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Abstract: Cancer is still one of the most widespread diseases globally, it is considered a vital health
challenge worldwide and one of the main barriers to long life expectancy. Due to the potential
toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative
treatments is a top priority. Plant-derived natural products have high potential in cancer treatment
due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively
low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were
analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of
natural product or natural products with chemotherapeutic drugs was provided. This review should
provide a strong platform for researchers and clinicians to improve basic and clinical research in the
development of alternative anticancer medicines.
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1. Introduction

Cancer is one of the major public health problems, ranked as the second leading cause
of death worldwide [1]. From a statistical perspective, 19.3 million new cases and about
10 million deaths have been reported in 2020 [2]. Cancer and its treatment have a negative
impact on the economic resources and the health care system, which requires paying more
attention to developing new preventive and treatment strategies with low cost and effective
outcomes [2]. Additionally, other factors contributed to cancer being a global burden,
including drug resistance and treatment side effects [3,4].

Since cancer is a heterogenous disease, conventional monotherapy has shown lim-
ited efficacy in the treatment and prevention [5]. In addition, several anticancer drugs
have been associated with prominent undesirable adverse effects such as cardiotoxicity
by doxorubicin [6], ototoxicity as a long-term side effect of cisplatin [7], and cognitive
impairment by the 5-fluorouracil drug [8]. Hence, plant-derived compounds, known as
phytochemicals, have been proved to be a potential approach for discovering new effective
and safer anticancer agents [9]. Moreover, phytochemicals can inhibit cancer development
via inducing cell apoptosis, modulating the immune response, suppressing angiogenesis
factors, and targeting gene expression in cancer [10,11]. In preclinical studies, natural
products in combination with chemotherapy have shown an ability to enhance anticancer
activity and overcome drug resistance [12,13]. Moreover, it was found that high single doses
of natural compound treatment may not be effective as using lower doses in combination
anticancer treatment models [5,14]. The advantage of using a combination approach in
cancer therapy is represented by targeting different pathways in a distinctively, synergistic,
or additive manner [15]. In this context, when designing a combination experimental
model, the expected cross-resistance and overlapping adverse effects of these compounds
should be taken into account [16].
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Many preclinical studies have investigated combination cancer therapies that involved
natural product interventions and revealed promising results [5]. Fantini et al. [17] demon-
strated how the combination treatment using different polyphenols may conquer its poor
bioavailability and consequently increase their activity. On the other hand, six phytochem-
icals, including indol-3-carbinol, resveratrol, C-phycocyanin, isoflavone, curcumin, and
quercetin, have been tested in combination against breast cancer cell lines. The results have
shown a synergistic effect in inhibiting cell growth, suppressing tumor cell migration and
invasion, and promoting both cell cycle arrest and apoptosis [18].

In this review, we aim to provide comprehensive data on the main effective phyto-
chemicals and demonstrate their molecular mechanisms of action in combination with
other plant-derived molecules or chemotherapy. Choosing these phytochemicals was based
on their high potential anticancer activity and the extensive evaluation of their effect on
improving chemotherapy outcomes.

2. Combination Therapies Based on Selected Natural Products
2.1. Curcumin

Curcumin (CUR) (diferuloylmethane) is a polyphenol that is extracted from the rhi-
zomes of the natural plant Curcuma longa L. (turmeric) [19,20]. It was discovered for the
first time in 1870, in a pure crystalline form [20] (Figure 1). Turmeric is one of the most
widely used culinary spices in India and Southeast Asian nations, and is widely used
in traditional Chinese herbal medicine [21]. Curcumin exerts multiple pharmacological
activities including antioxidant, anti-inflammatory, antibacterial, antiviral, and anti-cancer
activity. Currently, its anticancer effect has been the most researched [22]. The main chal-
lenges facing the use of turmeric are low water solubility and bioavailability [23]. Several
structural changes have been made to increase its overall anticancer efficacy and improve
selective toxicity against certain cancer cells [23,24].
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Figure 1. Chemical structure of curcumin.

An in vitro study showed that turmeric with IC50 (31.14 ± 1.24 µM) was effective
against MCF-7 cell lines in breast cancer [25]. Moreover, the IC50 of free CUR for 48 h was
5.63µg/mL in Colon cancer [26]. Zargari et al. demonstrated that IC50 of pure turmeric
after 72 h was 13.6 µM in lung cancer [27]. A toxicity study showed that curcumin exhibited
limited toxicity when injected intraperitoneally in mice with LD50 value of 1500 mg/kg [28].
The LD50 of curcumin was calculated by Harishkumar et al. and was found to be 135 µg/mL
in zebrafish embryos which were transferred to a 24-well cell culture plate [29].

Lower doses of curcumin were used as therapeutic doses in cancer treatment.
Fetoni et al. described that curcumin was administered intraperitoneally at three different
doses (100, 200, and 400 mg kg−1 body weight) [30]. The administration of a curcuminoid
formulation (180 mg/day) as adjuvant treatment for 8 weeks to cancer patients with solid
tumors significantly increased life satisfaction and reduced systemic inflammation [31].

Curcumin exhibits anti-cancer activity due to its ability to induce apoptosis, and
decrease tumor growth and invasion through the suppression of a range of cellular sig-
naling pathways [32]. Kuttikrishnan et al. demonstrated that 80 µM of curcumin-induced
apoptosis in acute lymphoblastic leukemia [33]. Although extensive research has demon-
strated that curcumin causes cytotoxicity in cancer cells through a variety of mecha-
nisms. Interestingly, curcumin combined chemotherapy had increased treatment outcomes
synergistically [34].

In vitro study had shown that a combination of 5 nm paclitaxel and 5 µm curcumin
was highly beneficial for treating cervical cancer [35,36]. This compound enhanced
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paclitaxel-induced apoptosis by increasing p53 expression, activation of caspase-3, 7, 8,
and 9, cleavage of poly(ADP-ribose) polymerase (PARP), and cytochrome c release, as
shown by western blot analysis [35,37]. Banerjee et al. suggested that combining curcumin
with standard chemotherapy might be an effective treatment strategy for individuals with
prostate cancer. Moreover, reducing cytotoxicity and overcoming docetaxel-induced drug
resistance. Commonly, long-term docetaxel therapy leads to drug-resistant in metastatic
prostate cancer cell lines [38].

Metformin is used as a treatment for noninsulin-dependent diabetes mellitus (T2 DM) [39].
Interestingly, curcumin and metformin had a synergistic inhibition impact on prostate
cancer cell line growth due to apoptotic induction [40].

Colorectal cancer has been widely treated with 5-FU alone (10 M) or in combination
with other chemotherapy agents [41]. Multidrug resistance was common in individuals
with colorectal cancer who were given a 5-FU-based treatment [41]. Thereby, a new therapy
to overcome resistance is needed, such as combining 5-FU with curcumin in MMR-deficient
human colon cancer cell lines [42]. When compared to celecoxib alone, curcumin with
celecoxib inhibited colorectal cancer cell proliferation in vitro [43]. Moreover, in blad-
der cancer cell lines (253J-Bv and T24), co-treatment of curcumin (10 M) and cisplatin
(10 M) stimulated caspase-3 and overexpressed phospho-mitogen-activated protein kinase
(p-MEK) and phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) signaling
pathways [44]. Guorgui et al. found that combining curcumin (5 M) with doxorubicin
(0.4 mg/mL) reduced the growth of Hodgkin lymphoma (L-540) cells by 79% [45].

In vitro and in vivo studies reported that (docetaxel/curcumin copolymers ) are strong
anti-tumor candidates with tremendous promise in ovarian cancer treatment [46]. Com-
bination of curcumin and 3-acetyl-11-keto—boswellic acid (AKBA) were shown to have
antineoplastic effects in colorectal cancer in vivo. The anticancer mechanism of this com-
bination is mediated through alteration of miRNAs and their downstream target genes
involved in cell-cycle control [47].

Curcumin in combination with soy isoflavones inhibited the generation of inflamma-
tory markers (prostate-specific antigen) in the LNCaP prostate cancer cell line [48]. Andrea
Arena et al. found that curcumin and resveratrol were equally effective in reducing cancer
cell viability in Her-2/neu-positive breast and salivary cancer cell lines. This activity was
with different effects on autophagy, ROS, and PI3K/AKT/mTOR pathway activation [49].
Furthermore, this combination resulted in a higher cytotoxic impact, which was related to
increased ER stress and activation of the pro-death UPR protein CHOP [49]. Curcumin and
Epigallocatechin Gallate (EGCG) combination exhibited several anticancer activities [50].
When combining these two natural polyphenols, a good therapeutic effect was observed in
the treatment of bladder, ovarian [51], breast [52], and prostate malignancies [53]. Further-
more, Somers-Edgar et al. had shown that a combination of EGCG (25 µM) and curcumin
(3 µM) is synergistically cytotoxic toward MDA-MB-231 human breast cancer cells in vitro
and decreases ERα-tumor growing in vivo [54].

In addition, 30 µM curcumin with 80 µM emodin exerted potent actions against breast
cancer cell lines. Due to inducing the expression of miR-34a, the tumor growth and invasion
had suppressed [55]. Another study examined the synergistic effect of curcumin and thymo-
quinone (TQ), on the development of MCF7 and MDA-MB-231 breast cancer cell lines [56].
Moreover, this compound and gemcitabine prevented the development, invasion, and
metastasis of the pancreatic cancer orthotopic model. Those effects were due to inhibiting
angiogenesis, proliferation, and downregulation of NF-κB–regulated gene products [57,58].
Aside from that, they upregulate proteins involved in apoptosis and PC cell inhibition (Bax
and caspase) [57,58]. Several studies demonstrated that curcumin appears to interact with
vitamin D receptors, which might explain its anti-cancer capabilities in Caco-2 human colon
cancer cells [59]. Curcumin and quercetin reduced cancer cell proliferation synergistically
in A375 melanoma cells. Modulation in Wnt/β-catenin signaling and apoptotic pathways
are moderately responsible for the antiproliferative effects [60].
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2.2. Resveratrol

Resveratrol (RES) (trans-3,4′,5-trihydroxystilbene) is a phytoalexin belonging to the
stilbene class that occurs naturally. It is normally synthesized by plants in response to injury
or when under attack by microorganisms including bacteria or fungi [61]. Even though
72 different plants produce resveratrol naturally, the main sources of resveratrol include
wine, grapes, peanuts, pomegranate, pines, cocoa, cranberries, and dark chocolate [62]. The
two principal isomers of resveratrol are cis and trans (Figure 2), and they frequently coexist.
Moreover, the trans is more biologically active than the cis form [63]. Resveratrol may play
an important role in the prevention or treatment of chronic diseases, among its effects are
antioxidative, anti-inflammatory, anti-proliferative, and anti-angiogenesis properties, as
well as improved cardiovascular outcomes [62,64].
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Figure 2. Chemical structure of resveratrol. (a) Trans-resveratrol and (b) Cis-resveratrol.

Several studies were conducted to evaluate the toxicity of resveratrol. Against HeLa
human cervical cancer cells, RES was active at IC50 value of 83.5 µM [65]. Moreover, HT-29
human colon cancer cells were inhibited by RES at IC50 value of 43.8 µmol/L [66]. RES
displayed growth inhibitory activities against HT-29, HCT-116, and Caco-2 human colon
cancer cells with IC50 values of 65, 25 and >100 µM, respectively [67]. Jawad et al. reported
that the LD50 dose of resveratrol was 1.07 g/kg for males and 1.18 g/kg for females in mice
after intraperitoneal administration [68].

Therapeutically, resveratrol (100 mg/kg) was intraperitoneally injected to treat lung
cancer cells and the treatment resulted in tumor regression [69]. Based on the results of the
previous clinical studies, the recommended dosage of resveratrol for the treatment of colon
cancer is 20–120 mg daily for two weeks [70] or 0.5–1 g daily for one week [71], and 5 g
daily for two weeks for patients with colorectal cancer [72].

