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Abstract: Background: Several genes and single nucleotide polymorphisms (SNPs) have been
associated with early childhood caries. However, they are highly age- and population-dependent and
the majority of existing caries prediction models are based on environmental and behavioral factors
only and are scarce in infants. Methods: We examined 6 novel and previously analyzed 22 SNPs in
the cohort of 95 Polish children (48 caries, 47 caries-free) aged 2–3 years. All polymorphisms were
genotyped from DNA extracted from oral epithelium samples. We used Fisher’s exact test, receiver
operator characteristic (ROC) curve and uni-/multi-variable logistic regression to test the association
of SNPs with the disease, followed by the neural network (NN) analysis. Results: The logistic
regression (LogReg) model showed 90% sensitivity and 96% specificity, overall accuracy of 93%
(p < 0.0001), and the area under the curve (AUC) was 0.970 (95% CI: 0.912–0.994; p < 0.0001). We found
90.9–98.4% and 73.6–87.2% prediction accuracy in the test and validation predictions, respectively.
The strongest predictors were: AMELX_rs17878486 and TUFT1_rs2337360 (in both LogReg and
NN), MMP16_rs1042937 (in NN) and ENAM_rs12640848 (in LogReg). Conclusions: Neural network
prediction model might be a substantial tool for screening/early preventive treatment of patients at
high risk of caries development in the early childhood. The knowledge of potential risk status could
allow early targeted training in oral hygiene and modifications of eating habits.

Keywords: early childhood caries; single nucleotide polymorphisms; artificial neural network; early
prediction model; complex trait

1. Introduction

Dental caries is a chronic, multifactorial and dynamic disease that affects up to 83%
of the global population, irrespective of the age. Early childhood caries (ECC) is defined
as the presence of one or more decayed, missing or filled primary teeth in a child up to
71 months of age [1,2]. In Poland, based on the epidemiological studies, 53.8% of 3-year-old
children have on average 2.4 effected teeth and this prevalence is higher when compared to
the data from Western Europe [3,4]. However, even 6-month-old infants have been found
to develop caries lesions; therefore, it has been suggested that an early caries prevention
should start in the 4th month mother’s pregnancy [5]. Additionally, some mothers have
presented reluctance to visit clinics regularly [6] and 48% of 3-year-old Polish children have
never been to the dentist so far, although the dental care is free [4].

Interestingly, despite the treatment programs and caries prevention for preschoolers,
about 15% of young patients would still develop the disease, which suggests an intrinsic,
genetic factor influencing the individual host’s susceptibility to caries [7]. In addition,
patients exposed to the same level of environmental factors and with comparable behavioral
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factors, might present distinct susceptibility to caries lesions [8]. Indeed, biological factors
show stronger association with caries than the lifestyle and socio-economic factors, the latter
only being responsible for intermediate and distant effects [9]. Genetic and immunological
factors have been considered to be more important in enamel defects than the eating habits
or nutritional deficits and the overall health status and immunodeficiencies in children have
been shown to significantly affect the enamel hypomineralization [1]. For the last decade,
several genes and genetic polymorphisms have been identified and associated with dental
caries lesions in patients of different ages and ethnicities [1,7,10–13]. However, the majority
of the existing caries prediction models lack biological, especially genetic factors. Selected
and validated single nucleotide polymorphisms (SNPs) might be genotyped easily and
early in a child’s life, and represent a potentially valuable tool for the caries risk prediction.
This could allow enhanced early targeted prevention for infants and toddlers at greatest
risk. As most of the eating and oral health habits can be changed at any time, this might
result in better health and quality of life.

Our previous research [14,15] showed significant association of genetic polymor-
phisms with caries in 2–3-year-old Polish children. The aim of this study was to present
caries prediction model based on chosen polymorphisms from all three studies, as predic-
tors, using the artificial neural network approach.

2. Materials and Methods
2.1. Ethical Issues

The study was reviewed and approved by the Bioethical Committee of the Poznan
University of Medical Sciences (resolutions no. 590/13, 605/14, and 727/18).

2.2. Study Design

In total, 262 children from the four nurseries in the central-west Poland were enrolled.
In the two previous studies [14,15], we analyzed the differences in the frequencies of alleles
and genotypes of 18 single nucleotide polymorphisms (SNPs) in 7 genes in the reference
of caries experience in the cohort of Polish children. Another six SNPs in 6 genes with a
presumable role in caries pathogenesis were analyzed in this study [1,10,16–18]. In brief,
we genotyped: rs4547741 in LTF, rs7217186 in ALOX15, rs10429371 in MMP16, rs7096206
in MBL2, rs1884302 in SMAD6 and rs1711437 in MMP20. Additional analyses (including
additional statistics and machine learning techniques) were performed by combining SNP
testing results with data from the previous studies to determine predictive capacity of
studied variants for childhood caries. Two variants, i.e., rs2609428 and rs36064169 in ENAM
had homozygous status in all individuals, therefore they were excluded from statistical
analyses. The remaining 22 differentiated SNPs analyzed in this study are presented in
Table 1.
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Table 1. Twenty-two differentiated SNPs analyzed in the current study.

SNPs Analyzed in This Study

SNP ID Gene Gene ID 1 Chromosome:
Location Type of Variant AMINO

Acid Change

rs4547741 LTF (Lactotransferrin) 4057 3:46458968 intron variant C>T

rs7217186 ALOX15 (Arachidonate
15-Lipoxygenase) 246 17:4636097 intron variant C>T

rs10429371 MMP16 (Matrix
Metallopeptidase 16) 4325 8:88981259 intron variant C>T

rs7096206 MBL2 (Mannose Binding
Lectin 2) 4153 10:52771925 intron variant C>G

rs1884302 SMAD 6 (SMAD Family
Member 6) 650 20:7125642 intron variant C>T

rs1711437 MMP20 (Matrix
Metallopeptidase 20) 9313 11:102594495 intron variant C>T

rs1784418 MMP20 (Matrix
Metallopeptidase 20) 9313 11:102613665 intron variant C>T

rs17878486 AMELX (Amelogenin X-Linked) 265 X:11295828 intron variant C>T

rs34538475 AMBN (Ameloblastin) 258 4:70605459 intron variant G>T

rs4694075 AMBN (Ameloblastin) 258 4:70601197 intron variant C>T

rs3790506 TUFT1 (Tuftelin 1) 7286 1:151565890 intron variant A>G

rs4970957 TUFT1 (Tuftelin 1) 7286 1:151544912 intron variant A>G

rs2337360 TUFT1 (Tuftelin 1) 7286 1:151542127 intron variant A>G

rs134136 TFIP11 (Tuftelin Interacting
Protein 11) 24144 22:26503508 intron variant C>T

rs5997096 TFIP11 (Tuftelin Interacting
Protein 11) 24144 22:26499991 intron variant C>T

rs2235091 KLK4 (Kallikrein Related
Peptidase 4) 9622 19:50907215 intron variant A>G

rs198969 KLK4 (Kallikrein Related
Peptidase 4) 9622 19:50910072 intron variant C>G

rs7671281 ENAM (Enamelin) 10117 4:70643369
missense variant C>T, 2

NM_031889.3:c.1943T>C, 3

NP_114095.2:p.Ile648Thr
C>T

rs3796704 ENAM (Enamelin) 10117 4:70643714
missense variant G>A,

NM_031889.3:c.2288G>A,
NP_114095.2:p.Arg763Gln

A>G

rs12640848 ENAM (Enamelin) 10117 4:70640695 intron variant A>G

rs144929717 ENAM (Enamelin) 10117 4:70632586 intron variant G>A

rs139228330 ENAM (Enamelin) 10117 4:70635957 intron variant A>G

Abbreviations: SNP—single nucleotide polymorphism; ID—identification; A—adenine; C—cytosine; G—guanine; T—thymine; Ile—
isoleucine; Thr—threonine; Arg—arginine; Gln—glutamine; 1 Gene ID is an accession number from ncbi database (https://www.ncbi.nlm.
nih.gov/, accessed on 17 January 2021); 2 NM_—prefix for nucleotide position in the reference sequence accessions for mRNA, c.—coding;
3 NP_—prefix for amino acid position in the reference sequence accessions for protein, p—protein.

