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Abstract

Background

Nodal/TGF signaling pathway has an important effect at early stages of differentiation of

human embryonic stem cells in directing them to develop into different embryonic lineages.

SMAD3 is a key intracellular messenger regulating factor in the Nodal/TGF signaling path-

way, playing important roles in embryonic and, particularly, cardiovascular system develop-

ment. The aim of this work was to find evidence on whether SMAD3 variations might be

associated with ventricular septal defects (VSD) or other congenital heart diseases (CHD).

Methods

We sequenced the SMAD3 gene for 372 Chinese Han CHD patients including 176 VSD

patients and evaluated SNP rs2289263, which is located before the 5’UTR sequence of the

gene. The statistical analyses were conducted using Chi-Square Tests as implemented in

SPSS (version 13.0). The Hardy-Weinberg equilibrium test of the population was carried

out using the online software OEGE.

Results

Three heterozygous variants in SMAD3gene, rs2289263, rs35874463 and rs17228212, were

identified. Statistical analyses showed that the rs2289263 variant located before the 5’UTR

sequence of SMAD3 gene was associated with the risk of VSD (P value=0.013 <0.05).

Conclusions

The SNP rs2289263 in the SMAD3 gene is associated with VSD in Chinese Han

populations.
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Introduction
Congenital heart diseases (CHD) include a series of congenital anatomic malformations, such
as pulmonary stenosis, tetralogy of Fallot, patent ductus arteriosus, mitral valve insufficiency,
atrial septal and ventricular septal defects etc. [1], which may be complicated by arrhythmias
or heart failure and increase the risks of coronary heart diseases [2]. The clinical characteristics
of CHDs are very complex, and the diseases have high morbidity and mortality. The incidence
of all types of CHDs is about 7.5 present of newborns [3], many of which require clinical inter-
vention (about 1%) [4]. Of all CHD patients, only about 13% are reported with chromosomal
variants [5], so currently surgery is still the main treatment for CHD [6]. Although many
genetic defects have been revealed in many familiar and sporadic CHD cases by extensive
genetic studies [7, 8], the relationships between genetic abnormalities and CHD etiology
remain largely unknown.

Ventricular septal defects (VSDs) account for about 40% of CHDs [1, 4]. The prevalence of
VSDs varies in different studies due presumably to differences in diagnostic methods and age
of participants [9–11]. VSDs may also be associated with other structural cardiac defects or
syndromes, such as aortic coarctation or interruption, tetralogy of Fallot, univentricular atrio-
ventricular connection and Down syndrome [12, 13]. Recently the prevalence of VSDs is
increased in newborns due to changes in diagnosis and screening modalities such the use of
fetal echocardiography [14, 15].

The heart is among the first formed organs during the embryogenesis and its formation is
strictly controlled by gene regulatory networks consisting of many signaling pathways, tran-
scription factors, epigenetic factors, and miRNAs [16, 17]. A large number of defects in genes
coding for these factors have been identified [1, 18]. Recently, we reported that SNP rs2295418
in the Lefty2 gene and genotype frequency of rs360057 in Lefty1 gene are associated with the
risk of CHD [1]. LEFTY is a crucial transforming growth negative regulation factor in the
Nodal/TGF-βsignaling pathway [19], which inhibits the cellular proliferation and differentia-
tion [20, 21]. Importantly, the Nodal/TGF-βsignaling pathway has an important effect in early
stages of differentiation of the human embryonic stem (HES) cells, directing them to develop
into different embryonic lineages, and errors in the transformation may occur if the pathway
has malfunctions [22–24].

The HES cells differentiate to various cell types, which develop to ectoderm, endoderm and
mesoderm; generation and differentiation of cardiomyocytes and muscle cells take place in the
mesoderm [25]. As a key intracellular regulating factor in the Nodal/TGF-βsignaling pathway,
SMAD family member 3 (SMAD3) activates or represses gene transcription, thus having
important effects on embryonic development that will influence the formation of the cardio-
vascular system [26, 27]. At the same time, some authors also suggest that Nodal/TGF-βsignal-
ing pathway plays a key roles in the embryogenesis of the heart, valvular pathogenesis and
organization of the aortic wall; when activities of the signaling pathway were disrupted, CHDs
ensued in animal studies [28]. For elucidation of the mechanisms, the SMAD3 gene knock-
down mice could be used as models [29].

To validate possible associations of Smad3 with VSD or other CHDs, we analyzed the tran-
scribed region and splicing sites of the gene and compared the gene sequences between 372
Chinese Han CHD patients (including 176 VSD patients) and 456 controls. We found that the
rs2289263 variant before the 5’UTR of the Smad3 gene was closely associated with the risk of
VSD but not with the other CHDs.
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Results

Patients
We confirmed the clinical diagnosis of all the recruited patients in Linyi people’s Hospital, the
second Affiliated Hospital and the fourth Affiliated Hospital of Harbin Medical University.
The CHD patients had no history or manifestations of any other systemic abnormalities. We
established that their mothers did not have a history of taking medicines or attracting infec-
tions during gestation, as those factors have been shown to be associated with heart malforma-
tion in pregnancy [30, 31].

