosis Nucleotide excision repair

Endometrial cancer Glycosaminoglycan biosynthesis—keratan sulfate

Peroxisome Biosynthesis of unsaturated fatty acids

VEGF signaling pathway Phenylalanine, tyrosine and tryptophan biosynthesis

Histidine metabolism Circadian rhythm—mammal

p53 signaling pathway Pantothenate and CoA biosynthesis

Non-small cell lung cancer Glycosaminoglycan degradation

Type I diabetes mellitus Glycine, serine and threonine metabolism

Fatty acid metabolism Fatty acid elongation in mitochondria

Glyoxylate and dicarboxylate metabolism DNA replication

Basal cell carcinoma Base excision repair

Graft-versus-host disease Folate biosynthesis

Tyrosine metabolism D-Glutamine and D-glutamate metabolism

Lysine degradation Ether lipid metabolism

Glycerolipid metabolism

Pathways in order of descending adjustedsignificance levels (details of pathways available in S8 Table).

doi:10.1371/journal.pone.0161504.t006
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Thus, the current findings show that the use of AGE analysis enables the description of a
comprehensive, globally and consistently expressed PE placental genes. On the other hand, the
findings show that overt use of RGE analysis to the disadvantage of AGE could limit gene sets
and our understanding of the real time and complexities of changes that could occur in the PE
state. These findings appear to confirm earlier reports [23,24] that RGE not only identifies lim-
ited candidate genes but could also exclude large proportion of genes that may be of relevance
in characterising the molecular pathology of a disease including those with low level expression
and genes with similar levels of expression in both the case and control samples. The findings
also seem to suggest that RGE could inherently identify genes whose expression patterns may
be inconsistent but might have large differential expression between control and case samples.

Generally, the roles of genes with low level expressions in a disease state are unclear. How-
ever, reports from stem cell research suggest that low level gene expression may be involved in
lineage priming and cell differentiation [35–38]. While such conclusions cannot be inferred as
yet in the placenta from the current study, our findings showed that the PE placenta retains its
ability to express the genes significantly regulated in NP placenta. The findings also showed the
presence of additional subsets of unique genes including low level expressed genes that were
consistently expressed only in PE placentae.

It could thus, be inferred from the current findings, albeit limited to RNA messages that: (1)
there may be apparent expression of a set of genes, that could be critical for the survival or
development of the placenta, and the pattern of expression of these genes might be similar in
both NP and PE placentae; (2) in PE placentae, there may be consistent regulation of excess
pool of genes (PE unique genes), that may exacerbate the activation of pregnancy-favourable
biological pathways or precipitate pregnancy-unfavourable biological pathways; (3) PE may be
a polygenic condition decompensated by the cumulative effect of multiple genes, each with
small effects, and there may be no single gene with a large effect. These were most evident in
the extent to which the molecular interaction and reaction pathways were affected in the PE
placentae.

We identified two sets of pathways: common pathways in both NP and PE placentae, and
unique pathways affected only in PE. The observation that the common pathways were
enriched either more negatively or positively in PE than in NP appeared to suggest a plausible
decompensation or exaggeration of normal placental functions as key factors in PE. Perhaps, of
greatest significance for future research is the identification of previously unidentified dysregu-
lated pathways in PE placentae such as: Histidine metabolism, Fc epsilon RI signaling pathway,
allograft rejection, graft vs. host disease, primary immunodeficiency and renin-angiotensin,
Wnt signaling, RNA degradation, and RNA Polymerase.

Wnt signaling, RNA degradation, and RNA Polymerase pathways were significantly
affected only in PE. The canonical Wnt pathway leads to regulation of gene transcription [39],
suggesting that PE could be linked to excessive gene expression in response to an autacoids or a
paracrine hormones such as histamine with regulatory roles on Wnt pathway [40].