2.3. Dental Examination

Dental examination was carried out by a trained and calibrated dentist (K.G.), spe-
cialist in pediatric dentistry, after calibration by an experienced specialist (M.B.-L.). The
intra-examiner agreement was assessed by second dental examination in a group of 10 chil-
dren after 2 weeks, with a κ of 1.00. Teeth evaluation was performed in the nursery school,

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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with the use of a dental mirror and a probe, in an artificial light. The dentition was not
additionally cleaned before examination. Assessment of the teeth concerned the occurrence
of carious cavities as well as initial (incipient) caries lesions (non-cavitated lesions, white
spot). All tooth surfaces accessible for examination were investigated. Dental examination
concerned the occurrence of teeth with carious cavities (dt) and with initial (incipient)
caries lesions (non-cavitated, white spot; di), i.e., the stage before cavitation during the
process of dental caries development [19]. In accordance with the international standards,
the white spot lesions were included in dental caries diagnosis [20,21] as they indicate the
susceptibility of an individual to dental caries and are prevalent in primary dentition in
children in the first years of life. White spot lesions were easily differentiated from devel-
opmental defects of enamel on the clinical ground based on the association between caries
lesion and its location on the tooth and the areas of mature plaque [22]. However, when
it was impossible or difficult to differentiate the white spot lesions from other changes in
some individuals, they were excluded from examination and further analyses. Radiograph
of the children’s dentition was not taken.

Detailed inclusion and exclusion criteria are presented in Table 2. Out of 262 individu-
als examined in the study, 48 children (18.3%) were diagnosed with caries and comprised a
study group. Out of the rest 214 subjects we chose 48 sex- and age-matched individuals
that comprised a control group. There were 23 males (48%) aged 20 to 42 months (mean
30.2 ± 6.2) and 25 females (52%) aged 20 to 40 months (mean 30.8 ± 5.7). One control
sample had low DNA concentration and was fully utilized during two previous studies;
therefore, it was not available for genotyping in this study and was excluded from statistical
analyses. We intended to use the genotyping and distribution results, therefore the missing
control sample was not replaced by another matching sample from the caries-free cohort
in this study. Finally, the control group comprised 47 individuals, including 23 males
(49%) aged 20 to 42 months (mean 31.2 ± 5.3) and 24 females (51%) aged 20 to 38 months
(mean 28.3 ± 5.4).

Table 2. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Study and control group

Age between 20 and 40 months Age under 20 and over 40 months old

Group with the same ethnic, regional, cultural, or demographic
origin Other ethnic, regional, cultural, or demographic origin

Parental written and informed consent for dental check-up and
oral swab collection

No parental written and informed consent for dental check-up
and oral swab collection

Child’s cooperativeness Child’s uncooperativeness

Set of properly filled in child’s dental chart and sample for
molecular analysis

Lack of set of properly filled in child’s dental chart and sample
for molecular analysis

Individuals from four nursery schools situated in the city of
Poznan (Wielkopolska Province, central-west Poland) that

constitute one institution

Individuals from other nursery schools than those selected to
the research

Children present at nursery school on days of examination Children absent at nursery school on days of examination

From 11 to 20 erupted primary teeth present in the oral cavity Less than 11 primary teeth present in the oral cavity

Caucasian origin Other than Caucasian origin

Study group

Dental caries present in child’s dentition Lack of dental caries in child’s dentition

Control group

Lack of dental caries in child’s dentition Dental caries present in child’s dentition
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2.4. Biological Samples and Genotyping

Biological material was obtained directly after dental examination. Samples were
gathered using buccal swabs, which were provided for each child in sterile packs. The
procedure included rubbing of the inside of the mouth, at least ten times, from each side
of both cheeks in order to scrub epithelial cells with saliva. Subsequently, the swab was
put inside the 1.5 mL Eppendorf tube, and the plastic stick was cut off. The tube was
placed in a portable fridge at +4 ◦C until DNA extraction that was done the same day
using EXTRACTME DNA Swab&Semen Kit (Blirt S.A., Gdansk, Poland) according to the
manufacturer’s protocol and kept at −20 ◦C for further analyses. We used TaqMan probes
(Applied Biosystems, ThermoFisher Scientific, Frederick, MD, USA) and 7900HT Fast
Real-Time PCR System, according to the manufacturer’s instructions. Per each real-time
PCR reaction, we used 10ng of genomic DNA that was previously extracted and stored at
−20 ◦C. SDS v2.4 software was used to run the analysis and for allele calling.

2.5. Statistics

The continuous data were presented as mean ± standard deviation (SD) while the
categorical data were counted and presented as numbers. The Kruskal–Wallis test was
applied for comparison of the means of continuous data. We used chi square test for testing
the Hardy–Weinberg Equilibrium and the Fisher’s exact test for estimating differences in
allele and genotype frequencies between study subgroups and between study groups and
CEU data (samples of Northern and Western European ancestry, from the International
HapMap Project). The dominant (AA vs. Aa+aa), over-dominant (Aa vs. AA+aa), recessive
(aa vs. AA+Aa) and allelic (A vs. a) models of genetic inheritance were applied [23].
Cochran–Armitage test for trend, the most common approach in case–control analyses,
was used to test the additive model of inheritance [24]. The analyses were run using IBM
SPSS Statistics software. Additionally, SHEsis software was applied for haplotype analysis.

2.6. Association and Prediction Analyses

For the modeling purposes, two approaches were assessed, namely logistic regression
and artificial neural network. Firstly, we used univariable logistic regression to test the
impact of individual variables, accompanied by the receiver operator characteristic (ROC)
curve and area under the receiver operating characteristic (AUC) value to evaluate the
sensitivity, specificity and the discriminatory ability of each factor. Statistical significance in
univariable logistic regression, in ROC analysis, and/or in the Fisher’s exact test for single
variables were applied as inclusion criteria for multivariable logistic regression and neural
network analyses. Multivariable logistic regression was run using the enter method and
the following characteristics were applied to describe the model: R2 Negelkerke and Cox
and Snell R2 values to assess how well the model explains the data, the coefficient β and
the exponentiated coefficient β (the odds ratio) values to indicate the relationship between
each variable and the outcome, Hosmer and Lemeshow test to determine a goodness of fit
of the data with the model, and, at last, the ROC curve to evaluate the predictive accuracy
and the discrimination power of the model. IBM SPSS Statistics software v27.0.1.0 was used
for logistic regression and ROC analyses and Statistica v13.3 were employed for neural
network modeling.

