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Abstract: Scrub typhus, a chigger-borne febrile illness, occurs primarily in countries of the Asia-Pacific
rim and islands of the Western Pacific. The etiologic agent is the obligate intracellular rickettsial
bacterium Orientia tsutsugamushi. Research on O. tsutsugamushi has relied on the availability of several
prototype strains, which were isolated from human cases of scrub typhus in the 1940s and 1950s.
We review the history of the three original, and most important, prototype strains, Gilliam, Karp
and Kato, including information on their isolation, their culture history, their clinical characteristics,
their importance within the research literature on scrub typhus, and recent advances in elucidating
their molecular genomics. The importance of these strains to the research and development of
clinical tools related to scrub typhus is also considered. Finally, we examine whether the strains have
been genetically stable since their isolation, and whether prototype strains maintained in separate
laboratories are identical, based on pairwise comparisons of several sequences from four genes.
By using genetic information archived in international DNA databases, we show that the prototype
strains used by different laboratories are essentially identical, and that the strains have retained
their genetic integrity at least since the 1950s. The three original prototype strains should remain a
standard by which new diagnostic procedures are measured. Given their fundamental position in
any comparative studies, they are likely to endure as a critical part of present and future research on
scrub typhus and Orientia.

Keywords: Orientia; scrub typhus; Gilliam; Karp; Kato; O. tsutsugamushi; comparative genomics;
genetic stability; serogroups

1. Introduction

Scrub typhus is a chigger-borne febrile illness of humans, caused by the rickettsia Orientia
tsutsugamushi. The disease occurs primarily in countries of the Asia-Pacific rim and islands of the
Western Pacific, an area often referred to as the “tsutsugamushi triangle,” roughly bordered by northern
Japan and far eastern Russia in the north, to northern Australia in the south, and to Pakistan and
Afghanistan in the west [1,2]. More recently, cases with scrub typhus or scrub typhus-like disease
have been described in a wider geographic area, including areas much further east in south Asia,
and into Africa, as well as in South America [2–5]. Some of these represent newly recognized agents
closely related to O. tsutsugamushi, such as “Candidatus Orientia chuto” [4]. Although from the early
20th-century, scrub typhus was recognized and reported locally, it was not until the 1920s that the
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agents of various typhus-like rickettsial diseases began to be clearly differentiated [6,7]. For scrub
typhus, this was due in part to the introduction of the Weil–Felix test and particularly to the fortuitous
discovery in 1926 of the OX-K (Kingsbury) strain of Proteus mirabilis as a serological antigen [6]. This
antigen differentiates scrub typhus from typhus cases caused by other rickettsiae (i.e., epidemic or
louse-borne typhus, caused by Rickettsia prowazekii, or endemic, murine or shop typhus associated
with R. typhi, formerly referred to as R. mooseri). The differentiation occurs because antibodies
against OX-K specifically result in agglutination in the presence of antigens in the serum from scrub
typhus-convalescent patients [6,8,9]. The use of OX-K provided the first clear indication that scrub
typhus could be distinguished serologically as a disease separate from other typhus forms. Although
now considered less accurate than other techniques, such as the indirect fluorescent antibody test (IFA),
the Weil–Felix test has been used to differentiate the rickettsial diseases for over one hundred years
and was well respected in its day. For research on any infectious disease to proceed, standardization of
research material must be accomplished. Often this occurs when researchers unconsciously utilize the
same strain or isolate as the subject of their analyses. This is often driven simply by the availability of
biological material for study. Ultimately, this appears to have been the case for scrub typhus.

The original isolation of the agent of tsutsugamushi disease was accomplished in the late 1920s in
Japan, with the most credible evidence suggesting that Mataro Nagayo of Tokyo Imperial University
first correctly identified the agent of scrub typhus, and successfully grew it in rabbit cell culture,
naming it Rickettsia orientalis [10–12]. None of the cultured material from pre-World War II (WWII)
Japan appears to have survived the war, with one possible exception [13]. Work was also being
performed in British Malaya, where William Fletcher and Raymond Lewthwaite and colleagues had
used the Weil–Felix test to separate scrub typhus from other rickettsial diseases [6]. Fletcher reported
unsuccessful attempts to infect laboratory animals with material from scrub typhus as early as 1925 [14].
Lewthwaite and S.R. Savoor, using material from over 100 patients, tried unsuccessfully during the
early 1930s to experimentally infect guinea pigs with the scrub typhus agent, and maintain infections
in serial transfers [15]. In 1932, they succeeded with a single isolate, the Seerangayee isolate [16]. A
second strain, the Raub strain, was isolated by intra-ocular inoculation in rabbits [16]. By 1936, these
two isolates had been maintained through almost 100 transfers [16]. Rapmund [8] indicated that
Lewthwaite was ordered out of Malaya prior to the Japanese invasion “so that he could carry strains of
Malayan scrub-typhus rickettsiae to Great Britain for vaccine development.” The effort became known
as “Operation Tyburn” and was directed by the Wellcome Foundation. This cotton rat lung-derived
vaccine was tested immediately after the war but found to be ineffective [9].