Resveratrol has numerous chemoprotective and cancer therapy mechanisms to prevent,
arrest, or reverse carcinogenesis stages. Genome instability, abnormal cell proliferation,
abnormal response to signals or stimulators of programmed cell death, increased oxidative
stress, overproduction of growth regulator hormones, and changes in the host immune
system are among the most important cellular changes. The antioxidant, anti-inflammatory,
and immunomodulatory activities also contribute, to reducing the damage caused by
oxidative stress (DNA damage, protein oxidation, and lipid peroxidation) and enhancing
immune oncosurveillance [73]. Resveratrol inhibits the monooxygenase cytochrome P450
isoenzyme CYP1 A1, the liver enzyme responsible for the metabolism of xenobiotics,
as well as acts as a blocking agent by preventing the conversion of procarcinogen to
carcinogen [74,75]. Numerous in vitro and limited in vivo studies indicate that resveratrol
may augment the antitumor effects of chemotherapeutic drugs in a variety of cancers [76,77].
In addition to its anti-carcinogenic effect, resveratrol is now being studied for its potential
as an adjunct in conjunction with chemotherapeutic agents to boost their efficacy and/or
limit their toxicity. Using a mouse xenograft model of malignant glioma, Lin and colleagues
found that resveratrol enhanced the alkylating agent temozolomide’s therapeutic efficacy
by inhibiting ROS/ERK-mediated autophagy and improving apoptosis [78]. Resveratrol
in 12.5 mg/kg dose has also been used to reduce chemoresistance in a mouse model of
B16/DOX melanoma by inducing cell cycle disruption and apoptosis, resulting in decreased
melanoma growth and increased mouse survival [79].

Malhotra and co-workers evaluated the efficacy of curcumin in combination with
resveratrol in mice with benzo-a-pyrene (BP)-induced lung carcinogenesis [80]. The study
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demonstrated that the combination of curcumin and resveratrol enhances chemopreventive
efficacy by maintaining adequate zinc levels and modulating Cox-2 and p21 [80]. Resver-
atrol and melatonin have also been studied in combination, NMU-induced mammary
carcinogenesis was not affected by either agent alone, but when they were combined it
resulted in a significant decrease in tumor incidence [81]. A combination of resveratrol,
quercetin, and catechin to gefitinib can enhance its antitumor and antimetastatic effects in
nude mice [82]. These studies support the possibility of using resveratrol in conjunction
with chemotherapeutic drugs for cancer management.

2.3. Genistein

Genistein (GNT) (4,5,7-trihydroxyisoflavone) is the dominant isoflavone in soybean-
enriched foods, which make up a large part of the Asian diet (Figure 3). A study found that
isoflavone levels in the blood were inversely related to the risk of non-proliferative and
proliferative benign fibrocystic conditions, as well as breast cancer [83]. At first, genistein
was assumed to be a phytoestrogen because its structure was similar to that of estrogens
and it had a small amount of estrogenic activity. The main building block of isoflavone
compounds is the flavone nucleus, which is made up of two benzene rings connected by a
heterocyclic pyrane ring. Due to their similar structures, it has been shown that genistein
competes with 17-estradiol in ER binding tests [84].
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It was discovered that genistein specifically inhibits EGFR as well as other RTKs
with an IC50 value of 22 µM [84]. Another study showed that genistein inhibits the
autophosphorylation of EGFR in vitro at an IC50 value of 2.6 µM [85]. The IC50 value
of genistein against PLK1 activity was 7.9 µM while the IC50 values of genistein against
other TKs, such as erbB2, erbB4, IGF1 receptor, insulin receptor, and PDGFR were over
4000 µM [86]. According to a study, the LD50 of genistein was 1150 mg/kg in mice when
given intraperitoneally [87]. In HL-60 cells, genistein reduced the number of cells by
causing the G2/M phase to be arrested, induced cell death through mitochondrial and
ER stress-dependent pathways, and inhibited tumor characteristics in vivo. Mice were
intraperitoneally injected with genistein (0, 0.2, and 0.4 mg/kg) for 28 days in an animal
xenografted model and results showed tumor regression in treated animals [88].

Numerous important biological effects of genistein consumption concerning its anti-
cancer properties have been illustrated. Even though, genistein has several health benefits,
such as reducing the incidence of cardiovascular disease [89], preventing osteoporosis,
and alleviating postmenopausal issues [90]. Genistein is a known inhibitor of the protein-
tyrosine kinase (PTK), which may inhibit PTK-mediated signaling mechanisms to inhibit
the growth of cancer cells [86]. Transgenic mice that overexpress the HER-2 gene’s tyrosine
phosphorylation show delayed tumor development when genistein is given as an oral
supplement, according to a study published just recently by the group Sakla et al. This
shows that it may have an anti-cancer role in breast cancer chemotherapy [91]. However,
it has been shown that other effects are not related to this activity [92]. It is possible that
the inhibition of topoisomerase I and II [93], 5α-reductase [94] as well as protein histidine
kinase [95], are all part of the mechanism by which genistein acts.

Genistein’s chemotherapeutic mechanism of action has been widely studied in a
variety of cancers. Apoptosis, angiogenesis, and metastasis are all mechanisms affected by
genistein. The primary molecular targets of genistein involve caspases, B-cell lymphoma 2
(Bcl-2), Bax, NF-B, PI3K/Akt, ERK1/2, mitogen-activated protein kinase (MAPK), and the
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Wnt/-catenin signaling pathway. Genistein has been shown to induce apoptosis in tumor
cells by targeting the PPAR signaling cascade, which has surfaced as another potential
therapeutic target for modulating tumor growth [96].

By modulating AMPK and COX-2, genistein with capsaicin exerted synergistic apop-
totic and anti-inflammatory effects on MCF-7 human breast cancer cells [97]. It has been
shown that genistein exposure for 24 h followed by 48 h of estradiol treatment resulted
in the greatest apoptosis in HepG2 human liver cancer cells [98]. The anticancer effects
of 5-fluorouracil in MIA PaCa-2 human pancreatic cancer cells were augmented by the
addition of genistein, which increased both apoptosis and autophagy. Additional studies on
animals transplanted with MIA PaCa-2 cells showed a significant decrease in tumor volume
after the combination of treatments [99]. It has also been shown that genistein enhances
the efficacy of photofrin-mediated photodynamic therapy to induce apoptosis in human
ovarian cancer and thyroid cancer cells [51]. Activation of the general apoptotic signaling
cascade required activation of caspase-8 and caspase-3 to regulate these effects [51,100].
Genistein and sulforaphane have a synergistic effect on MCF-7 and MDA-MB-231 breast
cancer cells; this combination reduced cell viability, resulting in cell death, as well as cell
cycle arrest in G1 phase (MCF-7 cells) and G2/M phase (MDA-MB-231 cells) [101].

2.4. Epigallocatechin Gallate

Many recent studies have focused on examining green tea (Camellia sinensis) and its
polyphenolic components; one of the most interesting among these compounds is the
Epigallocatechin Gallate (EGCG) (Figure 4). It is believed to have several benefits in the
health sector as it has a role in various types of diseases such as cardiovascular diseases, as
EGCG inhibits the NF-kappaB (NF-κB), which may be involved in developing heart failure.
Additionally, EGCG inhibited myeloperoxidase (MPO) which is known to be elevated in
coronary artery diseases (CAD) [102]. EGCG also has a role in metabolic diseases such
as Diabetes Mellitus as it can lower the plasma glucose level and glycated hemoglobin
level [102]. Furthermore, EGCG can act as an anti-oxidant due to its power in attacking
reactive oxygen species [103].
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To evaluate EGCG toxicity, a study demonstrated that 13 weeks of EGCG oral adminis-
tration in rats was non-toxic at doses up to 500 mg/kg/day. However, oral administration
of 2000 mg EGCG/kg was fatal. No toxicity was observed at an oral dose of 200 mg
EGCG/kg [19]. While another study showed that the ingestion of green tea-derived
supplements at a high dose (120 mg/kg) can induce toxic effects such as hepatotoxicity
in rodents [104].

Additionally, EGCG has an important role in fighting cancer as it inhibits the initiation,
promotion of, and progression phases in cancer cells [105]. Add to that its ability to promote
apoptosis. Huang et al. found that 30 µmol/L of EGCG had induced apoptosis in MCF-7
breast cancer cell lines [106]. A study reported that the IC50 for EGCG when used against
Eca-109 and Te-1 cancer cells was 256 and 162 µM, respectively [107]. Another article
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reported that the IC50 for EGCG which inhibited the NDPK-B activity was 150 µM [108].
Furthermore, it had been found that IC50 of EGCG against lung A549 cancer cells was
25 µM [109]. Additionally, reduced cell viability was reported at IC50 values of 14.17 µM
for T47D and 193.10 µM for HFF cells [110].

Regarding toxicity, the estimated LD50 of EGCG when administered intradermally in
rats was 1860 mg/kg [111]. Moreover, it had shown that EGCG-produced dose dependent
cell death with average IC50 equals to 25–50 µg/mL in human B-cell lymphoma cell lines
and primary NHL cells [112]. In another study, it had been shown that the IC50 for EGCG
was 348 µM when used with A549 cells [113]. According to an in vivo study, ECGC was
used in SW780 nude mice xenograft model at a concentration of 100 mg/kg, which was
equivalent to a single dose of 487 mg EGCG powder for a 60-kg adult. The results have
shown that ECGC successfully inhibited tumor progression in tumor-bearing mice [114]. In
addition, treatment with EGCG (50 mg/kg/day, 14 days) diminished the growth of MCF-7
implanted breast tumors in athymic nude mice by 40% [115].

EGCG has an important role in fighting cancer as it inhibits the initiation, promotion,
and progression phases in cancer cells [106]. Add to that its ability to promote apoptosis.
Huang et al. found that 30 µmol/L of EGCG had induced apoptosis in MCF-7 breast cancer
cell lines [107]. Furthermore, EGCG could be used with other anti-cancer treatments, such
as natural products and chemo drugs. However, regarding the EGCG effect with natural
products, Eom et al. had shown that 50 and 100 µM EGCG use along with curcumin had
arrested S and G2/M cycles in PC3 prostate cancer cells [116]. In addition, EGCG improved
the anti-metabolic effect of quercetin in ER-negative breast cancers, and also it decreased
the viability and proliferation of MCF7 cells [117]. Furthermore, Tan et al. reported that (5,
25, and 50 µg/dL) of EGCG and thymoquinone had decreased the proliferation of PANC-1
pancreatic cancer cell lines [118]. In addition, Chen et al. demonstrated that a combina-
tion of EGCG and sulforaphane had provoked apoptosis in ovarian resistant cells in vitro,
through human telomerase reverse transcriptase (hTERT) and Bcl-2 down-regulation [119].
Moreover, in vivo study reported that 30 µM EGCG combination with 15 µM resveratrol
resulted in enhancing the apoptotic effect and reducing the tumor growth in head and neck
cancer [120]. With chemotherapy, Wei et al. had shown that using 20–100 µM EGCG along
with 5-fluorouracil (5-FU) and doxorubicin enhanced their ability in growth inhibition and
also improve their ability to suppress the phosphorylation of extracellular-signal-regulated
kinase (ERK) in multiple cancer cell lines [121]. La et al. also proved that 50 µM EGCG
increased DLD1 colorectal cancer cell line’s sensitivity to 5-FU through the inhibition of
78-kDa glucose-regulated protein (GRP78), NF-KB, miR-155-p5, and multidrug resistance
mutation 1 (MDR1) pathways [122]. Furthermore, 10 µM EGCG had enhanced cisplatin
sensitivity in ovarian cancer cell lines by regulating the expression of copper and cisplatin
influx transport which is well-known as copper transporter 1 (CTR1) [123]. Moreover,
100 µM EGCG improved the cytotoxic effects of cisplatin through autophagy-related path-
ways in an in vitro study [124]. In HeLa cervical cancer cells, 25 µM EGCG had potentiated
cisplatin effects as a result of decreasing cell survival and enhancing apoptosis [125].
Though with tamoxifen, EGCG (25 mg kg−1) had lowered the negative estrogen receptor
(ER-) in breast cancer cell lines, as it was expected to decrease protein expression of the
epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), and
cytochrome P450 family 1 subfamily B member 1 (CYP1B) [126]. Moreover, 20 µM EGCG
synergistically encouraged the effect of paclitaxel on breast cancer cells as it enhanced the
phosphorylation of c-Jun N-terminal kinase (JNK) and the cell death in 4T1 cells [127]. Addi-
tionally, 20 µM EGCG had improved gefitinib resistance by inducing cell death by affecting
the phosphorylation of EPK as well as the inhibition of epithelial-Mesenchymal transi-
tion (EMT) and inhibition of the phosphatidylinositol-3-kinase (PI3K)/mTOR pathway in
non-small cell lung cancer (NSCLC) cell lines [128]. Besides this, EGCG had improved the
effect of erlotinib in head and neck cancer in vitro. As it enhanced the apoptosis through
the regulation of Bcl-2-like protein 11 (BIM) and B-cell lymphoma 2 (Bcl-2) [129].
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2.5. Allicin

Allicin (ALN) or diallyl thiosulfinate (Figure 5) is one of the well-known organosulfur
compounds that are found in garlic (Allium sativum L.). It can be generated by the cleavage
or cutting of the garlic clove which in return activates the allinase enzyme resulting in the
hydrolysis of non-proteinogenic amino acid S-allyl cysteine sulfoxide or known as (alliin)
and mainly producing allicin [130].
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Regarding allicin cytotoxicity, a study reported that the exposure to 12 µg/mL of
allicin for 24 h, produced cytotoxic effect on MGC-803 and SGC-7901 cancer cells, including
cellular membrane breakage [131]. While a study reported that allicin prevented prolif-
eration of human mammary (MCF-7), endometrial (Ishikawa), and colon (HT-29) cancer
cells at 50% inhibitory concentration equals to 10–25 µM [132]. Moreover, another study
stated that when allicin used against MGC-803 and SGC-7901 cancer cells, the IC50 was
6.4 µg/mL, 7.3 µg/mL, respectively [131], while the LD50 of allicin was 120 mg/kg sub-
cutaneous injection and 60 mg/kg intravenous injection in mice [133]. An in vivo study
on bladder cancer has shown that allicin can delay the beginning of tumors following
subcutaneous injection at a concentration of 12.5 mg and 25 mg [134].