Artificial neural network is a deep learning approach that, in the image of the human
brain, self-learns from experience and adjusts to a situation. Briefly, neural network (NN)
consists of multiple neurons, called nodes, and interconnections among them creating
a complex structure, in which information passes imitating the system of real neurons.
Each interconnection is given its weight, upon which the strength of the association is
acquired. A typical network contains an input, hidden and output layers. The input layer
receives the input signal to be processed, i.e., the data, while the hidden layer performs all
the computational processes resulting in an outcome prediction in the output layer. The
results are compared to the real observations and each time the process is repeated, until
the smallest prediction error is reached. The great advantage of the NN approach is that
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it enables detecting complex nonlinear associations between variables and an outcome
as well as all possible interactions between variables themselves, using multiple distinct
learning algorithms, that are adjusted for the data type. We used the following parameters:
a typical multilayer perceptron as a network type, 4 to 12 hidden layers (default), the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as an iterative method, 4 types
of activation functions, i.e., linear, logistic, exponential and tanh, and SOS (symbiotic
organisms search) error rate type as a training method, that gives the best accuracy [25].
Out of the total data, 70%, 15% and 15% were used as training, testing and validation set,
respectively. In total, 25 different models were created, out of which the 6 best, based on
self-learning, were saved and analyzed in detail.

3. Results
3.1. Demographic Data

The caries rate in our cohort of preschool children was 18.3% (48/262) and the number
of affected males was comparable with affected females (23 vs. 25). To minimize the po-
tential demographic stratification, the control samples were adjusted to the caries samples
in the reference to age and gender (p = 0.4163 and p = 0.9208, respectively). There was no
difference between the number of erupted teeth or the type, i.e., incisors, canines, molars,
between the groups (p = 0.3945, p = 0.3250, p = 0.7148, p = 0.1988, respectively). Additionally,
the number of erupted teeth and its types did not differ between males and females, in
caries or control group.

3.2. Genotyping

All markers genotyped in the present research were in Hardy–Weinberg equilibrium.
The distribution of genotypes and alleles in six SNPs, in caries and control groups as well
as in the study cohort and CEU data are presented in Table 3.

We spotted an almost 26-fold higher occurrence of rs10429371 recessive TT homozy-
gote (p = 0.0262) and a 1.5-fold higher occurrence of the T allele (p = 0.1645) in caries patients
in comparison with healthy controls, and the CT heterozygote was 2.5-fold more frequent
(p = 0.0320) in the control group in comparison to caries group. In the case of another
variant, rs7096206, the recessive GG homozygote and the G allele were 9.6-fold (p = 0.0363)
and over 2-fold (p = 0.0180), respectively, more frequent in controls than in caries patients.
The frequencies of alleles and genotypes for the rest of the genotyped SNPs did not differ
between the groups or the results were statistically insignificant. When the subgroups were
compared in reference to gender, none of the results were significant, although there was
an almost 2-fold higher occurrence of rs10429371_T and TT variants in males, as well as
over 2.5-fold higher occurrence of the wild CC homozygote in females, in caries patients,
while no such observation was made for the controls. When our results were compared to
the CEU data, we spotted significant differences for rs4547741, rs7217186 and rs10429371,
and the latter SNP showed significance both for allele and genotype frequencies, showing
the recessive T and TT variants to be, respectively, 8-fold and almost 18-fold more frequent
in the CEU group than in our Polish cohort (p < 0.001 for both comparisons) (Table 3).

The differences in the frequency of the other 18 single nucleotide variants used for
further statistical analyses in the present research were discussed in our previous studies,
showing the association of recessive ENAM rs12640848_G, recessive AMELX rs17878486_T,
wild TUFT1 rs2337360_A and two recessive KLK4 rs2235091_G and rs198969_G variants
with caries outcome, and one recessive variant in AMBN, rs34538475_T, with the absence
of the disease [14,15].
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Table 3. Genotype and alleles distribution differences for 6 SNPs genotyped in this study between study subgroups (caries vs. caries-free) and between our cohort and CUE data.

Gene SNP ID
Genotypes Caries Control

Test/Model 1 OR [95% CI] p-Value
CEU Data

Alleles n (Freq) n (Freq) OR [95% CI] p-Value

LTF rs4547741

CC 35 (0.73) 32 (0.68) CC vs. CT+TT 1.3 [0.5–3.1] 0.6059 0.5 [0.2–0.9] 0.0288 *

CT 12 (0.25) 14 (0.3) CT vs. CC+TT 0.8 [0.3–1.9] 0.6012 2 [0.9–3.9] 0.0605

TT 1 (0.02) 1 (0.02) TT vs. CC+CT 1.0 [0.1–16.1] 0.9880 5.3 [0.3–112.3] 0.2826

C 82 (0.85) 78 (0.83) T vs. C 0.8 [0.4–1.8] 0.6452 2.1 [1.1–4.1] 0.0209 *

T 14 (0.15) 16 (0.17)

ALOX15 rs7217186

CC 13 (0.27) 13 (0.28) CC vs. CT+TT 1.0 [0.4–2.4] 0.9498 2.1 [1–4.3] 0.0395 *

CT 23 (0.48) 21 (0.44) CT vs. CC+TT 1.1 [0.5–2.6] 0.7519 0.7 [0.4–1.3] 0.2523

TT 12 (0.25) 13 (0.28) TT vs. CC+CT 0.9 [0.4–2.2] 0.7686 0.8 [0.4–1.5] 0.5382

C 49 (0.51) 47 (0.5) T vs. C 1.0 [0.5–1.7] 0.8858 0.7 [0.5–1.1] 0.1101

T 47 (0.49) 47 (0.5)

MMP16 rs10429371

CC 18 (0.37) 17 (0.36) CC vs. CT+TT 1.1 [0.5–2.4] 0.8931 18.7 [5.5–63.4] <0.001 ***

CT 20 (0.42) 30 (0.64) CT vs. CC+TT 0.4 [0.2–0.9] 0.0320 * 2.7 [1.5–4.8] 0.0011 **

TT 10 (0.21) 0 (0.00) TT vs. CC+CT 25.9 [1.5–456.4] 0.0262 * 0.1 [0.03–0.1] <0.001 ***

C 56 (0.58) 64 (0.68) T vs. C 1.5 [0.8–2.8] 0.1645 0.1 [0.1–0.2] <0.001 ***

T 40 (0.42) 30 (0.32)

MBL2 rs7096206

CC 31 (0.65) 23 (0.49) CC vs. CG+GG 1.9 [0.8–4.3] 0.1254 0.9 [0.5–1.7] 0.8095

CG 16 (0.33) 16 (0.34) CG vs. CC+GG 1.0 [0.4–2.3] 0.9417 0.8 [0.5–1.5] 0.4959

GG 1 (0.02) 8 (0.17) GG vs. CC+CG 0.1 [0.01–0.9] 0.0363 * 3.5 [0.9–12.8] 0.0768

C 78 (0.81) 62 (0.66) G vs. C 0.0180 * 1.3 [0.8–2] 0.3473

G 18 (0.19) 32 (0.34)
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Table 3. Cont.