The 372 CHD patients contained 176 with ventricular septal defects (VSD), 14 with tetral-
ogy of Fallot, 12 with pulmonary stenosis, 25 with patent ductus arteriosus, 22 with mitral
valve insufficiency, 53 with atrial septal defects, and 70 with other complex congenital heart
defects. All the CHD patients (n = 372, male 201, female 171, the min and max age were 0.2
and 74 respectively, and the average age was 15.22 years) and unrelated controls (n = 456, male
257, female 199, the min and max age were 0.25 and 41 respectively, and the average age was
14.66 years) were recruited for this study, and there were no statistical differences of the gender
composition or age between the two groups (Table 1).

SMAD3 gene analysis
We sequenced the SMAD3 gene to test the hypothesis that germline common genetic variants
in SMAD3may confer susceptibility to CHD. We first compared the transcribed region and
splicing sites of SMAD3 and found the variation rs35874463 was located within the translated
region and rs17228212 was located within an intron of the SMAD3 gene, but the genetic het-
erozygosity of the two SNP were very low (S1 Table). The variation rs2289263 was located
before 5’UTR of the gene, but its genetic heterozygosity was very high (Fig 1A).

Table 1. Clinical characteristics of study population.

Parameter CHD Control F t P 95%CI Up 95%CI Low

Sample (n) 372 456 None None None None None

Male/Female (n) 201/171 257/199 None None 0.527 None None

Age (years) 15.22±15.24 14.66±10.07 90.776 0.654 0.513 -1.14543 2.28965

Data are shown as mean±SD; between the two groups, there were no statistical differences of the age and gender composition.

doi:10.1371/journal.pone.0131542.t001

Fig 1. Schematic diagrams and DNA sequence chromatograms. A: Schematic diagrams of rs2289263,
rs35874463 and rs17228212 locations in the SMAD3 gene; B: Three genotypes of DNA sequence
chromatograms of rs2289263.

doi:10.1371/journal.pone.0131542.g001
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SNP rs2289263 genotyping statistical analysis
To further test any possible associations between SMAD3 and CHD, we conducted SNP analy-
ses and found that the variant rs2289263 before 5’UTR of SMAD3 gene was associated with the
risk of VSD in the Chinese Han population but not with the other CHDs (Tables 2 and 3). At
the same time, Hardy-Weinberg equilibrium test for the CHD and controls were conducted
and it was in line with the equilibrium.

Discussion
In this study, we analyzed the transcribed regions and splicing sites of the SMAD3 gene in a
large cohort of CHD patients and controls and found that the variant rs2289263 in the SMAD3
gene was associated with the risk of VSD in the Chinese Han population, demonstrating the
involvement of the SMAD3 gene in the VSD etiology.

Eighteen or nineteen days after fertilization, the human heart starts to form in the meso-
derm, and the formation involves strict temporal, spatial, and sequential expression of genes
[1]. Nodal/TGF-βsignaling pathway plays a key role during the mammal gastrulation to pro-
duce progenitor cells of the mesendoderm [32]. In this process, the expression level of Nodal/
TGF-βsignaling pathway can affect the formation of mesendoderm [33].

The mesendoderm progenitor cells form the primitive streak and mutations in the Nodal
gene can affect the formation. In mice, the vascular systems arise from extraembryonic meso-
derm and migrate through the primitive streak to the presumptive yolk sac [34]. The Nodal
gene expression initiates a series of signal transduction and induces some gene and its own
expression in later stages of embryonic development [19, 32]. Animal studies also show that
TGF-β can induce cardiac fibroblasts proliferation, myocardial fibrosis and cardiomyocytes
hypertrophic growth [35], and loss of responsiveness to TGF-βmay lead to fibrosis progresses

Table 2. The genotype and allele frequency of SNP rs2289263 in 372 CHD patients, 176 VSD patients and 456 non-CHD controls.

Group Genotype frequency (%) Allele frequency (%)

Genotype A/A A/C C/C A C

CHD 372 136(36.6) 168(45.2) 68(18.3) 440(59.1) 304(40.9)

Controls 456 141(30.9) 228(50.0) 87(19.1) 510(55.9) 204(44.1)

VSD 1760 72(40.9) 80(45.5) 24(13.6) 224(63.6) 128(36.4)

doi:10.1371/journal.pone.0131542.t002

Table 3. SNP rs2289263 before 5’UTR of SMAD3 gene associated with the risk of ventricular septal defect not congenital heart diseases in Chinese
populations.