Allicin has many activities, such as anti-oxidant [135] and antimicrobial [136]. Fur-
thermore, it has a role in neuroinflammatory, and cardiovascular diseases [137], and an
important role in combating cancer [138] due to its multiple mechanisms such as inducing
apoptosis, inhibiting tumor growth, and preventing tumor angiogenesis [139]. For instant,
30 and 60 µg/mL of allicin induced apoptosis in U251 human glioma cells [140].

Many researchers had also studied the effects of allicin in combination therapies with
other anti-cancer treatments including anti-cancer drugs and other plants. In one study, a
mixture of allicin (ALN) and thymoquinone (TQ) has an excellent effect on anti-oxidant
parameters in prostate and colon cancer cells [141]. Wamidh Talib reported that consump-
tion of garlic (allicin rich extract) with lemon aqueous extract had decreased angiogenesis
and induced apoptosis in breast cancer cells [142]. Moreover, Sarkhani et al. revealed that a
mixture of allicin and methylsulfonylmethane had enhanced apoptosis because it increased
the expression of caspase-3 mRNA expression in CD44± breast cancer cells [143].

On the other hand, allicin with antineoplastic drugs showed promising results. For
example, allicin with cisplatin had shown many beneficial effects whether in fighting cancer
or other helpful aspects. Pandey et al. demonstrated that using a low dose of allicin with
cisplatin can potentiate the inhibitory activity of cisplatin and overcome the resistance
of cisplatin. This is achieved by affecting hypoxia, which is known as a major mediator
in cisplatin resistance, as allicin along with cisplatin had boosted the apoptosis in a ROS
pathway in both normoxia and hypoxia [144]. Tigu et al. have reported that there was
a synergistic effect against lung and colorectal cancer cells when allicin was used along
with 5-FU [145]. Furthermore, allicin improved 5-FU resistance in gastric cancer cells by
lowering the expression of Wnt Family Member 5A gene (WNT5A), CD44 receptor, MDR1,
p-glycoprotein (p-gp) [146]. Fayin also reported that allicin had improved the apoptosis
effect of 5-FU in MEC-1 cells [147]. Moreover, Xi et al. revealed that a mixture of allicin and
Adriamycin had inhibited the proliferation and induced apoptosis in gastric cancer [148].
Additionally, allicin had improved the effectiveness of tamoxifen in the existence or lacking
17-b estradiol [149].

Moreover, Wu et al. revealed that allicin had protected the auditory hair cells, and
spiral ganglion neurons from the apoptosis that is triggered by cisplatin [150], such result
supports the fact that allicin can help in protecting from vestibular dysfunction [151]. In
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addition to this, a mixture of allicin and ascorbic acid alongside cisplatin displayed a
neuroprotective effect against cisplatin due to allicin anti-oxidant and anti-inflammatory
effects [152]. While with doxorubicin, allicin had improved the cardio-toxic effects of this
anti-cancer drug by inhibiting oxidative stress, and inflammation [153]. Moreover, allicin
with 5-FU had improved chemotherapy sensitivity in hepatic cancer cells due to induction
of apoptosis by ROS-mediated mitochondrial pathways [154].

2.6. Thymoquinone

Thymoquinone (TQ) (2-Isopropyl-5-methylbenzo-1, 4-quinone) is a monoterpenoid
compound [155] (Figure 6). It is extracted from the volatile and fixed oil of Nigella sativa
(black seed) [156]. TQ is therapeutically active as an anti-microbial, anti-inflammatory,
hypoglycemic, antiparasitic, antihypertensive, and anticancer agent [157].
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TQ showed a significant antitumor effect on various types of cancer such as breast
cancer [158], prostate cancer [159], gastric cancer [160], and bladder cancer [161]. Interest-
ingly, TQ IC50 value was found to be 46 µM in a hepatocellular carcinoma cell line [162].
TQ is considered a safe natural product as its LD50 values for oral administration are
300–2400 mg/kg in mice and 250–794 mg/kg in rats [163]. While its therapeutic dose was
about 10 mg/kg/intraperitoneally in mice [164].

Numerous studies demonstrated TQ anticancer mechanisms. Generally, it exerts
its antitumor activity by modulating epigenetic machinery, altering gene expression of
non-coding RNAs [165]. Moreover, via affecting several biological pathways that are
implicated in apoptosis, proliferation, cell cycle regulation, and cancer metastasis [166].
In bladder cancer cell lines, 40 mmol/L of TQ stimulated apoptosis via ER-mediated
mitochondrial apoptotic pathway [161].

TQ combination with various chemotherapeutic agents had enhanced the anticancer
activity of them. For example, 46 µM TQ along with 64.5 µM resveratrol is considered
a novel therapeutic strategy in the HCC cell line. Their combination resulted in signifi-
cant cell inhibition and increased caspase-3 to induce apoptosis [162]. In an in vivo study,
(20 mg·kg−1) of oral TQ improved the effectiveness of cisplatin in HCC treatment via
controlling the GRP78/CHOP/caspase-3 pathway [167]. Furthermore, in breast cancer
treatment, a combination of TQ and paclitaxel remarkably increased the rate of apop-
totic/necrotic cell death in T47D cells, and induced autophagy in MCF-7 cells [168]. In vitro
and in vivo models study reported that 10 µM TQ with 50 nM doxorubicin combination,
enhanced cell death in adult T-cell leukemia. Thus, it increased ROS and resulted in dis-
ruption of the mitochondrial membrane [169]. A triple combination of (20 mg/kg) TQ,
(15 mg/kg) pentoxifylline, and (7.5 mg/kg) cisplatin in mice, enhanced the chemotherapeu-
tic activity of cisplatin by Notch pathway suppression [170]. A synergistic antitumor effect
was detected between (10 mg/kg)TQ and (1 mg/kg) melatonin leading to minimizing
the tumor size with a 60% percentage cure according to an in vivo study [171]. Similar to
many chemotherapeutic agents, TQ can significantly enhance the effect of other natural
products. TQ and royal jelly (RJ) together enhanced the anticancer activity of both against
MDA-MB-231 breast cancer cells [172]. Moreover, in breast adenocarcinoma, a combina-
tion of (50 and 100µM) TQ and (450µM) ferulic acid required the use of lower doses of
both to suppress the proliferation of cultured MDA-MB 231cells [173]. Additionally, TQ
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and quercetin potentiate apoptosis in NSCLC cell lines via the Bax/Bcl2 cascade [174]. A
significant improvement in anticancer activity was examined when combined TQ with
piperine (PIP) in EMT6/P cells injected in Balb/C mice. The combination treatment of
(25 mg/kg/day of PIP and 10 mg/kg/day of TQ for 14 days) lead to a remarkable dropping
in tumor size with a 60% of cure [175].

2.7. Piperine

It is most commonly found in the fruits and roots of Piper nigrum L. (black pepper) and
Piper longum L. (long pepper) in the Piperaceae family as piperine (1-Piperoylpiperidine) [176]
(Figure 7).
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In vitro and in vivo anticancer effects of Piper nigrum extracts on colorectal cancer
cells (HCT-116) and lung cancer cells (A549) were with IC50: HCT-116: 165 µM A549:
135 [177]. Another study by Gunasekaran et al. showed that IC50 was 75 µM (24 h) 30 µM
(48 h) in Hepatocellular cancer [178]. Moreover, in leukemia IC50 was 25 µM (24 h) [179].
Regarding toxicity, after intravenous administration piperine LD50 was 15.1 mg per kg
for adult mice [180]. In BALB/C mice implanted with mouse mammary EMT6/P cancer
cells, the intraperitoneal treatment of piperine (25 mg/kg/day for 14 days) considerably
reduced the tumor size [181]. In breast cancer, female BALB/C bearing 4T1 cell were
treated with 2.5 or 5 mg/kg piperine every 3 days and tumor regression was reported [182].
Piperine inhibited lung metastasis of melanoma cells after its intraperitoneal injection at a
concentration of 200 µmol/kg [183]. It also inhibits cell proliferation in prostate cancer cells
implanted in nude mice at a therapeutic dose of 100 mg/kg/day (intraperitoneal) [184].

Piperine (PIP) activates apoptotic signaling cascades, inhibits cell proliferation, arrests
the cell cycle, alters redox homeostasis, modulates ER stress and autophagy, inhibits
angiogenesis, induces detoxification enzymes, and sensitizes tumors to radiotherapy and
chemotherapy [185]. These mechanisms of action can help to prevent cancer. It can
activate both intrinsic and extrinsic apoptotic pathways at the molecular level. Piperine
suppressed mouse 4T1 breast tumor growth and metastasis [182]. Administration of
piperine activated caspase 3-mediated intrinsic apoptosis in 4T1 cells and induced G2/M
phase cell cycle arrest [182]. In another study, piperine reduced tumor growth in nude mice
xenografted with androgen-dependent (PC3) and independent (LNCaP, DU145) prostate
cancer cells [184]. It also inhibits prostate cancer cell growth by reducing phosphorylated
STAT-3 and NF-B [184].

A variety of cell and tissue-specific and dose-dependent effects of piperine-mediated
redox change cellular physiology. It can either enhance cell survival or commit the cell to
death, depending on the situation. Oxidative stress-induced cell damage can be prevented
by quenching ROS and other reactive metabolic intermediates, such as free radicals, with
piperine [186,187]. A variety of protein regulators and checkpoints have been linked to the
ability of piperine to halt the progression of cancer cells at various points in the cell cycle.
Piperine in 100–200 µM concentration led to apoptosis and G1 phase cell cycle arrest in
melanoma cells via activation of Checkpoint Kinase-1 [188].

In vitro, piperine demonstrates a synergistic anticancer effect when combined with
paclitaxel on the MCF-7 cell line [189]. Another study indicates that combinations of piper-
ine, hesperidin, and bee venom enhance the anti-cancer effects of tamoxifen in MCF7 and
T47D cell lines [190]. In addition, the combination of piperine and doxorubicin inhibited
tumor growth in BALB/C mice subcutaneously injected with MDA-MB-231 cells in vitro
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more effectively than either agent alone [191]. Piperine inhibits hepatic CYP3A4 activity
in vivo, correlating with an increase in docetaxel’s AUC, half-life, and maximum plasma
concentration. In addition, the synergistic administration of piperine and docetaxel sig-
nificantly improved the antitumor efficacy of docetaxel in a castration-resistant human
prostate cancer animal model [192]. Additionally, a study using in vitro and in vivo models,
showed that the piperine and thymoquinone combination exerted a synergistic inhibition
in breast cancer. This mainly was achieved by inhibition of angiogenesis, induction of
apoptosis, and shifting toward T helper1 immune response [181].

2.8. Emodin

Emodin (EMD) is a natural anthraquinone derivative. Chemically it is (1,3,8-trihydroxy-
6-methyl-anthraquinone) [193,194] (Figure 8). This phytochemical has been extracted from
different Chinese medicinal herbs including Radix rhizoma Rhei, Aloe vera, Polygonum multiflorum,
Giant knotweed, Rheum palmatum, and Polygonum cuspidatum [194–196]. Moreover, it can be
found in the bark and roots of many other different plants, molds, and lichens [197].
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Recently, emodin earned attention due to its diverse activity. It displays antibacterial [198],
anti-inflammatory, antioxidant, antiallergic, antihypertensive, antidiabetic, neuroprotective,
and hepatoprotective properties [199–203]. It may be used as a photosensitizing agent in
photodynamic therapy [204]. In addition, it prevents immunosuppression and exhibits
anticancer activity [205,206]. Emodin has shown its antitumor activity against colon cancer,
breast cancer, non-small-cell lung cancer, ovarian cancer, prostate cancer, pancreatic cancer,
leukemia, and hepatocellular carcinoma (HCC) [207,208].