Gene SNP ID
Genotypes Caries Control

Test/Model 1 OR [95% CI] p-Value
CEU Data

Alleles n (Freq) n (Freq) OR [95% CI] p-Value

SMAD6 rs1884302

CC 9 (0.19) 6 (0.13) CC vs. CT+TT 1.6 [0.5–4.8] 0.4263 2.5 [1–6.4] 0.0616

CT 21 (0.44) 21 (0.45) CT vs. CC+TT 1.0 [0.4–2.2] 0.9272 0.7 0.4–1.3] 0.3091

TT 18 (0.37) 20 (0.42) TT vs. CC+CT 0.8 [0.4–1.8] 0.6154 0.9 [0.5–1.7] 0.8412

C 39 (0.41) 33 (0.35) T vs. C 0.8 [0.4–1.4] 0.4334 0.8 [0.5–1.2] 0.2969

T 57 (0.59) 61 (0.65)

MMP20 rs1711437

CC 19 (0.4) 20 (0.43) CC vs. CT+TT 0.9 [0.4–2.0] 0.7686 1.3 [0.7–2.3] 0.4143

CT 23 (0.48) 23 (0.49) CT vs. CC+TT 1.0 [0.4–2.1] 0.9208 1 [0.6–1.8] 0.9929

TT 6 (0.12) 4 (0.08) TT vs. CC+CT 1.5 [0.4–5.8] 0.5287 0.6 [0.3–1.4] 0.2526

C 61 (0.64) 63 (0.67) T vs. C 1.2 [0.6–2.1] 0.6146 0.8 [0.5–1.2] 0.2497

T 35 (0.36) 31 (0.33)

The total number of individuals with caries n = 48, and controls n = 47. Abbreviations: SNP—single nucleotide polymorphism; ID—identification; OR—odds ratio; 95% CI—the 95% Confidence Interval;
CEU—Utah residents with Northern and Western European ancestry, from the International HapMap Project; LTF—Lactotransferrin; ALOX15—Arachidonate 15-Lipoxygenase; MMP16—Matrix Metallopeptidase
16; MBL2—Mannose Binding Lectin 2; SMAD6—SMAD Family Member 6; MMP20—Matrix Metallopeptidase 20; C—cytosine; G—guanine; T—thymine.1 The odds ratio (OR) values with corresponding
p-values were assessed by the Fisher’s exact test for the inheritance models: dominant AA vs. AB+BB; over-dominant AB vs. AA+BB; recessive BB vs. AA+AB; allelic A vs. B. p-values: p < 0.05 *, p < 0.01 **,
p < 0.001 ***; all significant results are shown in bold.
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When the Cochran–Armitage test for trend was applied (see Table 4), out of eight
significantly different distributed variants between the groups, six showed the positive
significant additive model of inheritance and they were as follows: rs7096206, rs12640848,
rs17878486, rs2337360, rs2235091 and rs198969. In turn, variants rs10429371 and rs34538475
showed stronger recessive modes of inheritance.

Table 4. Cochran–Armitage test for trend analysis for 22 differentiated single nucleotide polymor-
phisms analyzed in this study.

SNP ID
Cochran–Armitage Test for Trend

Chi2 p-Value

rs4547741 0.219 0.6400

rs7217186 0.019 0.8898

rs10429371 2.234 0.1350

rs7096206 5.063 0.0244 *

rs1884302 0.579 0.4469

rs1711437 0.272 0.6019

rs17878486 35.991 <0.0001 ***

rs34538475 1.779 0.1823

rs4694075 2.494 0.1143

rs3790506 1.510 0.2191

rs4970957 1.885 0.1698

rs2337360 23.599 <0.0001 ***

rs134136 0.230 0.6316

rs5997096 0.130 0.7182

rs2235091 6.782 0.0092 **

rs198969 9.586 0.0020 **

rs1784418 0.584 0.4447

rs7671281 0.0013 0.9712

rs3796704 0.0492 0.8245

rs12640848 11.343 0.0008 ***

rs144929717 0.0492 0.8245

rs139228330 0.0492 0.8245
Abbreviations: SNP—single nucleotide polymorphism; ID—identification; significant p-value indicates additive
model of inheritance, i.e., the possibility of heterozygote advantage. p-values: p < 0.05 *, p < 0.01 **, p < 0.001 ***;
all significant results are shown in bold.

3.3. Haplotype Analysis

Although not each variant comprising the haplotype presented significance in single
variant analysis, the overall haplotype analysis showed some association with the disease
or disease-free trait. Briefly, AMBN TC and TT haplotypes (comprising rs34538475 and
rs4694075, respectively) were significantly associated with healthy controls, while GC
haplotype showed association with caries. Additionally, strong association with caries was
observed for TUFT1 AAA, AAG and AGG haplotypes (comprising rs3790506, rs4970957,
rs2337360, respectively) and the significances for the rest of TUFT1 haplotypes were most
probably the result of quite low numbers of dominant and recessive homozygotes in both
groups for rs3790506 and rs4970957, respectively, which was reflected by the absence of
some haplotype variants in one group and their low frequency in the other. Likewise,
significance was observed for rs2235091_rs198969 TC haplotype in MMP20, most probably
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due to its absence in of the study subgroups, and a low frequency in the other. Both SNPs
in KLK4 were significant in single locus analysis, however, only rs2235091_rs198969 GG
haplotype showed significant association with caries, demonstrating that both recessive
alleles were essential for caries effect and, analogically, the AC haplotype was significantly
associated with non-disease trait, showing that both dominant alleles were essential for
protective effect. Two haplotypes in ENAM were significantly associated with caries
and non-caries trait, most possibly due to the middle allele of rs12640848, i.e., the only
significant SNP in ENAM in other statistical test conducted. Haplotype CAAGA was over
twofold more frequent in caries patients, corroborating the A allele as a risk variant, while
haplotype CAGGA was almost 2.5-fold times more frequent in controls, which confirmed
the G allele as a protective variant. The other four SNPs of ENAM did not contribute into
the haplotype significance. No significant results were found for TFIP11 haplotypes. The
haplotype distributions are shown in details in Table 5.

Table 5. Haplotypes distribution in caries and caries-free individuals in this study.

SNPs (Gene) Haplotypes
Frequency

OR [95% CI] p-Value
Caries Controls

rs34538475_rs4694075 GC 0.503 0.108 8.4 [3.9–18.0] <0.0001 *** (3.86 × 10−9)

(AMBN)
GT 0.236 0.200 1.2 [0.6–2.5] 0.5501

TC 0.038 0.317 0.1 [0.03–0.3] <0.0001 *** (4.65 × 10−7)

TT 0.222 0.374 0.5 [0.3–0.9] 0.0220 *

rs2337360_rs4970957_rs3790506 A A A 0.129 0.294 0.4 [0.2–0.8] 0.0054 **

(TUFT1)

A A G 0.412 0.265 2.0 [1.1–3.6] 0.0314 *

A G G 0.284 0.037 10.21 [3.2–32.4] <0.0001 *** (4.01 × 10−6)

G A G 0.074 0.197 0.3 [3.2–32.4] 0.0131 *

G G A 0.000 0.015 - 0.2322

G G G 0.000 0.192 - <0.0001 *** (6.36 × 10−6)

A G A 0.039 0.000 - 0.0547

G A A 0.061 0.000 - 0.0147 *

rs134136_rs5997096 CC 0.573 0.606 0.9 [0.5–1.0] 0.6392

(TFIP11)
TC 0.302 0.287 1.1 [0.6–2.0] 0.8225

TT 0.125 0.106 1.2 [0.5–2.9] 0.6884

rs2235091_rs198969 AC 0.432 0.670 0.4 [0.2–0.7] 0.0007 ***

(KLK4)
AG 0.181 0.118 1.7 [0.7–3.8] 0.2191

GC 0.108 0.075 1.5 [0.6–4.1] 0.4273

GG 0.288 0.138 2.5 [1.2–5.8] 0.0118 *

rs7671281_rs3796704_rs12640848_rs144929717_rs139228330 CAAGA 0.500 0.309 2.2 [1.2–4.1] 0.0072 **

(ENAM)

CAGGA 0.437 0.649 0.4 [0.2–0.8] 0.0035 **

TGAAG 0.041 0.043 1.0 [0.2–4.0] 0.9644

TGGAG 0.000 0.000 - -

CAAAG 0.011 0.000 - 0.3167

TGAGA 0.000 0.000 - -

TGGGA 0.010 0.000 - 0.3234

rs1711437_rs1784418 CC 0.614 0.617 1.0 [0.6–1.8] 0.9614

(MMP20)
CT 0.022 0.053 0.4 [0.1–2.0] 0.2540

TT 0.322 0.330 1.0 [0.5–1.8] 0.9081

TC 0.043 0.000 - 0.0432 *

The total number of individuals with caries n=48, and controls n=47. Abbreviations: SNPs—single nucleotide polymorphisms; OR—
odds ratio; 95% CI—the 95% Confidence Interval; AMBN—Ameloblastin; TUFT1—Tuftelin 1; TFIP11—Tuftelin Interacting Protein 11;
KLK4—Kallikrein Related Peptidase 4; ENAM—enamelin; MMP20—Matrix Metallopeptidase 20; A—adenine, C—cytosine; G—guanine;
T—thymine; p-values: p < 0.05 *, p < 0.01 **, p < 0.001 ***; all significant results are shown in bold.