Title Pearson Chi-square Spearman Correlation

Comparison Group Type Value Min counta df Asymp. Sig. (2-sided) Value Asymp. Std. errorb Approx. Tc Approx. Sig

CHD- Controls Genotype 3.020a 69.64 2 0.221 -0.045 0.035 -1.303 0.193d

Allele 1.736a 317.19 1 0.188 -0.032 0.025 -1.317 0.188d

VSD- Controls Genotype 6.493a 30.91 2 0.040 -0.100 0.039 -2.530 0.012d

Allele 6.209a 147.59 1 0.013 -0.070 0.028 -2.496 0.013d

a: The minimum expected count

b: Not assuming the null hypothesis

c: Using the asymptotic standard error assuming the null hypothesis

d: Based on normal approximation.

doi:10.1371/journal.pone.0131542.t003
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in the atrial fibrogenesis [14, 36]. Furthermore, many lines of evidence from animal research
suggest that TGF-βsignaling is essential in the cardiogenesis, valvular pathogenesis, and organi-
zation of the aortic wall [28, 37], and disrupted TGF-βsignaling activities may lead to congeni-
tal heart defects [28].

We analyzed genes of the Nodal/TGF-βsignaling pathway, as they have been demonstrated
to play vital roles in mesoderm differentiation and heart formation [32]. In this work, we
found that the variant rs2289263 before the 5’UTR of SMAD3 gene was associated with
increased risk of VSD in the Chinese Han population, while in a previous study, we demon-
strated that rs2295418 (g.C925A) in Lefty2 gene is associated with the risk of CHD [1]. Of great
significance, LEFTY and SMAD3 both play central roles in the Nodal/TGF-βsignaling path-
way, with LEFTY negatively regulating the Nodal/TGF signaling pathway and SMAD3 defects
being associated with cardiovascular diseases [26, 29]. To our knowledge, this is the first report
showing the association of SMAD3 gene with VSD or other congenital heart defects. Further
work will be needed on the the Nodal/TGF-βsignaling pathway genes such as LEFTY and
SMAD3 for their involvement in the pathogenesis of CHD at the molecular level.

Materials and Methods

The study population
From Linyi People’s Hospital, the second Affiliated Hospital and the fourth Affiliated Hospital of
HarbinMedical University, Harbin, China, we collected specimens of 372 CHD patients including
176 with VSDs for this study. The 456 controls with no reported cardiac phenotypes were also
recruited for this study from theMedical Examination Center of the Second Affiliated Hospital of
HarbinMedical University (Table 1). All the CHD subjects and controls received comprehensive
physical examination, electrocardiogram and ultrasonic echocardiogram examinations. None of
the patients showed any other abnormalities in the heart or other body parts and the control
members did not have any defects in the heart. From each participant or their parents on behalf
of minors, we obtained a written informed consent, and the Ethics Committee of the HarbinMed-
ical University approved this work, consistent with the 1975 Declaration of Helsinki.

DNA analysis
We used standard protocols to extract genomic DNA from the peripheral blood leukocytes of
the participants. The human SMAD3 gene consisting of nine exons is located on 15q21-22.
Using two stage methods, we determined the SNP genotypes in the SMAD3 gene. First, the
nine exons and the splicing sites of the gene were amplified using polymerase chain reaction
(PCR) method (Table 4), and the products were sequenced using standard protocols [38].

Table 4. PCR primers used for SMAD3 gene sequence analysis.

Exon Forward primer Reverse primer Size Tm

1 GCGAAGTTTGGGCGACCG GTGCCGCGTGGAAGCCTC 553 52.3

2 ATGGCCGGTTGCAGGTGT CAGAGGTGGCTCAGTGTCG 331 57.6

3 GACTTTGGTGCTGGTCTGG GGGAGCTGAGGTCATGGGT 383 57.8

4 AGAGCCAAGCTGTGAAGG AGAGGAAGGGATGGAAGG 203 52.8

5 TGGGCTACCCCTCCTTGA GGCTGAGCTGGGCTGATG 271 56.0

6 GAGGGAGCATGGGGCTTGG GGGGTGGGATAGAGTGGC 329 57.6

7 TTAGGCTTGGGCTTTGGG GGTTAAAGGCAGACCTATCAG 512 55.5

8 AGGAGATGGGTTCAAGGG TGCCAGCAAACATCGTTC 563 55.9

9 GTTTGGCCGGGTAGTTTC ACCTCTGGGTTTGCTCGT 462 53.7

doi:10.1371/journal.pone.0131542.t004
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After that, the genotypes of the SNP were determined using PCR and gene sequencing methods
[1].

Rs2289263 SMAD3 SNP genotyping analysis and statistical methods
Using two stage methods, we determined genotypes of the rs2289263, rs35874463, and
rs17228212 SNP of the SMAD3 gene (Fig 1B). All the measurements were conducted by two
independent researchers (Table 5). And then overall CHDmeta-analysis was conducted and
stratified analysis was carried out according to the types of CHD and sample sizes.

The continuous variable (measurement data, such as age) statistical analyses were con-
ducted using independent-samples T test and the discrete variable (enumeration data, such as
gender composition and genotype frequency) statistical analyses were conducted using Chi-
Square Tests to calculate odds ratios and P value as implemented in SPSS (version 19.0). P val-
ues less than 0.05 were considered statistically significant. The Hardy-Weinberg equilibrium
test of the CHD and control population was conducted with the online software OEGE.

Supporting Information
S1 Table. The genotype and allele frequency of SNP rs35874463 and rs17228212 in 372
CHD patients and 456 non-CHD controls.
(DOC)
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