Narender et al. reported that emodin cytotoxicity was 3.5 µM in HepG2 cell line [209].
Regarding emodin toxicity, Luo tao et al. found that 100, 200 and 400 µM of emodin resulted
in reproductive toxicity in humans when applied to ejaculated human sperm [107], whereas
its therapeutic dose in athymic nude mice injected with MDA-MB-231 breast cancer cells
was 40 mg/kg after intraperitoneal injection [210].

Emodin displays its anticancer effect on different cell lines with different mechanisms.
Generally, emodin exerts its anti-tumor activity by inducing mitochondrial apoptosis
and inhibiting pathways that promote proliferation, inflammation, angiogenesis, and
tumorigenesis [211]. In colon cancer (CC), emodin regulated the localization and expression
of Bcl-2 family proteins by regulating PI3K/AKT, MAPK/JNK, STAT, and NF-κβ molecular
signaling pathways [212]. Moreover, it inhibited the migration and invasion of CC cells
by downregulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling
pathway [213]. More interestingly, treatment with emodin led to mitochondrial dysfunction,
reactive oxygen species accumulation, and induced apoptosis in (CC) cells via induction of
autophagy [214]. Furthermore, in HCT116 human (CC) cells, 10–50 µM emodin-induced
apoptosis inhibited proliferation, suppressed the expression of fatty acid synthase (FASN),
inhibited intracellular FASN activity, and fatty acid biogenesis. Needless to say, (FASN) is
an important factor in the development of colon carcinoma [215].

Interestingly, emodin’s benefits are not limited to natural products alone, but again,
it can improve the anticancer effect of several chemotherapeutic agents. Emodin’s com-
bination with sorafenib resulted in improving the anti-cancer effect of sorafenib in HCC
cells. Furthermore, this combination synergistically increased apoptotic cells and cell cycle
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arrest in the G1 phase using concentrations of 20 µM emodin and 2 µM sorafenib [207].
Moreover, a combination with EGFR inhibitor afatinib resulted in a higher rate of inhibiting
cell proliferation in pancreatic cancer in concentrations ranging between 30, 60 and 90 µM
of emodin [216]. Furthermore, the inhibition of the growth effect of cisplatin was remark-
ably improved by emodin in lung adenocarcinoma A549/DDP cells [217]. In addition,
in endometrial cancer cells, emodin and cisplatin combination inhibited the expression
of drug-resistant genes by decreasing the reactive oxygen species (ROS) levels. Conse-
quently, resulting in increasing chemosensitivity [218]. Shuai Peng et al. demonstrated that
emodin (5 µM) enhanced H460 and A549 cell sensitivity to cisplatin through P-glycoprotein
downregulation in non-small cell lung cancer (NSCLC) [219]. More and more, emodin
with a concentration between (5, 10, 20, and 40 µM) enhanced the anticancer effect of
paclitaxel by inhibiting the proliferation of A549 cells in NSCLC [212]. In pancreatic can-
cer, emodin (40 µM) inhibited IKKβ/NF-κB signaling pathway and reverses gemcitabine
resistance [213]. Generally, a combination of natural products has shown promising results
in treating disease, either as synergistic or as an additive effect [5]. In breast cancer, a
combination of emodin (10 µM) and berberine (10 and 5 µM) synergistically repealed the
SIK3/mTOR pathway. As a result, the aerobic glycolysis and cell growth were suppressed
leading eventually to inducing apoptosis [220].

2.9. Parthenolide

Parthenolide (PTL) is a germacrene sesquiterpene lactone [215]. Chemically, it consists
of an α-methylene-γ-lactone ring and epoxide group, which are responsible for interacting
with nucleophilic sites of biological molecules [221] (Figure 9). PTL is extracted from differ-
ent plants of the Asteraceae family [222] and is the main constituent of the feverfew medici-
nal plant, Tanacetum parthenium [223]. Generally, it possesses diverse biological activity
extending from antibacterial, anti-inflammatory, and phytotoxic to antitumor activity [224].
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PTL IC50 values were 9.54 and 8.42 µM against MCF-7 and SiHa cells, respectively [225].
Regarding to a study, PTL showed LD50 at 200 mg/kg, when administered orally [226]. On
the other hand, 10 mg·kg−1·day−1 of PTL administered intraperitoneally, was therapeuti-
cally effective as anticancer agent in mice injected with U87MG cells [227].

PTL has been reported as an anticancer agent using different mechanisms. Mostly,
by inhibiting the nuclear transcription factor-kappa (NF-κB) signaling pathway and cell
growth [221]. Add to that its ability to induce apoptosis and G0/G1 cell cycle arrest [223].
PTL stimulated apoptosis in 50–200 µmol/L concentration in human uveal melanoma
cells [228]. Therefore, it is active against different types of cancer including colorectal
cancer [222], breast cancer [229], and lung cancer [230].

A PTL (9 and 15 µM) combination with Epirubicin (EPR) (2.5 and 3.5 µM), which
is an anthracycline doxorubicin analog, led to improving cytotoxicity and apoptosis in
MDA-MB-468 breast cancer cells. Thus, the dose of EPR could be reduced and the undesir-
able side effects will be preventable [221].

Furthermore, in vitro study considered PTL as a potent agent at a concentration of
1 µg/mL, as it enhanced the effectiveness of arsenic trioxide (2 µM) in the treatment of
adult T-cell leukemia/lymphoma [231]. Se-lim Kim et al. demonstrated that PTL 10 µM
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combination with balsalazide improved the anticancer activity via blocking NF-κB activa-
tion and therefore prevented colon carcinogenesis from long-lasting inflammation [221]. In
addition, PTL sensitized colorectal cancer cells resistant to tumor necrosis factor-related
apoptosis-inducing ligand. That was achieved by increasing the surface expression of death
receptor 5 proteins, upregulating the expression of proteins elaborate in the mitochondrial
apoptotic pathway, and lastly increasing caspase activation [223]. Se-lim Kim et al. demon-
strated that using (5 or 10 µmol/L) PTL combination with 20 mmol/L balsalazide in vitro
and in vivo improved the anticancer activity via blocking NF-κB activation. Therefore
preventing colon carcinogenesis from long-lasting inflammation [232]. Recently, a combi-
nation of natural products is of interest, because they are safe, inexpensive, and effective.
For instance, PTL (1.5µg/mL) and different concentrations of ginsenoside compound K
have acted synergistically as antineoplastic agents with minimizing adverse effects both
in vitro and in vivo [233]. Once more, an interesting in vitro and in vivo study showed that
a cocktail combination of PTL, betulinic acid, honokiol, and ginsenoside Rh2 displayed a
synergistic activity in liposome systems for lung cancer treatment [234].

2.10. Luteolin

Luteolin (LTN) (2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-4-chromenone) [235] (Figure 10)
is a flavonoid that can be found in fruits and vegetables, such as parsley, sweet bell
peppers, celery, onion leaves, chrysanthemum flowers, carrots, and broccoli [229]. Sev-
eral studies have shown that LTN owns diverse biological activities. For instance, it
acts as a neuroprotective [236], anti-diabetic, antioxidant, anti-microbial, anti-allergic,
anti-inflammatory, chemopreventive, and chemotherapeutic agent [237].

Molecules 2022, 27, x FOR PEER REVIEW 13 of 50 
 

 

PTL IC₅₀ values were 9.54 and 8.42 μM against MCF-7 and SiHa cells, respectively 

[225]. Regarding to a study, PTL showed LD₅₀ at 200 mg/kg,when administered orally 

[226]. On the other hand, 10 mg·kg−1·day−1 of PTL administered intraperitoneally, was 

therapeutically effective as anticancer agent in mice injected with U87MG cells [227]. 

PTL has been reported as an anticancer agent using different mechanisms. Mostly, 

by inhibiting the nuclear transcription factor-kappa (NF-κB) signaling pathway and cell 

growth [221]. Add to that its ability to induce apoptosis and G0/G1 cell cycle arrest [223]. 

PTL stimulated apoptosis in 50–200 µmol/L concentration in human uveal melanoma cells 

[228]. Therefore, it is active against different types of cancer including colorectal cancer 

[222], breast cancer [229], and lung cancer [230]. 

A PTL (9 and 15 µM) combination with Epirubicin (EPR) (2.5 and 3.5 µM), which is 

an anthracycline doxorubicin analog, led to improving cytotoxicity and apoptosis in 

MDA-MB-468 breast cancer cells. Thus, the dose of EPR could be reduced and the unde-

sirable side effects will be preventable [221]. 

Furthermore, in vitro study considered PTL as a potent agent at a concentration of 1 

μg/mL, as it enhanced the effectiveness of arsenic trioxide (2 µM) in the treatment of adult 

T-cell leukemia/lymphoma [231]. Se-lim Kim et al. demonstrated that PTL 10 μM combi-

nation with balsalazide improved the anticancer activity via blocking NF-κB activation 

and therefore prevented colon carcinogenesis from long-lasting inflammation [221]. In ad-

dition, PTL sensitized colorectal cancer cells resistant to tumor necrosis factor-related 

apoptosis-inducing ligand. That was achieved by increasing the surface expression of 

death receptor 5 proteins, upregulating the expression of proteins elaborate in the mito-

chondrial apoptotic pathway, and lastly increasing caspase activation [223]. Se-lim Kim et 

al. demonstrated that using (5 or 10 μmol/L) PTL combination with 20 mmol/L balsalazide 

in vitro and in vivo improved the anticancer activity via blocking NF-κB activation. There-

fore preventing colon carcinogenesis from long-lasting inflammation [232]. Recently, a 

combination of natural products is of interest, because they are safe, inexpensive, and ef-

fective. For instance, PTL (1.5 μg/mL) and different concentrations of ginsenoside com-

pound K have acted synergistically as antineoplastic agents with minimizing adverse ef-

fects both in vitro and in vivo [233]. Once more, an interesting in vitro and in vivo study 

showed that a cocktail combination of PTL, betulinic acid, honokiol, and ginsenoside Rh2 

displayed a synergistic activity in liposome systems for lung cancer treatment [234]. 

2.10. Luteolin 

Luteolin (LTN) (2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-4-chromenone) [235] (Fig-

ure 10) is a flavonoid that can be found in fruits and vegetables, such as parsley, sweet 

bell peppers, celery, onion leaves, chrysanthemum flowers, carrots, and broccoli [229]. 

Several studies have shown that LTN owns diverse biological activities. For instance, it 

acts as a neuroprotective [236], anti-diabetic, antioxidant, anti-microbial, anti-allergic, 

anti-inflammatory, chemopreventive, and chemotherapeutic agent [237]. 

 

Figure 10. Chemical structure of luteolin. 

Seo et al. demonstrated that LTN IC₅₀ was 9.8 μM against PC-3 prostate cancer cell 

lines [238]. According to a study, luteolin LD₅₀ was 150 mg/kg when delivered through 

nasogastric intubation in rats [239]. While 40 mg/kg of LTN was able to suppress the Nrf2 

signaling pathway and cancer development in vivo [240]. Luteolin displays its antineo-

plastic activity in the forms of diverse mechanisms including hampering the activity of 

O

OHO

OH

OH

OH

Figure 10. Chemical structure of luteolin.

Seo et al. demonstrated that LTN IC50 was 9.8 µM against PC-3 prostate cancer
cell lines [238]. According to a study, luteolin LD50 was 150 mg/kg when delivered
through nasogastric intubation in rats [239]. While 40 mg/kg of LTN was able to suppress
the Nrf2 signaling pathway and cancer development in vivo [240]. Luteolin displays its
antineoplastic activity in the forms of diverse mechanisms including hampering the activity
of epigenetic targets, such as DNA methyltransferases [241], inducing autophagy, cell
apoptosis, and inhibit migration and invasion [242]. A study demonstrated that 10–30 µM
of LTN stimulated apoptosis and autophagy in glioma [243].