Genes 2021, 12, 462 11 of 23

3.4. Caries Association and Prediction

Table 6 includes the results of univariable logistic regression that depicted eight vari-
ables, that were all single nucleotide polymorphisms, i.e., rs10429371, rs7096206, rs12640848,
rs17878486, rs12640848, rs2337360, rs2235091 and rs198969, to be significantly associated
with caries outcome and those eight SNPs were then included in multivariable logistic
regression analysis and neural network prediction. The overall multivariable logistic re-
gression model characteristics are shown in Table 7 and information about single variables
in the model are shown in Table 8.

Table 6. The performance of univariable logistic regression analysis.

Predictor
Coefficient of

Determination
R2

p-Value AUC [95% CI] p-Value
Sensitivity/Specificity/

Total Number of
Correct Calls

Statistical Significant
Genotypes

Distribution 1

rs4547741 0.0039 0.8703 0.525
[0.420–0.628] 0.617 72.9%/31.9%/52.6% -

rs7217186 0.0201 0.6964 0.524
[0.419–0.627] 0.891 48%/55.3%/51.6% -

rs10429371 0.2054 0.0004 *** 0.560
[0.544–0.744] 0.268 58.3%/63.8%/61.1% +

rs7096206 0.0852 0.0435 * 0.599
[0.494–0.699] 0.0531 64.6%/51.1%/57.9% +

rs1884302 0.0098 0.7051 0.539
[0.434–0.642] 0.4742 62.5%/42.6%/52.6% -

rs1711437 0.0059 0.8115 0.525
[0.420–0.628] 0.6426 12.5%/91.5%/51.6% -

rs17878486 0.4695 <0.0001 *** 0.830
[0.739–0.899] <0.0001 *** 62.5%/93.6%/77.9% +

rs34538475 0.0327 0.1298 0.571
[0.465–0.672] 0.1253 35.4%/78.7%/56.8% +

rs4694075 0.0299 0.1423 0.582
[0.476–0.682] 0.1404 75%/38.3%/56.8% -

rs3790506 0.0212 0.2177 0.559
[0.453–0.660] 0.2661 58.3%/51.1%/54.7% -

rs4970957 0.0264 0.1683 0.580
[0.475–0.681] 0.1237 62.5%/55.3%/59% -

rs2337360 0.3813 <0.0001 *** 0.781
[0.685–0.860] <0.0001 *** 75%/89%/77.9% +

rs134136 0.0032 0.6314 0.527
[0.422–0.630] 0.6251 68.8%/36.2%/52.6% -

rs5997096 0.0026 0.6669 0.519
[0.414–0.622] 0.6699 25%/78.7%/51.6% -

rs2235091 0.1317 0.0072 ** 0.625
[0.520–0.723] 0.0152 * 20.8%/97.9%/59% +

rs198969 0.1635 0.0020 ** 0.658
[0.554–0.752] 0.0017 ** 70.8%/51.1%/61.1% +

rs1784418 0.0050 0.5498 0.535 0.430–0.638] 0.5168 41.7%/66%/53.7% -

rs7671281 0.0014 0.7509 0.510
[0.405–0.614] 0.7533 100%/0%/50.5% -

rs3796704 0.0014 0.7509 0.510
[0.405–0.614] 0.7533 100%/0%/50.5% -

rs12640848 0.2016 0.0004 *** 0.672
[0.568–0.765] <0.0001 *** 93.8%/38.3%/66.3% +

rs144929717 0.0014 0.7509 0.510
[0.405–0.614] 0.7533 100%/0%/50.5% -

rs139228330 0.0014 0.7509 0.510
[0.405–0.614] 0.7533 100%/0%/50.5% -
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Table 6. Cont.

Predictor
Coefficient of

Determination
R2

p-Value AUC [95% CI] p-Value
Sensitivity/Specificity/

Total Number of
Correct Calls

Statistical Significant
Genotypes

Distribution 1

Age 0.0050 0.4976 0.548
[0.443–0.807] 0.4195 39.6%/74.5%/56.8% -

Number of all
teeth erupted 0.0104 0.3882 0.563

[0.457–0.664] 0.2454 64.6%/51.1%/57.9% -

Nr of incisors 0.0192 0.2408 0.510
[0.406–0.614] 0.3173 2.1%/100%/50.5% -

Nr of canines 0.0019 0.7104 0.529
[0.424–0.632] 0.2803 10.4%/95.7%/52.6% -

Nr of molars 0.0235 0.1940 0.572
[0.467–0.673] 0.1702 64.6%/51.7%/57.9% -

Abbreviations: AUC—area under the receiver operating characteristic; 95% CI—the 95% Confidence Interval; 1 the column depicts
variables that were statistically significant (+) or insignificant (−) for the differences in genotype/allele distribution in caries vs. caries-free
individuals in the previous studies [14,15] and/or in univariable logistic regression and/or ROC curve analysis in this study. p-values:
p < 0.05 *, p < 0.01 **, p < 0.001 ***; all significant results are shown in bold.

Table 7. The overall performance of multivariable logistic regression analysis.

Test

Overall model evaluation

Null model-2 Log Likelihood 131.69

Full model-2 Log Likelihood 42.09

Chi2 89.59

df 15

p-value <0.0001 ***

Cox and Snell R2 0.6106

Negelkerke R2 0.8141

Goodness-of-fit test

Hosmer and Lemeshow test:

Chi2 1.58

df 7

p-value 0.9793

Abbreviations: df —degrees of freedom; Cox and Snell R2 and Negelkerke R2—pseudo R2s that indicate how well
the model explains the data; for both coefficients, the closer the value is to “1”, the better the model. Hosmer and
Lemeshow test—explains how well the data fit the model; the closer the value is to “1”, the better the data are
fitted. p-values: p < 0.001 ***.

Briefly, the strongest association with caries was assessed for rs17878486 in AMELX,
rs2337360 in TUFT1 and rs12640848 in ENAM, that remained in the final model at p < 0.05
(p = 0.0008, p = 0.0040, p = 0.0401, respectively). The model evaluation gave 93% total
number of correct calls with 90% sensitivity and 96% specificity and a strong level of
significance p < 0.0001. The AUC value of the model (0.970 (95% CI:0.912–0.994; standard
error = 0.014), p < 0.0001) was also high. The ROC curve was constructed by plotting the
true caries rate against the false caries rate and the prediction was made using all eight
SNPs that were significantly associated with the outcome in single locus analyses. The rest
of parameters, e.g., the prediction accuracy and goodness of fit, reached the high level of
the overall performance of the model (see Table 7 and Figure 1).
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Table 8. The multivariable logistic regression analysis.