Crucially, dysregulated metabolism of histamine as a consequence of impaired histidine
metabolism in pregnancy is well known to affect PE [41,42]. Therefore, the concurrent identifi-
cation of Histidine metabolism pathway in PE is of significance. Possibly, the cumulative effects
of the release of the histamine and other substances involved in inflammation and immune
responses, cell proliferation, tissue differentiation, tumour formation, apoptosis and produc-
tion of purines and pyrimidines is of importance [43,44]. Significantly, dysregulation of these
functions are widely accepted to be rooted in the defects in early trophoblast to uterine inva-
sion, adaptive transformation of the uterine spiral arteries to high capacity and low impedance
vessels, and development of chorionic villi [14,45,46]. These are important issues known to
affect PE, commonly at the early stages of the disease development [47].
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Fc epsilon RI-mediated signaling pathway was also affected only in PE. This pathway in
mast cells are initiated by interaction of multivalent allogens with the extracellular domain of
the alpha chain of Fc epsilon RI to release preformed histamines, proteoglycans (especially hep-
arin), phospholipase A2 and subsequently, leukotrienes (LTC4, LTD4 and LTE4), prostaglan-
dins (especially PDG2), and cytokines including TNF-alpha, IL-4 and IL-5 [48]. These
mediators and cytokines contribute to inflammatory responses.

In the case of inflammatory pathways in PE, it is suggested that the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) pathway mediates excessive maternal intra-
vascular inflammation that leads to endothelial dysfunction [49,50]. In this context, it has been
hypothesised that PE arises as a result of an excessive maternal intravascular inflammatory
response to pregnancy, and that it involves the activation of both innate and the adaptive
immune system, neutrophil, and the complement system pathways [50–54].

Similarly, we identified allograft rejection, graft vs. host disease, and primary immunodefi-
ciency pathways as affected in PE. This observation is consistent with previous opinions that
heightened immune responses in PE pregnancies could be a consequence of chronic feto-allo-
graft rejection reaction [55]. Accordingly, PE shares similarities with graft rejection linked to
over activation of immune pathways [56–61]. Integral to this is the argument that disequilib-
rium of Th1/Th2 cytokine balance in favour of Th1 (IL-2, IL-12, IL-15, IL-18, IFNgamma,
TNFalpha vs. IL-4, IL-10, TGFbeta); precipitation of subsets of immunocompetent cells (T
CD4, suppressor gammadeltaT, cytotoxic T CD8, Treg, Tr1, uterine NK cells); innate immu-
nity (NK cytotoxic cells, macrophages, neutrophils and complement); adhesion molecules; fgl2
prothrombinase activation [56–61] and under-expression of Heme oxygenase-1 (HO-1) [62]
underpin the development of PE.

This opinion is however not universally supported. A recent review by Ahmed and Ramma
[63] appears to down-play the roles of inflammatory, hypoxia and immunologic pathways in
favour of angiogenic response as the cause of PE. They argue that recent work supports the
hypothesis that PE arises because of the loss of vascular endothelial growth factor (VEGF)
activity, which in turn is caused by increase in the levels of endogenous soluble fms-like tyro-
sine kinase-1 (sFlt-1), an anti-angiogenic factor [63]. SFlt-1 binds and reduces free circulating
levels of the pro-angiogenic factor VEGF, and thus inhibits the beneficial effects mediated by
flt-1 (also known as vascular endothelial growth factor receptor 1 (VEGFR-1)) on maternal
endothelium, with consequent maternal hypertension and proteinuria [64,65]. It is further
argued that altered balance of circulating pro-angiogenic/anti-angiogenic factors such sFlt-1,
soluble endoglin, and placenta growth factor (PlGF) are unique to PE [63–67]. This view is not
lost as we also identified VEGF signaling pathway as affected only in PE.

However, due to the complexity of pathways affected in PE, our findings contrast the con-
clusions drawn by Ahmed and Ramma [63]. Instead, our findings support a more global view
that multiple and concurrent dysregulated pathways underpin the aetiology of PE [47], and no
single pathway could be associated with the origins of PE.

These findings therefore provide the opportunity to re-examine current studies in PE to
reflect the consistently expressed genes that are unique to PE placentae or biological pathways,
especially those that may be exclusively affected in PE placentae, to improve our understanding
of the molecular pathology or the genomic basis of PE.
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