Interestingly, luteolin showed a synergistic anticancer effect with 5-fluorouracil on
HepG2 and Bel7402 cells in human hepatocellular carcinoma. This effect was achieved
using various dose ratios (luteolin:5-fluorouracil = 10:1, 20:1, 40:1) [244]. In drug-resistant
ovarian cancer, 10, 50, and 100 µM of LTN significantly sensitized the antineoplastic effect
of 2 µg/mL cisplatin. Thus initiating apoptosis and inhibiting cell invasion and migration
both in vitro and in vivo [245].

A study revealed that a combination of luteolin and quercetin in (50–1000 mg/mL)
concentration, synergistically improved the antitumor effect of 5-Fluorouracil (5-FU) in
HT 29 cells. Consequently, it minimizes the unwanted toxic effects of 5-FU in colorectal
cancer treatment [246]. Furthermore, in vitro study reported that 10 and 20 µM luteolin
and 20 and 40 µM quercetin inhibited the invasion and migration of squamous carcinoma
decreasing Src/Stat3/S100A7 signaling [247]. Moreover, (10, 20, and 40 µM) of luteolin
and quercetin together caused a reduction in ubiquitin E2S expression led eventually to
metastatic inhibition of A431-III cervical cancer cells [248]. Furthermore, when 100 or



Molecules 2022, 27, 5452 14 of 50

140 mg/mL of luteolin was combined with hesperidin, an enhancement in their anticancer
activity was achieved. That is due to the declining cell viability and suppression of cell cycle
progression in MCF-7 cells [249]. Similarly, 20 µM luteolin and 50 µM silibinin worked
synergistically together, especially in preventing cell proliferation, migration, and invasion
in human glioblastoma SNB19 and GSC cells, as well as in the drug-resistant glioblastoma
stem cells [250].

2.11. Quercetin

Quercetin (QUR) is one of the most well know flavonoids that are found in many types
of fruits and vegetables; it is a flavonol that is one of the six types of flavonoids (Figure 11).
Quercetin is aglycone in nature thus mainly it is not soluble in cold water, poorly soluble
in hot water, and fairly soluble in lipids and alcohol as a result it is mainly attached to a
glycosyl group using sugar as glucose, rhamnose, or rutinose to improve the quercetin
solubility [251].
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According to its cytotoxicity, a study stated that the IC50 of quercetin was 30 µM,
which was calculated in vitro by the MTT colorimetric assay [252]. Quercetin LD50 was
97 mg/kg when administered subcutaneously, while its LD50 after intravenous admin-
istration was about 18 mg/kg in a mouse model [28]. When quercetin used in vivo at
concentration of 100 and 200 mg/kg in mice bearing CT-26 and MCF-7 tumors, it showed
significant higher survival rate compared to control [253]. Another study reported that
administration of 10 mg/kg of quercetin intraperitoneally had inhibited cell proliferation
in HepG2 tumor-bearing BALB/C/nu mice [254].

Quercetin has been utilized in different areas due to its different mechanisms such as
antioxidant [241], antimicrobial [242], and anti-inflammatory [255]. It also has a great role
in cancer, as it controls many factors in the cancer activity such as apoptotic proteins, cell
cycle, and angiogenesis [256]. As an example, 25, 50 µM of quercetin induced apoptosis
and DNA fragmentation in HeLa cervical cancer cells [257]. For these reasons, many re-
searchers studied the final effects when quercetin had used with natural products and other
anti-cancer drugs. Quercetin works synergistically with curcumin in the triple-negative
breast cancer cell line by altering the BRCA1 deficiency and therefore augmenting the activ-
ity of anti-cancer drugs [258]. Moreover, quercetin and curcumin enhanced the apoptotic
effect of K562 cells in chronic myeloid leukemia due to the increase in ROS and impairment
of the mitochondrial membrane potential [259]. Using resveratrol with quercitin can cause
DNA injury, cell growth inhibition, stimulation of apoptosis in oral cancer cell lines. It
promoted apotosis via downregulation of Histone deacetylase (HDAC)1, HDAC3, and
HDAC8 [260]. Moreover, a promising nanostructured lipid carrier (NLC) gel of quercetin
and resveratrol had shown an improvement in the deposition of these two drugs to the
epidermal layer in skin cancer cells [261]. Furthermore, combining thymoquinone with
quercitin enriched the apoptosis in non-small lung cancer cell lines due to the modulation
of anti-apoptotic protein Bcl2 and the initiation of proapoptotic Bax [174]. In addition, it
was found that using luteolin with quercitin can prevent the invasion of cervical cancer
cells as a result of a lowering in ubiquitin E2S ligase (UBE2S) [248]. With chemotherapy,
quercetin potentiates the effect of cisplatin in cervical cancer cells due to the induction of
apoptosis as a result of declining Matrix Metallopeptidase 2 (MMP2), Methyltransferase 3,
N6-Adenosine-Methyltransferase Complex Catalytic Subunit (METTL3), P-Gp and ezrin
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production [262]. Using quercetin with 5-FU increased the sensitivity of MCF-7 breast
cancer cells toward 5-FU [263]. On the other hand, combining quercetin with tamoxifen
improved its effect on resistant breast cancer cells [264]. Moreover, quercetin had improved
doxorubicin’s accumulation in breast cancer cells by downregulating the expression of
efflux receptors, including breast Cancer Resistant Protein (BCRP), P-gp, and multidrug
resistance protein 1 (MRP). It also lowered the side effects of doxorubicin [265]. In addi-
tion, nano-querectin had improved the cytotoxicity of doxorubicin in MCF-7 breast cancer
cells [266]. Fang et al. reported that mesoporous silica nano-particles loaded with quercetin
had improved the efficacy of doxorubicin treatment in gastric cancer cell lines [267]. In
hepatocellular carcinoma (HCC), quercetin potentiated the growth suppression effect of
cisplatin in HepG2 cells [268]. In addition, Zhu et al. reported that quercetin potentiates
the effect of vincristine when delivered as nanocarriers in lymphoma in vitro and in vivo
model [269]. It is worth mentioning that adding quercetin with paclitaxel therapy has
improved the anticancer effect in prostate cancer both in vitro and in vivo, through trig-
gering ROS production, induction of apoptosis, preventing cell migration and stimulating
cell arrest in the G2/M phase [270]. Moreover, QUR and paclitaxel had enhanced the
multi-drug resistance in breast cancer MCF-7/ADR cell lines and in vivo by decreasing
P-gp expression and inhibiting of the cellular paclitaxel reflux [271]. In addition, Huang
et al. revealed that nanoparticles loaded with quercetin had improved tumor targeting and
radiotherapy treatment in 4T1 cells and in mice [272]. In combination with other chemo-
drug, Li et al. reported that using quercetin with cisplatin had improved the apoptosis
in oral squamous cell carcinoma (OSCC) cell lines and mice. This is due to the inhibition
of NF-κB thus downregulating of X-linked inhibitor of apoptosis protein (xIAP) [273].
Furthermore, it increased the growth inhibition of cisplatin in breast cancer in mice [274].
Additionally, Gonzalezet et al. revealed that quercetin had improved the nephrotoxicity
that accompanied cisplatin in rats [275]. Moreover, it improved oral mucositis which is
induced by 5-FU in mice [263]. In addition, it offered protection to damaged peripheral
nerves associated with vincristine use due to quercetin’s role in decreasing the oxidative
stress, inflammation, stress and neuronal cell damage in rats [269].

2.12. Anthocyanins

Anthocyanins (ACN) are water-soluble flavonoids seen as pigments in the dark color
of fruits and vegetables such as berries, pomegranates, berries, and rice [276]. They give
different colors depending on their pH, they may appear red, purple, blue, or black. Their
fundamental structural part is 2-phenylchromenylium (flavylium) [277] (Figure 12).
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Figure 12. Chemical structure of anthocyanins (cyanidin).

They are active in a variety of health conditions such as cardiovascular [278], neuro-
logical [279], and metabolic diseases [280]. Moreover, anthocyanins have an active role in
cancer management due to their basic specification as anti-oxidants, anti-inflammatory,
anti-invasion, and anti-metastatic [281].

A study revealed that 146–2199 mg/100 g of anthocyanin exerted a good antioxidant
as well as anticancer activity [282]. Based on numerous studies, anthocyanins toxicity is
considered low. For instance, a study revealed no significant effect upon 90 days intake
of 0–1000 mg/kg/day anthocyanin in ovariectomized rats [283]. Furthermore, animal
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studies had not recognized any lethal effects regarding anthocyanins (from blueberries,
currants, and/or elderberries). Moreover, the IC50 value for anthocyanin at 24 h after
treating DU-145 cells was 60–90 µM [284]. In this context, the LD50 values for highly
purified extract of Vaccinium myrtillus berries containing 36% anthocyanosides were
over 2000 mg/kg in mouse and in rats without any toxic symptoms [285]. Moreover, in
BALB/C nude mice bearing ErbB2 positive breast cancer, the oral administration of black
rice anthocyanins (150 mg/kg/day) decreased transplanted tumor development, hindered
pulmonary metastasis, and reduced lung tumor nodules [286].

Due to the valuable activity of the anthocyanins, many researchers investigated the
outcomes when they are combined with other anti-cancer therapies including drugs and nat-
ural products. For instance, Yin et al. reported that cyanidin 3 glucoside chloride acts along
with luteolin by increasing apoptosis and inhibiting the proliferation of breast and colon can-
cer cell lines [287]. Regarding combining anthocyanins with other chemotheraputic agents,
Li et al. revealed that a combination of 5-FU and 50 µg/mL blackberries anthocyanins
decreased the proliferation and migration of SW480 cells in colorectal cancer [288]. Para-
manantham et al. stated that 400 µg/mL of anthocyanins isolated from Coignetiae pulliat
had advanced the sensitivity of cisplatin in MCF-7 breast cancer cells resulting from the
impairment of Akt and NF-κB activation [289]. Furthermore, an anthocyanin called cyani-
din had been noticed to decrease the cardiotoxicity that is associated with cisplatin in
40–80 µM doses through preventing ROS-mediated apoptosis in H9c2 cells [290]. Pepe et al.
also reported the cardio-protective effect of Citrus sinensis and Vitis vinifera anthocyanins
with doxorubicin in vitro at a range between 1–25 µg/mL [291]. In addition, anthocyanins
extracted from Oryza sativa L. and 5-FU improved the oral mucositis in vitro and in vivo
using 500 mg/kg and 1000 mg/kg concentrations. This is by the activation of Nuclear
Factor-κB which resulted in anti-inflammatory effects [292]. Anthocyanin from purple
sweet potato had decreased doxorubicin cardiac toxicity using different concentrations
(100, 200, and 400 µg/mL) according to in vitro and in vivo study. The previously men-
tioned effect was due to the decrease in inflammatory factors, such as nitric oxide and
TNF-α, also due to the decline in creatine kinase, trimethylamine oxide, and lactic dehy-
drogenase triggered by myocardial damage [293]. Moreover, with 20 µg/mL trastuzumab,
1 µg/mL anthocyanins cyanidin 3 glucoside proved to show a synergistic effect in vitro
and in vivo. As it had been noticed to decrease human epidermal growth factor receptor 2
(HER2) and improved the trastuzumab apoptotic effect in HER2-positive breast cancer [294].
Moreover, using 0.003–50 µM in a 100 µL of cyanidin 3 glucoside has shown to overcome
trastuzumab-resistant in breast cancer cell line and mice xenograft model. The previous
activity was due to decreasing the HER2, AKT, and MAPK activities [295]. Furthermore, Qi
et al. had noticed that (200 and 400 mg/kg) anthocyanin from the fruits of Panax ginseng
had improved the nephrotoxicity in mice, which is associated with cisplatin usage due to
their anti-inflammatory and anti-oxidant influences [296]. Moreover, Gomes et al. reported
the same nephroprotective effect with blackberries juice anthocyanins in mice but with
a 10 mL/kg concentration [297]. Furthermore, Shi et al. had shown that the blueberry
anthocyanins in a dose of 20 and 80 mg/kg/day for 7 days, had improved the liver damage
in rats. Generally, liver damage is associated with cyclophosphamide usage due to the
reduction of inflammation and apoptosis [298].