Predictor β Coefficient SEβ Wald’s Chi2 df p-Value eβ (Odds Ratio) [95% CI]

Intercept 0.021 0.205 0.011 1 0.918 1.021 -

rs10429371_CC 1.101 1.04 1.13 2 0.2882 3.01 [0.39–22.94]

rs10429371_TT 34.4928 13,615.64 6.42 × 10−6 1 0.998 9.55 × 1014 -

rs7096206_CG −0.6751 1.06 0.41 1 0.523 0.51 [0.06–4.04]

rs7096206_GG −19.4524 8976.37 4.69 × 10−6 1 0.9983 3.56 × 10−9 -

rs34538475_GT 0.1413 1.09 0.02 1 0.8969 1.15 [0.14–9.77]

rs17878486_CT 1.6945 1.09 2.41 1 0.1207 5.44 [0.64–46.28]

rs17878486_TT 5.4355 1.63 11.15 1 0.0008 *** 229.41 [9.45–5576.54]

rs2337360_AA 3.1515 1.1 8.29 2 0.0040 ** 23.37 [2.73–199.80]

rs2337360_GG 19.7138 42,999.26 2.10 × 10−7 1 0.9996 3.64 × 108 -

rs2235091_AG 1.1351 1.01 1.26 1 0.2623 3.11 [0.43–22.64]

rs2235091_GG 1.7072 1.66 1.06 1 0.3025 5.51 [0.22–141.52]

rs198969_CC −0.2473 1.03 0.06 2 0.811 0.78 [0.10–5.93]

rs198969_GG 1.0457 1.72 0.37 1 0.542 2.85 [0.10–82.01]

rs12640848_AA 0.2135 1.08 0.04 2 0.8432 1.24 [0.15–10.26]

rs12640848_GG −3.7776 1.84 4.21 1 0.0401 * 0.02 [0.001–0.84]

Constatnt −3.9125 1.68 5.44 1 0.0197 * - -

Abbreviations: SNPs—single nucleotide polymorphisms; SE—standard error; df —degrees of freedom; 95% CI—the 95% Confidence
Interval; A—adenine, C—cytosine, G—guanine, T—thymine. Intercept represents the regression constant in the model without predictors;
p-values: p < 0.05 *, p < 0.01 **, p < 0.001 ***; all significant results are shown in bold.
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85.3–87.2%. All four types of activation function algorithms were used in the final predic-
tion models. Only one model, NN3, used the linear function in the hidden layer, while 
logistic, exponential and tanh functions turned out to be better fitted, as they were used 
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Figure 1. The receiver operator characteristic (ROC) curve analysis and area under the receiver oper-
ating characteristic (AUC) value. The solid black line indicates the ROC curve based on 8 variables,
i.e., rs10429371, rs7096206, rs12640848, rs17878486, rs12640848, rs2337360, rs2235091 and rs198969,
and the true positives (sensitivity) and false negatives (100-specificity) for caries prediction when
compared to the actual data. The dashed lines indicate the ROC curves for 95% Confidence Interval.

According to other mathematical algorithms used in neural network analysis, all eight
variables that performed at p < 0.05 in univariable analyses were also introduced in the
NN model, although only three of them hold the significance in multivariable logistic
regression. The overall performance of six neural network prediction models is presented
in Table 9.
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Table 9. The overall performance for 6 neural network models for caries prediction.

Neural
Network ID

Train Test Validation Learning
Algorithm 1

Error Rate
Function 2

Activation Function
(Hidden Layers)

Activation Function
(Output Layer)Accuracy Error Accuracy Error Accuracy Error

NN1 0.970 0.007 0.984 0.004 0.736 0.084 BFGS 28 SOS Tanh Tanh

NN2 0.805 0.044 0.909 0.021 0.872 0.037 BFGS 5 SOS Exponential Exponential

NN3 0.840 0.037 0.944 0.016 0.854 0.038 BFGS 4 SOS Linear Logistic

NN4 0.842 0.036 0.935 0.017 0.853 0.038 BFGS 4 SOS Tanh Logistic

NN5 0.824 0.040 0.962 0.012 0.859 0.041 BFGS 7 SOS Logistic Logistic

NN6 0.867 0.031 0.912 0.022 0.862 0.038 BFGS 10 SOS Tanh Exponential

Abbreviations: ID—identification; NN—neural network; 1 The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm; 2 symbiotic organisms search (SOS) error rate.
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All the models reached a high prediction accuracy, from 90.9% to 98.4% in the test
analysis. The best model, namely NN1, which gave the highest prediction accuracy in
the test analysis (98.4%), simultaneously gave the lowest rate in the validation analysis
(73.6%). The other five models performed relatively high in the validation analysis, i.e.,
85.3–87.2%. All four types of activation function algorithms were used in the final predic-
tion models. Only one model, NN3, used the linear function in the hidden layer, while
logistic, exponential and tanh functions turned out to be better fitted, as they were used
interchangeably in the rest of the models. In fact, the latter two functions support the
backpropagation process, and therefore speed up the model’s self-training process, which
is one of the crucial steps in a multilayer neural network system [26,27]. When analyzing
the prediction sensitivity of single markers, described as their usefulness, interestingly, all
of the eight markers turned out to be crucial for the prediction models. Figure 2 shows
the overall importance of eight markers in six caries prediction models. The sensitivity
of prediction allows distinguishing variables that are important from those that do not
contribute, or contribute little, to the overall performance of a model, and therefore, can
be rejected. The greater the error after rejection of a variable to the original error, the
more sensitive the network model is to the lack of this variable. In this study, the top
three predictors in the reference to each single model as well as to the mean value of error
rate were: AMELX_rs17878486, TUFT1_rs2337360 and MMP16_rs1042937, while the least
important predictor was AMBN_rs34538475. Nevertheless, all eight markers gave an error
value above “0”, which means that even the weaker one was still important for the caries
prediction.
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Figure 2. Prediction sensitivity for 8 SNPs used as predictors in neural network modeling. The higher
the error rate value, the more sensitive the model is to the lack of a variable. The arrangement of
the predictors in the figure is shown on the basis of the mean error value for the 6 neural network
models (from NN1to NN6).

4. Discussion

We presented a complex analysis of 22 differentiated single nucleotide polymorphisms
in prediction of dental caries in primary dentition of children. This study is an extended
analysis utilizing additional data from our previous studies [14,15]. Deep learning neural
network models for caries prediction were applied in a homogeneous cohort of 2–3-year-old
children living in an urban environment under similar cultural conditions.

The previous caries experience, independent of an individual’s age, has previously
been reported as the strongest and the most universal risk factor for future caries develop-
ment [28]. However, it is challenging to assess the previous caries experience in infants and
toddlers. Most of the previous studies and distinct caries prediction models apply to adults,
school children or older preschoolers, while models for toddlers are scarce [29]. Another
obstacle in assessing well-performing caries prediction model are discrepancies among the
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studies, i.e., imprecise definition of caries phenotype and caries lesions or inconsistency in
the terms used by the researchers [9,23,30,31]. Furthermore, the majority of acquired caries
prediction models are based on demographical and environmental factors and the only
biological feature that has been considered is the cariogenic bacteria colonization of oral
cavity.

The first linkage studies in caries were performed in 2008 [32] and the first genome-
wide association studies for early childhood caries were published in 2011 [33]. Abbasoğlu
et al. [10] were the first to correlate environmental and genetic factors in ECC in Turkish
2–5-year-olds, while Lewis et al. [34] considered several single nucleotide polymorphisms,
however they were not included in the final caries prediction meta-analysis. Another
technical obstacle in any caries prediction model implementation in practice is an almost
total lack of replication and validation studies in independent populations [13,35]. Mejare
et al. [28] depicted 17 studies on caries prediction in preschoolers, defined as children of
age <1 to 6 years old. None of them used genetic variables as prediction factors, most gave
moderate prediction accuracy results and only one study by Holgerson et al. [36] based
on environmental factors and saliva sampling in 2-year-olds was validated. Persistent
high dental caries rate in the general Polish population and nearly constant prevalence
and severity index of the disease in children in the recent years [37] should encourage
both researchers and clinicians to develop better and validated prediction approaches that
might be implemented in practice.