3. Conclusions

A combination of plant-derived natural products with other anti-cancer therapies
showed a significant improvement in cancer management. Higher efficiency and lower
toxicity were reported when combining these natural products with standard anticancer
agents or other natural products. Curcumin, thymoquinone, and quercetin were extensively
tested in combination anticancer therapies. Other plant-derived natural products were less
tested. This could be due to several factors including: availability of the natural product,
solubility, lack of clear mechanisms of action, and the cost of purchasing some natural
products. Breast cancer was the most studied cancer in combination therapies in vivo
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and in vitro. Due to the limitation of current anti-cancer treatments such as toxicity, low
solubility, low bioavailability, and resistance, combinations based on natural products is a
promising strategy to develop more effective and less toxic treatments. Further studies are
needed to design effective combinations of natural products that can augment conventional
treatments. More studies are also needed to test complex combinations containing more
than 2 natural products. Furthermore, the spectrum of activity of these combinations
should be further expanded as many of the products were tested on limited cancer types.
Figure 13 summarizes the main combination therapy of the natural compounds with other
plant-derived compounds as well as chemotherapies. Table 1 shows the tested combination
experimental design of natural compounds with other natural products and the outcomes
of these studies. Table 2 demonstrates the main studies that included natural compounds
in combination with chemotherapy.
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Figure 13. A summary of the natural compounds with their combination therapy. QUR, quercetin;
CUR, curcumin; TQ, Thymoquinone; LTN, Luteolin; ACN, anthocyanins; PTL, parthenolide; GNT,
genistein; PIP, piperine; EMD, emodin; RES, resveratrol; ALN, allicin; CIS, cisplatin; DOX, doxoru-
bicin; MT, melatonin; TMZ, temozolomide; Tmab, trastuzumab; TAM, tamoxifen; DTX, docetaxel;
PTX, paclitaxel; CCB, celecoxib; CAPS, capsaicin; PF, photofrin; SFN, sulforaphane; GEF, gefitinib;
ASC, ascorbic acid; ADM, Adriamycin; MSM, methylsulfonylmethane; RJ, royal jelly; PF, pen-
toxifylline; BV, bee venom; HES, hesperidin; BBR, berberine; SFB, sorafenib; AFT, afatinib; GEM,
gemcitabine; ENDX, endoxifen; G-CK, ginsenoside compound k; G-Rh, ginsenoside Rh; EPR, epiru-
bicin; ICG, indocyanine green; ATO, arsenic trioxide; BLZ, balsalazide; SB, silibinin; BCN, baicalein;
VIN, vincristine; RT, radiotherapy.
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Table 1. Combination of experimental design of natural compounds with other natural products and the outcomes of these studies.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Curcumin
Diarylheptanoid,

phenolic
compound

Curcumin/Resveratrol

Curcumin
15 mM

Resveratrol
15 µM

Breast cancer
Salivary cancer In vitro

Reducing cancer cell
viability, increased ER
stress and activation of

the pro-death UPR
protein CHOP

Apoptosis [49]

Curcumin/Soy
isoflavones

Curcumin
20 mM

Isoflavones
10 mg/mL

Prostate adeno-
carcinoma In vitro Reduced the

concentration of PSA Anti-androgen effect [48]

Curcumin/Emodin

Curcumin
30 µM

Emodin
80 µM

Breast cancer In vitro
Reduced tumor growth

and invasion by inducing
the expression of miR-34a

Inhibition of proliferation
and invasion of breast
cancer cells through

upregulation of miR-34a

[55]

Curcumin/
EGCG

Curcumin
3 mM
EGCG
25 µM

Breast cancer In vitro
In vivo

Suppress ERα-breast
cancer cell growth

G2/M-phase cell
cycle arrest [54]

Curcumin/Thmoquinone

Curcumin
24.91 µM

TQ
41.16 µM

Breast cancer In vitro

Showed synergistic effect
in reducing tumor cells
growth via increasing

caspase-3 and decrease
PI3K and AKT

Cell proliferation
inhibition

Apoptosis induction
[56]

Curcumin/Gemcitabine

Curcumin
10 µmol/L

Gemcitabine
50 nmol/L

Pancreatic
cancer

In vitro
In vivo

Prevent the production,
development, invasion,

and metastasis of proteins
(NF-B, EGFR, VEGF,

COX-2, miRNA-22, Bcl-2,
Bcl-xL, and others)
upregulating Bax

and caspases

Inhibition of proliferation,
angiogenesis,
and invasion

[58]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Curcumin/Vitamin D

Curcumin
10−5 M
1.25D

10−7 M

Colon cancer In vitro
Improved anticancer

effect by interacting with
vitamin D receptors

Activating
vitamin D receptor

(VDR) inducing the VDR
target genes CYP3A4,

CYP24, p21 and TRPV6.
In the colon, some of

these yet-to-be identified
genes may play a role in
cancer chemoprevention

[59]

Curcumin/Quercetin

curcumin
3.1 µM and

6.2 µM
Quercetin
25 µM and

50 µM

Human
malignant
melanoma

In vitro

Inhibition of proliferation,
modulation of

Wnt/β-catenin signaling
and apoptotic pathway

Inhibition of cell
proliferation through
down-regulation of

Wnt/β-catenin signaling
pathway proteins, DVL2,

β-catenin, cyclin D1,
Cox2, and Axin2

[60]

Curcumin/Boswellic
acid

curcumin,
10 µmol/L

AKBA
30 µmol/L

Colorectal
cancer

In vitro
In vivo

Induced
chemoprevention through
modulating miRNAs and
their downstream target

genes involved in
cell-cycle control

Suppression of tumor
growth by

Induction the
upregulation of

tumor-suppressive
miR-34a and

downregulation of
miR-27a in colorectal

cancer cells

[47]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Resveratrol

Stilbeniod,
phenolic

compound, and
a phytoalexin

Resveratrol/Curcumin

Resveratrol
dose level

of 5.7 mg/mL
three times

a week
Curcumin
dose level

of 60 mg/kg
of body weight

three times
a week

Lung cancer In vivo
Synergistically stimulated

p21 and modulated
Cox-2 expression

expression of p21
significant decrease in
tumor incidence and

multiplicity curcumin and
resveratrol have been

reported to modulate p21
expression by a

p53-dependen pathway
adequate zinc levels along

with phytochemicals
resulted in efficient cell
cycle arrest by p21 to

control rapid
cell proliferation

[80]

Resveratrol/Melatonin

Resveratrol
pellets in a

concentration of
100 mg/kg
Melatonin

Drinking water
pellets in a

concentration of
100 mg/kg

Breast cancer In vivo

NMU-induced mammary
carcinogenesis was not
affected by either agent

alone, but when they
were combined it resulted
in a significant decrease in

tumor incidence.

reduced tumor incidence
by approximately 17%

and significantly
decreased the quantity of

invasive and in-situ
carcinomas

returned food intake to
the level of intact controls

(significantly increased
food intake) protective

effects on NMU-induced
rodent breast cancer

[81]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Genistein Phytoestrogenic
isoflavone

Genistein/Capsaicin

genistein
50 µmol/L
Capsaicin
50 µmol/L

Breast cancer In vitro Synergistic apoptotic and
anti-inflammatory effects

Reduced cell viability
chromatin condensation

and nuclear
fragmentation

stimulating AMPKα1

[97]

Genistein/Sulforaphane

Genistein
15 µM

Sulforaphane
5 µM

Breast cancer In vitro Promoted cell cycle arrest

downregulated KLF4
downregulated HDAC

activity
especially HDAC2 and

HDAC3
downregulated

hTERT

[101]

EGCG
Catechin/

polyphenol

EGCG/curcumin

EGCG
50 and 100 µM

curcumin
50 µM

Prostate cancer In vitro Arrested S and
G2/M cycles

Arrested both S and
G2/M phases of cell cycle
Synergic up-regulation of

p21 and followed cell
growth arrest

[116]

EGCG/Quercetin

EGCG
100 µM

Quercetin
10 and 100 µM

Breast cancer In vitro

EGCG had improved the
anti-metabolic effect of

quercetin in ER-negative
breast cancers also it had

decreased the viability
and proliferation of

MCF7 cells

Decreased cellular
proliferation

Inhibit glucose uptake by
cells

Metabolic antagonists in
breast cancer cells,
independently of
estrogen signaling

[117]

EGCG/Resveratrol

EGCG
30 µM

resveratrol
15 µM

Head and
neck cancer In vivo

Enhanced apoptotic effect
and reduced

tumor growth
Increased apoptosis [120]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

EGCG/Sulforaphane

EGCG
20 mM

Sulforaphane
10 mM

Ovarian cancer In vitro

Provoked apoptosis in
ovarian resistant cells

through human
telomerase reverse

transcriptase(hTERT) and
Bcl-2 down regulation

arrest cells in both G2/M
and S phase

increases apoptosis in
paclitaxel-resistant
SKOV3TR-ip2 cells

by down-regulating of
hTERT and Bcl-2 and

promote DNA
damage response

reducing the expression
of hTERT

[119]

Allicin Thiosulfinate

Allicin/
Thymoquinone

PC3 cells
Allicin

24 g/mL
Thymoquinone

500 g/mL
CaCo2 cell

Allicin
12 g/mL

Thymoquinone
500 g/mL

Prostate and
colon cancer In vitro Modulated antioxidant

parameters

Increase of catalase
activity in both PC3 cells

and Caco2 cell
[141]

Allicin/
Methylsulfonylmethane

They used the
IC50

MSM/allicin
For CD44−

55.71 ± 8.47 mg/mL
MSM/allicin

For CD44+
68.83 ± 9.78 mg/mL

Breast cancer In vitro
Increased expression of

caspase-3 mRNA
expression

Enhanced more caspase-3
mRNA expression than

allicin alone in both
CD44± cells.

Modulating the
expression of the key

apoptotic factors.

[143]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Thymoquinone Monoterpenoid

Thymoquinone/
Royal jelly

Thymoquinone
15 µmol/L
Royal jelly
5 µg/mL

Breast cancer In vitro Enhanced
anticancer activity

cell viability inhibition
and PreG1 increase [172]

Thymoquinone/Quercetin

Thymoquinone
5 µM

Quercetin
22.49 and
25.9 µM

Non-small cell
lung cancer In vitro

Induced apoptosis by
modulating

Bax/Bcl2 cascade

reduce the expression of
antiapoptotic protein Bcl2

and induce
proapoptotic Bax

[174]

Thymoquinone/
ferulic acid

Thymoquinone
50 and 100 µM

ferulic acid
450µM

Breast adeno-
carcinoma In vitro Synergic growth

inhibition
decreased cell
proliferation [173]

Thymoquinone/Melatonin

Thymoquinone
10 mg/kg/day

Melatonin
1 mg/kg

twice daily

Breast cancer In vitro
In vivo

Synergic antitumor effect
by reducing tumor size

with a 60% cure

induction of apoptosis,
angiogenesis inhibition,

and activation of T helper
1 anticancer

immune response

[171]

Thymoquinone/Resveratrol

TQ
46.03 µM

Resveratrol
64.54 µM

Hepatocellular
carcinoma In vitro Significant cell inhibition

and increased caspase-3

cell inhibition and
increase in caspase-3

indicating cell apoptosis
raised reactive oxygen

species leading to
decrease of glutathione

[162]

Piperine Alkaloids Piperine/Thymoquinone

Piperine
425 µM

Thymoquinone
80 µM

Breast cancer In vivo

Inhibition of angiogenesis,
induction of apoptosis,

and shift toward T
helper1 immune response

decrease VEGF
expression and increased

serum INF-γ levels
angiogenesis inhibition,

apoptosis induction, and
shifting the immune
response toward T
helper1 response.

[181]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Emodin
Anthraquinonoe/

phenolic
compound

Emodin/berberine

Emodin
5–20 µM
berberine
5–30 µM

Breast cancer In vitro

Synergic inhibition of
SIK3/mTOR pathway

and induction
of apoptosis

Attenuated aerobic
glycolysis and cell growth

as well as induce cell
death by suppressing the

SIK3/mTOR/Akt
signaling pathway

[220]

Parthenolide
Sesquiterpene/
germacranolide

class

Parthenolide/ginsenoside
compound k

parthenolide
7.5 mg/kg

ginsenoside
compound k
37.5 mg/kg

Lung cancer In vitro
In vivo Increased tumor targeting

induce
mitochondria-mediated
lung cancer apoptosis

[233]

Parthenolide/betulinic
acid/honokiol/ginsenoside

Rh2

Parthenolide
20.5 mg/kg,

betulinic acid
20.3 mg/kg
Honokiol

20.7 mg/kg
ginsenoside Rh2

20 mg/kg

Lung cancer In vitro
In vivo

Displayed a synergistic
activity in liposome

systems for lung
cancer treatment

cocktail liposome systems
may provide a more

efficient and safer
treatment for lung cancer.