In this study, we obtained relatively high prediction accuracy ranging from 90.9% to
98.4%, depending on the prediction model, using a neural network approach. Additionally,
multivariate logistic regression analysis showed accuracy of 93% with high sensitivity
and specificity values, i.e., 89.6% and 95.7%, respectively. Results of both approaches
were gender- and age-independent, as the two study subgroups were adjusted for both
features. The most important predictors/indicators in both assays were AMELX rs17878486
and TUFT1 rs2337360 [15]. In brief, AMELX and TUFT1 are the genes that play a crucial
role in the enamel formation process and the single nucleotide polymorphisms have
previously been attributed to high caries susceptibility, in primary as well as permanent
dentition, although the risk allele varied depending on population and age [12,30,38].
Another factor that was significantly associated with caries outcome in both uni- and
multivariable logistic regression was ENAM rs12640848. ENAM encodes enamel-special
protein enamelin that is a critical factor during enamel maturation. Our results were
in agreement with other reports, supporting the presumable role of rs12640848_G as a
protective factor in ECC [10,30]. Interestingly, when the SNP was used in this study as a
predictor in neural network analysis, it turned out to be an intermediate marker in the
scale of importance (Figure 2). This might be explained by the fact that both wild AA and
rare GG genotypes were associated with the opposite outcomes, i.e., caries and caries-free
phenotype, respectively. Conversely, another SNP, i.e., MMP16 rs10429371, was the third
most important predictor in NN models, although it did not hold the significance as an
indicator in multivariate analysis. This is an interesting finding, since rs10429371 explained
over 20% of the trait in single locus analysis and the TT variant was nearly 26 times more
frequent in caries individuals when compared to controls, showing a strong recessive
pattern of inheritance and suggesting TT as a risk variant for dental caries development
in the studied individuals. Additionally, it was one of the variants for which alleles and
genotypes were differently distributed in the cohort in this study in comparison to the CEU
individuals in favor of wild C and CC variants (Table 3). Matrix metalloproteinases (MMPs)
play an important role in early tooth development by regulating ameloblast maturation
and formation of enamel. Several types of MMPs have been described to be involved in
dentin collagen degradation and dental caries lesion progression [12,34,39–42]. MMP16
rs10429371 was previously associated with caries in white adults [34]. Linhartova et al. [41]
observed higher incidence of rare T allele in caries children aged 13–15 years, although it
did not reach the statistical significance level.
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The second variant that showed significant association with caries outcome and was
genotyped in this study was rs7096206 in MBL2. Mannose binding protein (MBL2) is an
acute phase protein that plays an important role in innate immunity. The study showed
that MBL2 polymorphisms are involved in several infectious diseases and the top ranked
rs7096206 has been annotated as deleterious to the protein’s function and described as one
of the most functionally important variants in the gene [42]. Rs7096206_G was found to be
a risk factor in Polish 5-year-olds in reference to higher vs. lower caries experience, while
it had no effect in 12-year-olds [1]. Interestingly, the same rare variant was significantly
associated with no caries experience in 2–3-year-olds in our study, showing an additive
model of inheritance. On the other hand, in the former study [1], rs7096206_G was
associated with higher caries experience in both age subgroups while in the haplotype with
rs1800450_G, and the CG haplotype had the opposite effect. Alike, rs7096206 genotype
distribution was insignificant, but in haplotype with rs7501477_T it correlated with caries
experience in Saudi 5–13-year-old children [43]. It might suggest that other SNPs could
be associated with a more complex pattern of the disease and/or that distinct genetic
variants could be involved at different ages. Such differences, i.e., in primary vs. permanent
dentition, were also acknowledged by Wang et al. [44]. Likewise, as the rs7096206_G variant
is associated with lower MBL2 serum levels predisposing to infections [45], other SNPs
could show strong linkage disequilibrium accounting for possible protective mechanisms
in the toddlers in our study. Nevertheless, the SNP was not significant in multivariate
analysis, despite the drastic OR value, i.e., 3.36 × 10−9.

We did not observe any association of other SNPs in MMP, i.e., MMP20 rs1711437
genotyped in this study and rs1784418 in the previous study [15], with caries or caries-free
phenotype. MMP20 (enamelysin) is the early protease secreted during enamel development
and is involved in both dentin and enamel decomposition [46]. Only Antunes et al. [47]
found both variants to be associated with early childhood caries. Yet, the results of other
studies of MMP20 SNPs were on the border of significance in 5-year-old Caucasian children
with dental caries or have been associated more with poor oral hygiene and dietary habits
than the disease itself in 5–14-year-old Caucasians [16,46]. Likewise, rs45447741 in LTF,
rs7217186 in ALOX15 and rs1884302 in SMAD6 presented no association with caries
experience in this study in any of the statistical tests used.

The rest of significantly different distributed variants in the previous study [15], i.e.,
AMBN rs34538475 and KLK4 rs2235091and rs198969, were not significant in multivariate
analysis and their importance in caries prediction models were of a moderate (rs2235091and
rs198969) to low (rs34538475) degree (Figure 2). KLK4 plays an important role in the late
stages of enamel development, while AMBN, together with AMELX, is crucial for enamel
matrix formation and mineralization. The roles of the abovementioned SNPs in both genes
as risk factors in caries development in children were partially in agreement with other
authors, depending on studied population and children’s age [10,12,46]. Additionally, the
haplotype analysis showed that alleles of both variants in KLK4 were necessary for the
risk (i.e., rs2235091G_rs198969G haplotype) and protective (i.e., rs2235091A_rs198969C
haplotype) effect.

It must be emphasized that the differences in association of genetic variants with
caries experience and severity in the studies occurs not only due to the differences between
the populations but also in one population itself, even from one individual to another [34].
Single nucleotide polymorphisms are often highly variable between distinct ethnic cohorts
and, at least partially, resemble divergence in human phenotypes, including different
disease susceptibility or drug response. Dental caries is a highly complex trait, also in refer-
ence to environmental factors, i.e., socioeconomic and cultural factors, age, oral hygiene,
eating habits, also the course of pregnancy and mother–child relations [3,6,46,48–50]. Age
appears one of the key factors in caries analysis, as the disease experience is differentially
defined in reference to the age of patients. Some authors emphasize that each age group
should be characterized by other sets of temporal variables [50], with the most important
risk factors as follows: in 2-year-olds—allergies and infections before first tooth eruption
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and intake of drugs during the first 12 months of life, in 3-year-olds—mother’s age at the
time of pregnancy and smoking during pregnancy [29], consumption of sweetened food
during first 12 months of life and nocturnal drinking of sweet drinks above 12th month [3],
in 4-year-olds and older children—frequency of tooth brushing, fluoride treatment and
mother’s education [51].

One of the hypotheses might be that distinct processes, and hence different genes
and polymorphisms, play a significant role throughout the stages of a child’s growth and
development. Since the genetic sequence does not change over the course of life, each stage
might be sensitive to distinct variants, including those that shape susceptibility to caries de-
velopment. Simultaneously, the sensitivity to the secondary environmental factors and the
tertiary behavioral factors, responsible for the intermediate and distal effects, respectively,
might also alter. Substantially, it can be explained by the order of teeth eruption, their type
and number. Caries lesions appear first on incisors and molars, also maxillary teeth are
more often affected than mandibular teeth. Caries formation predominantly affects teeth
with deep and/or narrow pits and fissures on the occlusal surface, which is closely related
to the morphology of primary dentition and molars [4,46,50]. The deeper and narrower
the pit, the easier it is for the bacterial plaque to penetrate and adhere to a tooth surface.
The higher the number of teeth with deep and narrow pits, together with inappropriate
brushing, the more frequent the predisposition to higher caries rate, which is especially
relevant in preschoolers [50,52,53]. The similar pattern of caries development has been
observed in 3-year-old children in other studies [53–55]. In this study, we did not observe
differences in the total number of erupted teeth and the number of the teeth types was simi-
lar between affected and caries-free children and between boys and girls in both subgroups
(not shown). Although we did not conduct a follow-up study, some authors pointed that
caries susceptibility varies depending on the tooth morphology and rises sharply after
2–3 years after the tooth eruption, when posteruptive enamel maturation takes place [4,5].
Therefore, dental caries seems to be a remarkably divergent trait constantly changing in
time and with its occurrence increasing with age. The prevalence of caries experience in
our study was 18.3% and was comparable to children of the corresponding age of other
ethnicities, i.e., Western Europe, Eastern-Southern Asia and Sub-Saharan Africa [3,29,56].
Interestingly, it appeared to be much lower when compared to other studies concerning
Polish children with active caries of distinct regions, i.e., 40.8% in the Podlasie region [57],
53.8% in Lower Silesian, Malopolskie and Lubelskie voivodships [4] or from 35% to 56.6%
in the general 2–3-year-olds population [3,13,57]. However, according to Werneck et al. [13]
caries rate can reach even 85% in preschoolers.

Another risk factor for caries lesions development, closely related to children’s age, is
the presence and composition of bacterial plaque in the host. The level of colonization by
cariogenic bacteria has been considered the strongest risk factor in 3-year-old Polish chil-
dren [49], however, it should be emphasized that it might be influenced by other features.
Firstly, the activity of Lactobacilli and Mutans Streptococci is higher in preschoolers and
in primary dentition in comparison with older children and permanent teeth [10,50,58],
therefore it might be a biological predisposition of the host. Secondly, the younger the
child, the more attention and supervision over teeth brushing should be provided by the
parents/guardians, therefore minimizing the bacterial film and setting a good hygiene
habits. The mother not brushing a child’s teeth was found a major risk factor in Mutans
Streptococci infections and ECC in Australian children aged 12–72 months but also in
9-month-old Thai children [6,59].

Both genetic and host factors fluctuate with age, and with a broad spectrum of en-
vironmental factors, they contribute to the development of caries lesion differently in
every individual. Moreover, even children of the same ethnicity that are exposed to the
same levels of risk factors might present distinct caries severity index and patterns of the
disease [13], which strongly supports the existence of other, intrinsic, i.e., genetic com-
ponents. Still, depending on the population and its habits, prediction models using the
same risk factors might be characterized by distinct final prediction parameters, as well
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as comparable prediction features of different models might be determined by distinct
input variables [8]. To mention a few, Kalhan et al. reached a high AUC value of 0.81–0.91
of caries prediction in 2-year-olds and 0.79 in 3-year-olds [29], while Fontana et al. [60]
assessed AUC of 0.73 in 4-year-old children. Tamaki et al. [61] came across 33 studies
on caries prediction, however, the majority of them used logistic regression analyses and
only some authors used additional, advanced machine learning algorithms to compare the
results, namely artificial neural network, decision analysis or classification and regression
trees [27,50,61–63]. The benefit of logistic regression analysis is that it can be conducted
using non-complicated software; however, the procedure is descriptive in its nature and
should be applied to assess risk indicators, not predictors. On the other hand, advanced
machine learning methods consider the unequal strength of potential markers, so that a
weak factor is not hidden by the strong one and predictive power is more reliable [9,51]. In
fact, we observed some differences in the importance level of studied variants between the
two approaches, although it is not entirely adequate to compare the results of different algo-
rithms, even describing the same features. Still, one of NN models—NN5, in which logistic
function was applied as an activation algorithm in both hidden and output layers, gave
the most outstanding importance values of all tested predictors, while in the remaining 5
models based on distinct algorithms were lower but comparable with each other within
one model. The NN5 model presented the second-best prediction accuracy in this study;
however, using logistic methods only might suggest over-fitting of the model, even in
advanced machine learning approaches. Likewise, So and Sham [64] stated that ROC curve
analysis is not directly correlated with the disease risk and even high significance, i.e., low
p-values, is not equal to a good predictive power. Javed et al. [27] obtained 99% accuracy
in caries prediction in 6–14-year-old Indian children using neural network modeling, and
it was the method of choice in other studies with medical prediction [65–68].

Another issue worth mentioning is the nature of variables themselves. When studying
some environmental, behavioral and biological factors, a collinearity might occur, e.g., the
presence of dental plaque might be the result of a poor oral hygiene, which in turn might
be correlated with a lack of guardians’ control over child’s brushing. [63]. While it is not
a problem in advanced modeling approaches, it should be avoided in logistic regression
analyses, since it tends to cause over-fitting of the data and spurious results [63,69]. The
strength of this study is a homogeneous study group, that is sex- and age-adjusted, since
both factors are found to be potential confounders in case–control studies [24]. Secondly,
the assessment and comparison of the results and performance of two different statistical
approaches, adjusted for the data and therefore more reliable, appears to be crucial when
implementing the method into the clinics. The obvious limitation of this study and a
necessary future direction is a larger study group and validation of the model.

The polymorphisms analyzed in this study and a high caries prediction rates indicate
a strong genetic component in the course of the disease. Nevertheless, one has to remember
about the multifactorial nature of caries and that even the best prediction model cannot fully
describe the real life scenarios and neither solely genetic nor solely environmental factors
can completely explain the disease cause. Hence, analyses exploring environmental and
genetic predictors need to be conducted very carefully. Firstly, some genetic variants might
influence behavioral habits, e.g., SNPs in taste genes [11] as well as non-genetic factors
themselves might be correlated with one another, yielding spurious results. Secondly,
compared to the environmental impact, if some genetic effect on a disease trait exists, it
remains the main and unchangeable element in the disease incidence, especially early in
life [70,71]. Even being under the influence of the environment, genetic factors combined
with non-genetic findings have been replicated only partially and with the lack of statistical
power [70]. Although many rare variants or the ones with smaller effect might be missed
in purely genetic case–control studies, the subgroup analyses and high homogeneity of
the study subgroups greatly improves the prediction [72,73]. Some authors [70,74] have
studied and described interesting gene–environment association tests, that successively
and carefully analyze both components in multiple testing approaches. McAllister et al. [75]
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have developed novel statistical approaches to detect genetic–non-genetic interactions
with regard to different durations of exposure to environmental factors. Therefore, a fully
developed caries prediction model undoubtedly requires a complex analysis of multiple
factors as well as replication studies before implementation in practice. Still, the high
prediction value of genetic polymorphisms presented in this study comprises valuable
findings on early caries development that sets the direction of the future research.

5. Conclusions

In conclusion, our study demonstrates neural network models of high accuracy for
dental caries prediction in early childhood, based solely on the genetic single nucleotide
polymorphisms selected using more basic and less statistically advanced methods. An
effective and early prediction of intrinsic risk factors might influence the change in eating
habits, improve oral hygiene and other behavioral factors when an individual is at a high
risk of developing caries lesions. Early implementation of preventive strategies and a
customized early treatment might decrease the risk of caries while improving children’s
health, the quality of life and self-esteem, as well as reducing the financial burden associated
with medical care.
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