[234]

Luteolin Digitoflavone/
flavonoid

Luteolin/Baicalein

Luteolin
2.5, 5, 12.5, 25,

50, 80 and
100 mM
Baicalein

2.5, 5, 12.5, 25,
50, 80 and
100 mM

Colorectal ade-
nocarcinoma In vitro Synergic growth

inhibition
inhibit cancer cells

proliferation [255]

Luteolin
10 or 20 µM
Quercetin
10, 20, and

40 µM

Cervical
cancer In vitro

Reduction in ubiquitin
E2S expression led

eventually to metastatic
inhibition of

cervical cancer

inhibited UBE2S
expression [247]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Luteolin/Hesperidin

Hesperidin
100 µg/mL

Luteolin
100 µg/mL

Breast cancer In vitro

Induced cell cycle arrest
by mediating apoptosis
and downregulation the

miR-21 expression

inhibition of cell
proliferation, migration,

and invasion
reduced cell viability

accumulation of apoptotic
cells into the G0/G1 and
sub-G1 cell cycle phases

induced apoptosis
through the intrinsic and

extrinsic pathways,
down-regulated

anti-apoptotic, Bcl-2, and
upregulated

pro-apoptotic, Bax
downregulated the

expression of miR-21 and
upregulated that of

miR-16 and -34a in MCF-7

[249]

Luteolin/Silibinin

Luteolin
20 µM

Silibinin
50 µM

Glioblastoma In vitro
Synergic inhibition of cell
proliferation, migration,

and invasion

inhibition of cell
migration

block angiogenesis
block survival pathways

leading to induction
of apoptosis.

[247]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Quercetin Flavonol/flavonoid

Quercetin/Curcumin

Quercetin
20 µM

Curcumin
10 µM

Breast cancer In vitro

Altered the BRCA1
deficiency and therefore
augment the activity of

anti-cancer drugs

synergistic action was
observed in modulating
the BRCA1 level and in

inhibiting the cell survival
and migration of TNBC

cell lines

[258]

Quercetin 11.39,
0.419 µM,

Curcumin 2.85,
53.89 µM

Myeloid
leukemia In vitro

Enhanced apoptotic effect
increasing

ROS production

act indirectly on
inhibition of STAT3 in a

number of leukaemia cell
lines (HL-60, U-937

and K562)

[259]

Quercetin/Resveratrol

Quercetin
10 µM

Resveratrol
10 µM

Oral cancer In vitro

Cell growth inhibition,
stimulation of apoptosis

also it had been noticed to
downregulate Histone
deacetylase (HDAC)1,
HDAC3, and HDAC8

Cell Growth Inhibition,
DNA Damage, Cell Cycle
Arrest, and Apoptosis in

Oral Cancer Cells

[260]

Quercetin
2 µg/mL

Resveratrol
50 µg/mL

Skin cancer In vivo
Ex vivo

Synergistic effect over the
use of single drugs

dual drug-loaded
nanostructured lipid
carrier (NLC) gel of

quercetin and resveratrol
enhanced their

disposition in dermal and
epidermal layers

[261]

Quercetin/Thymoquinone

Quercetin
22.49 µM

TQ
22.49 µM

Non-small
lung cancer In vitro Downregulated BcL2, and

activated BAX protein

reduce the expression of
antiapoptotic protein Bcl2
and induce proapoptotic

Bax, suggestive of
sensitizing NSCLS cells

toward apoptosis.

[174]
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Table 1. Cont.

Natural
Compounds

Chemical
Classification Combination Therapy Concentrations

Used
Type of
Cancer

Experimental
Model

Outcomes of the
Combination

Intersecting
Mechanisms References

Quercetin/Luteolin

Luteolin
10 or 20 µM
Quercetin
10, 20, and

40 µM

Cervical
cancer In vitro

Lowered the ubiquitin
E2S ligase (UBE2S)

expression

inhibited UBE2S
expression [248]

Anthocyanins Flavylium/flavonoid Anthocyanins/luteolin

Anthocyanins
Cyanidin-3-O-

glucoside
chloride

35 µmol/L
luteolin

10 µmol/L

Breast cancer
Colon cancer In vitro Increased apoptosis and

inhibited proliferation
inhibited proliferation

and increased apoptosis [287]

Table 2. Combination experimental design of natural compounds with conventional anticancer therapy and the outcomes of these studies.

Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Curcumin

Curcumin/Paclitaxel

Curcumin
5 µM
Taxol
5 nM

Cervical cancer

Curcumin enhanced
paclitaxel-induced apoptosis by

increasing p53 expression,
activation of caspase-3, 7, 8, and 9,

cleavage of poly(ADP-ribose)
polymerase (PARP), and

cytochrome c release

Non intersecting
Curcumin enhanced paclitaxel-induced

apoptosis by down-regulation of
Nuclear Factor-κB and the

Serine/Threonine Kinase Akt

[35,36]

Curcumin/Docetaxel

Curcumin
20 µM

Docetaxel
10 nM

Prostate cancer Reduced docetaxel-induced drug
resistance and side effects

Non intersecting
curcumin enhances the efficacy of
docetaxel treatment by inhibiting

proliferation and inducing apoptosis
through modulation of

tumor-suppressor proteins,
transcription factors and oncogenic
protein kinases compared to each

treatment alone

[38]
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Table 2. Cont.

Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Curcumin/Metformin

Curcumin
5–40 µM

Metformin
0.4–12 mM

Prostate cancer
Synergistic impact on growth

inhibition by apoptotic induction
than curcumin and metformin alone

Apoptosis [40]

Curcumin/5-FU

curcumin
5 µM
5-FU

0.1 µM

Colorectal cancer Overcome the drug resistance
caused by 5-FU

Non-intersecting
Curcumin decreases cancer stem cells

and making cancer cells more sensitive
to 5-FU

[42]

Curcumin/Celecoxib

Curcumin
10–15 µmol/L

Celecoxib
5 µmol/L

Colorectal cancer Inhibited cancer cell proliferation

Growth inhibition was associated with
inhibition of proliferation and

induction of apoptosis. Curcumin
augmented celecoxib inhibition of

prostaglandin E2 synthesis. The drugs
synergistically down-regulated COX-2

mRNA expression.

[43]

Curcumin/Cisplatin

Curcumin
10 M

Cisplatin
10 M

Bladder cancer

Stimulated caspase-3 and
overexpression

phospho-mitogen-activated protein
kinase (p-MEK) and

phospho-extracellular
signal-regulated kinase 1/2

(p-ERK1/2) signaling

activating caspase-3 and upregulating
phospho-mitogen-activated protein

kinase (p-MEK) and
phospho-extracellular signal-regulated

kinase 1/2 (p-ERK1/2) signaling

[44]

Curcumin/Doxorubicin

Curcumin
5 M

Doxorubicin
0.4 mg/mL

Hodgkin lymphoma Reduced cell growth by 79%
reduced cell growth by 79%, whereas

each drug alone reduced L540 cell
growth by 44% and 23%

[45]
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Table 2. Cont.

Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Resveratrol

Resveratrol/
Temozolomide

Resveratrol
12.5 mg/kg

Temozolomide
10 mg/kg TMZ

Malignant glioma

Enhanced temozolomide’s
therapeutic efficacy by inhibiting

ROS/ERK-mediated autophagy and
improving apoptosis

reduced tumor volumes by suppressing
ROS/ERK-mediated autophagy and

subsequently inducing apoptosis
protected glioma cells from apoptosis,

thus improving the efficacy of
chemotherapy for brain tumors.

[78]

Resveratrol/Doxorubicin

Resveratrol
25 µM

Resveratrol
10–100 µM
Resveratrol
12.5 mg/kg

Melanoma

Induced cell cycle disruption and
apoptosis, resulting in decreased
melanoma growth and increased

mouse survival

Non intersecting
resveratrol

inhibits the growth of a
doxorubicin-resistant B16 melanoma

cell subline (B16/DOX)
induced G1-phase arrest followed by

the induction of apoptosis
reduced the growth of an established
B16/DOX melanoma and prolonged

survival (32% compared to
untreated mice).

[79]

Genistein

Genistein/5-FU

genistein
1.3 mg/day

intraperitoneally
FU

60 mg/kg,
intraperitoneally

Pancreatic cancer

Tumor cells were augmented by the
addition of genistein, which

increased both apoptosis
and autophagy

Non intersecting
Genistein can potentiate the antitumor
effect of 5-FU by inducing apoptotic as

well as autophagic cell death.

[99]

Genistein/Photofrin

genistein
(0, 50, 100 µM)

Photofrin
(0–50 µg/mL)

Ovarian cancer
Thyroid cancer

Enhanced the efficacy of
photofrin-mediated

photodynamic therapy

Non intersecting
genistein sensitizes the activity of

photodynamic therapy by photofrin in
SK-OV-3 cells by inducing apoptosis
through the activation of caspase-8

and caspase-3

[51]

Genistein/Estradiol

Genistein
20 µM

Estradiol
20 µM

Human liver cancer Enhanced apoptosis Enhanced apoptosis [98]
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Table 2. Cont.

Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

EGCG

EGCG/5-FU

EGCG
50 µM
5-FU

10 µM

Colorectal cancer

Improved tumor cell’s sensitivity to
5-FU through inhibition of 78-kDa
glucose-regulated protein (GRP78),
NF-KB, miR-155-p5 and multidrug

resistance mutation 1
(MDR1) pathways

Non intersecting
EGCG enhanced the chemo-sensitivity

of 5-FU in low doses by inhibiting
cancer proliferation, promoting

apoptosis and DNA damage
EGCG blocked GRP78 expression,

followed by enhancement of NF-κBand
miR-155–5p level, which further

inhibited the MDR1 expression and
promoted the 5-FU accumulation in

tumor cell

[87]

EGCG/Cisplatin

EGCG
10 µM

Cisplatin
10 µM

Ovarian cancer

Enhanced cisplatin sensitivity in
ovarian cancer by regulating the

expression of copper and cisplatin
influx transport which is

well-known as
copper transporter 1 (CTR1)

DNA damage [125]

EGCG/Tamoxifen

EGCG
25 mg kg−1

Tamoxifen
75 µg kg−1

Breast cancer Decreased the expression of EGFR,
mTOR, and CYP1B

Decreased the expression of EGFR,
mTOR, and CYP1B [126]

EGCG/Paclitaxel

EGCG
20 µM

Paclitaxel
1 µM

Breast cancer

EGCG had synergistically
encouraged the effect of paclitaxel
by enhancing the phosphorylation
of c-Jun N-terminal kinase (JNK)

induced 4T1 cells apoptosis [127]

EGCG/Gefitinib

EGCG
20 µM

Gefitinib
1.25 µM

Non-small cell lung
cancer

Inhibition of
epithelial-Mesenchymal transition

(EMT), and blocking of
mTOR pathway

inhibit proliferation of
HCC827-Gef cells [128]
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Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

EGCG/Erlotinib

EGCG
30 µM

Erlotinib
1 µM

Head and
neck cancer

enhanced apoptosis through the
regulation of Bcl-2-like

protein11(BIM) and B-cell
lymphoma 2(Bcl-2)

inhibiting the phosphorylation of ERK
and AKT and expression

induces apoptosis of SCCHN cells by
regulating Bim and Bcl-2 at the

posttranscriptional level.

[129]

Allicin

Allicin/Cisplatin

Allicin
10 µg/mL
Cisplatin
2 µg/mL

Lung cancer
Allicin overcome hypoxia mediated

cisplatin resistance by increasing
ROS production

shifts the mechanism of cell death
towards more apoptosis

allicin induced increase in ROS
accumulation thus enhances cisplatin

sensitivity even at low doses in
A549 cells.

[144]

Allicin/5-FU

Allicin
5 mg/kg/d; every

two days for 3 weeks
5-FU

20 mg/kg/d
5 consecutive days

Hepatic cancer

Improved its sensitivity in hepatic
cancer cells due to induction of

apoptosis by ROS-mediated
mitochondrial pathways

increased intracellular reactive oxygen
species (ROS) level, reduced

mitochondrial membrane potential
(∆Ψm), activated caspase-3 and PARP,

and down-regulated Bcl-2

[154]

Allicin/Adriamycin

Allicin
25 µg/mL

Adriamycin
2.5 µg/mL

Gastric cancer Inhibited the proliferation and
induced apoptosis

induced apoptosis and
inhibited proliferation [148]

Allicin/Tamoxifen

Allicin
10 nM

Tamoxifen
1 µM

Breast cancer Improved the effectiveness
of tamoxifen

Non intersecting
Allicin in MCF-7 cells enhances the

effectiveness of tamoxifen in the
presence and absence of 17-b estradiol

[149]
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Table 2. Cont.

Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Thymoquinone

Thymoquinone/
Doxorubicin

For most
experiments

Thymoquinone
10 µM TQ

Doxorubicin
50 nM

for 24 h
for the treatment of

HuT102 cells for 48 h
Thymoquinone

40 µM
Doxorubicin

100 nM

Adult T-cell
leukemia

Increased ROS production resulting
in disruption of the

mitochondrial membrane

Increased ROS production resulting in
disruption of the mitochondrial

membrane
inhibition of cell viability and increased

sub-G1 cells
reduced tumor volume

[169]

Thymoquinone/
Cisplatin

Thymoquinone
20 mg·kg−1 oral

cisplatin 2 mg·kg−1

ip

Hepatocellular
carcinoma

Improved the effectiveness of
Cisplatin via controlling the

GRP78/CHOP/caspase-3 pathway

reduced the elevated GRP78 and
induced CHOP-mediated apoptosis in

the diseased liver tissues
normalized alpha-fetoprotein (AFP)
levels and improved liver functions

[167]

Thymoquinone/
Cisplatin/

Pentoxifyllin

Thymoquinone
i.p. (20 mg/kg)

Cisplatin
7.5 mg/kg twice

Pentoxifyllin
s.c. route 15 mg/kg

Breast carcinoma Enhance the effect of the treatment
by Notch pathway suppression

reduced Notch1, Hes1, Jagged1,
β-catenin, TNF-α, IL-6, IFN-γ, and
VEGF with increment in IL-2, CD4,

CD8, and apoptotic cells
Notch suppression.

[170]
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Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Thymoquinone/
Paclitaxel

100:1 µM of TQ
with PTX Breast cancer increased the rate of

apoptotic/necrotic cell death

Non intersecting
Thymoquinone does not improve

Paclitaxel potency against MCF-7 or
T47D cells and apparently antagonizes

its killing effects. However, TQ
significantly abolishes tumor-associated

resistant cell clones
Thymoquinone enhanced Paclitaxel

induced cell death including autophagy
TQ significantly increased the percent

of apoptotic/necrotic cell death in T47D
cells after combination with paclitaxel
induced a significant increase in the

S-phase cell population

[168]

Piperine

Piperine/Paclitaxel 5:1 Breast cancer Synergistic anticancer effect

Non intersecting
piperine can improve the bioavailability

of paclitaxel and can potentiate the
antitumor effect of paclitaxel

[189]

Piperine/hesperidin/bee
venom/Tamoxifen

Piperine
34.89 µg/mL
Hesperidin

12.14 µg/mL
bee venom

10.19 µg/mL
Tamoxifen

2.98 µg/mL

Breast cancer Enhance the anti-cancer effects
of tamoxifen

Enhance the anti-cancer effects
of tamoxifen [190]

Piperine/Doxorubicin

Piperine
50 µM

Doxorubicin
10 µM

Breast cancer Inhibited tumor growth Piperine enhanced the cytotoxicity
effect of doxorubicin [191]

Piperine/Docetaxel

Piperine
50 mg/kg p.o.

Docetaxel
12.5 mg/kg

Prostate cancer Improved the antitumor efficacy
of docetaxel

Improved Anti-Tumor Efficacy Via
Inhibition of CYP3A4 Activity [192]
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Natural Compound Combination Therapy Concentration Used Type of Cancer Outcomes of the Combination Intersecting Mechanism References

Emodin

Emodin/Sorafenib

Emodin
20 µM

Sorafenib
0.5 µM and 1 µM

Hepatocellular
carcinoma

Improving the anti-cancer effect of
sorafenib by increasing apoptosis

and cell cycle arrest

Non intersecting
emodin synergistically increased cell

cycle arrest in the G1 phase and
apoptotic cells in the presence

of sorafenib

[207]

Emodin/Afatinib

Emodin
50 mg/kg/day

for 4 weeks
Afatinib

50 mg/kg/day
for 4 weeks;

Pancreatic cancer Inhibited cell proliferation Regulating the Stat3 expression. [216]

Emodin/Cisplatin

Emodin
A549 cells:5 µM

H460 cells, 2.5 µM
Cisplatin

A549: 8, 10 and
15 µM

H460 cells:2, 4, 6, 8
and 10 µM

Lung
adenocarcinoma

Increased cisplatin sensitivity
through P-glycoprotein

downregulation

Non intersecting
Emodin inhibited the proliferation of

A549 and H460 cells
emodin enhanced cisplatin-induced
apoptosis and DNA damage in A549

and H460 cells
emodin can increase A549 and H460

cell sensitivity to cisplatin by inhibiting
Pgp expression

[219]

Emodin/Paclitaxel Emodin 10 µM
Paclitaxel 4 µM

Non-small cell lung
cancer

Enhanced the antiproliferative effect
of paclitaxel Inhibited the proliferation of A549 cells [212]

Emodin/Gemcitabin

Emodin
40 µM

Gemcitabine
20 µM

Pancreatic cancer
Emodin inhibited IKKβ/NF-κB
signaling pathway and reverses

Gemcitabine resistance
Increase the apoptosis rate [213]

Emodin/Endoxifen

Emodin
0, 15, 30, 60 µM

Endoxifen
0, 2, 4 µM

Breast cancer
Elevation of cyclin D1 and

phosphorylated extracellular
signal-regulated kinase (pERK)

Emodin attenuated tamoxifen’s
treatment effect via cyclin D1 and pERK

up-regulation in ER-positive breast
cancer cell lines.

[294,299]
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Parthenolide

Parthenolide/Epirubicin

Parthenolide
2.5, 0.75 and 0.2 µM

Epirubicin
(9, 7, and 5 µM

Breast cancer
improved cytotoxicity and

apoptosis as well as reduced the
undesirable side effects

Up-regulated the expression of Bax as a
pro-apoptotic gene in MDA-MB cells

down-regulated the expression of Bcl2
as an anti-apoptotic gene in

MDA-MB cells
increasing the fracture of caspase 3 and

improving the apoptosis pathway

[221]

Parthenolide/Indocyanine Breast cancer Synergistic antitumor activity

More ROS-mediated killing of the
tumor cells by exerting a synergistic

effect for treating triple-negative
breast cancer

[270]

Parthenolide/
Arsenic trioxide

Parthenolide
1 µg/mL

Arsenic trioxide
2 µM

Adult T-cell
leukemia/lymphoma Enhanced the activity

Non intersecting
parthenolide significantly enhanced the

toxicity of ATO in MT2 cells.
[231]

Parthenolide/Balsalazide

Parthenolide
5 and 10 µmol/L

Balsalazide
20 mmol/L

Colorectal cancer Improved the anticancer activity via
blocking NF-κB activation

Exhibits synergistic suppression of
NF-κB and NF-κB–regulated gene
products that are associated with
apoptosis, proliferation, invasion,
angiogenesis, and inflammation

[232]

Luteolin

Luteolin/Cisplatin

Luteolin
0, 10, 50, 100 µM

Cisplatin
2 µg/mL

Ovarian cancer

Significantly sensitized the
antineoplastic effect of cisplatin by
initiating apoptosis and inhibiting

cell invasion and migration

Suppressing CAOV3/DDP cell growth
and metastasis

inducing apoptosis by decreasing
Bcl-2 expression.

[245]

Luteolin/5-FU

Luteolin:5-
fluorouracil

10:1, 20:1, 40:1
luteolin:100, 50, 25,
12.5, 6.25, 3.125 µM
5-FU: 10, 5, 2.5, 1.25,

0.5, 0.25 µg/mL

Hepatocellular
carcinoma synergistic anticancer effect Apoptosis induction and metabolism [244]
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Quercetin

Quercetin/Cisplatin

Quercetin
100 µM
cisplatin
5 µg/mL

Oral squamous cell
carcinoma

Inhibition of NF-κB thus
downregulating of X-linked

inhibitor of apoptosis protein(xIAP)

Induced apoptosis in human OSCC
(cell lines Tca-8113 and SCC-15) by

down-regulating NF-κB
[273]

Quercetin
50 µM

cisplatin
10 µM

Hepatocellular
carcinoma

potentiated the growth suppression
effect of cisplatin

Inducing growth suppression and
apoptosis in HepG2 cells [268]

quercetin
15 µM

cisplatin
10 µM

Cervical cancer
Induced apoptosis by

downregulation of MMP2, METTL3,
P-Gp and ezrin production

Promoting apoptosis and inhibiting
proliferation, migration and invasion of

cervical cancer cells
[262]

Quercetin/Tamoxifen

Quercetin
50 µM

Tamoxifen
10–6 mol/L

Breast cancer Enhanced the activity Proliferation inhibition and apoptosis in
MCF-7Ca/TAM-R cells [264]

Quercetin/Vincristine

Vincristine
50 mg

Quercetin
50 mg

Lymphoma Potentiated the effect of vincristine

Synergistic effect through
lipid-polymeric nanocarriers

(LPNs) for the
lymphoma combination chemotherapy

[269]

Quercetin/Doxorubicin

Quercetin
0.7 µM

Doxorubicin
2 µg/mL

Breast cancer
Suppression of efflux receptors

(BCRP, P-gp, MRP1), and reduced
the side effects of doxorubicin

Down-regulating the expression of
efflux ABC transporters including P-gp,
BCRP and MRP1 and attenuating the

toxic side effects of high dose
doxorubicin to non-tumor cells

[265]

Quercetin and
Doxorubicin

5 mg/kg
Gastric cancer Improved the efficacy Improved the efficacy of gastric

carcinoma chemotherapy [267]

Doxorubicin
0.75 µM

Quercetin
230 µM

Breast cancer Improved the efficacy Induction of apoptosis in cancer cells [266]
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Quercetin/Radiotherapy Theranostic system
(CQM ) 50 µm Breast cancer Improved the tumor targeting and

radiotherapy treatment Promoted tumor cell apoptosis [272]

Quercetin/Paclitaxel

Quercetin
20 µM

Paclitaxel
5 nM

Prostate cancer

Improved efficacy by by ROS
production, induction of apoptosis,

preventing cell migration and
causing cell arrest in G2/M phase

Induction of apoptosis
cell arrest in G2/M phase

ROS production
Preventing cell migration

[270]

Quercetin
2, 10, 20 mg/kg

Paclitaxel
40 mg/kg

Breast cancer
had enhanced the multi-drug
resistance in breast cancer by
decreasing P-gp expression

Lower IC50 value,
higher apoptosis rate, obvious G2M

phase arrest as well as stronger
microtubule

destruction in MCF-7/ADR cells

[271]

Anthocyanins

Anthocyanins/ 5-FU

Caco2 cells
BRB Anthocyanins

50 µg/mL
5-FU 25 µM or 50 µM

SW480 cells
BRB Anthocyanins

50 µg/mL
5-FU 16 µM or 32 µM

Colorectal cancer decreased the proliferation and
migration of tumor cells

Decreased number of tumors
decreased the proliferation [287]

Anthocyanins/Cisplatin

AIMs Anthocyanins
400 µg/mL
Cisplatin
5 µg/mL

Breast cancer
advanced the sensitivity of cisplatin

by inhibiting Akt and
NF-κB activity

Non intersecting
Anthocyanins isolated from Vitis

coignetiae Pulliat (Meoru in Korea)
(AIMs) Enhances Cisplatin Sensitivity
in MCF-7 Human Breast Cancer Cells

through Inhibition of Akt and
NF-κB Activation

[289]

Anthocyanins/Doxorubicin

Anthocyanins
1–25 µg/mL
Doxorubicin

5 µM

Breast cancer decreased doxorubicin
cardiac toxicity

Smoothies containing mixtures of
Citrus sinensis and Vitis vinifera L. cv.
Aglianico N, two typical fruits of the

Mediterranean diet decreased
doxorubicin cardiac toxicity

[291]
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Anthocyanins/
Trastuzumab

C3G
5 µg/mL

Trastuzumab
5 µg/mL

Breast cancer Improved trastuzumab
apoptotic effect

Non intersecting
Improved trastuzumab apoptotic effect [294]

C3G (1 mg/mL) or
P3G (1 mg/mL) Breast cancer

Overcome trastuzumab-resistant
cells due to the decrease in HER2,

AKT and MAPK activities

Non intersecting
Anthocyanin overcome

trastuzumab-resistant cells due to the
decrease in HER2, AKT and

MAPK activities
inhibits invasion and migration of

trastuzumab-resistant human breast
cancer cells

[295]
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