World War II played a significant role in expanding our knowledge of scrub typhus [17] (as
reviewed in the next section). Military medicine in WWII was responsible for the isolation and study
of several scrub typhus rickettsial strains of human origin obtained using experimental infection of
mice, including the Gilliam strain [12,18], or of guinea pigs, including the Karp strain [19]. Most of the
strains of human origin obtained during WWII have not been studied extensively in over 50 years,
although a number remain stored in culture collections. In the years following WWII, the Seerangayee
and Raub isolates from Malaya, isolated prior to WWII, were used by several investigators in various
comparative studies, especially on antigen cross-reactivity [18,20–22], susceptibility to antibacterial
compounds [23–25], or studies of pathogen persistence [26]. However, no references could be found
that would indicate that either of these strains was used in any study after 1949, despite being present
in culture collections in Australia and the U.S. at least through the early 1950s. Other strains that were
isolated during WWII, such as Kostival, Imphal and Volner, also appear in some studies before 1950,
but appear only very sporadically in later studies. In contrast, two isolates, Gilliam and Karp, emerged
from World War II as important foci of research. Together with a third isolate, the Kato strain, obtained
in the early 1950s, they played a central role in subsequent studies of the organism and the disease.

We have previously [1] used the term “prototype strain” to refer to an early isolate that has been
used as a reference for the characterization of other subsequent isolates of an organism. Prototype
strains are important because they can be used to provide baselines for experimental studies, such
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as studies of pathogenicity, immunological responses, vaccine production, etc., and can be used to
produce reagents for use in diagnosis. As such, the three strains Gilliam, Karp and Kato can be
considered the original prototype strains for the study of scrub typhus. Historically, Shishido was
the first to refer to the Gilliam, Karp, and Kato strains as prototype strains [27,28]. Since then, many
authors have also recognized these three strains as representing prototypes [29–36]. Other authors also
referred to the three strains as prototypes, but added some additional, more recently isolated, strains
as prototypes of alternative serogroups [37–41].

The three original prototype strains were analyzed in ways that contributed substantially to
our knowledge of the taxonomic relationship of the agent of scrub typhus to other rickettsiae. They
were used in the first molecular comparisons between scrub typhus isolates and rickettsial taxa
in the 1990s [42–44]. These genetic investigations concluded that the agent of scrub typhus was
significantly divergent from members of the genus Rickettsia, and a new genus for the scrub typhus
agent, Orientia, was proposed [45]. The prototype strains have subsequently been important in
providing a phylogenetic basis for the comparison of isolates of scrub typhus [1,46].

The continued use of the established prototype strains in research and product development for
intracellular bacteria such as Orientia is especially important. Prototype strains accrue importance,
because their culture has been well documented, and their use standardizes information from different
studies, whether that study is directly of the prototype strain, or is a comparison of the prototype
with a newly isolated culture. Here, we review the history of the three original prototype isolates of
O. tsutsugamushi and illustrate their continued importance to research into scrub typhus. It is our aim
in this review to verify the historic and genetic authenticity of three established prototype strains of
O. tsutsugamushi, Gilliam, Karp, and Kato, and to examine the genetic integrity of the strains, which
continue to be used in scrub typhus research.

2. History of Scrub Typhus and Orientia Prototype Strains during and after World War II

As stated, scrub typhus played a significant role during WWII, but was little known outside
Japan at the start of the war. With the onset of the war the American military found itself deployed to
regions of the Far East and experiencing scrub typhus. Although the disease was well known even
before WWII to British, Australian and Japanese investigators working in the region, US medical
officers initially considered scrub typhus to be of minor military importance. The importance of the
disease also seemed to be only partially understood by the Japanese military. Captured reports showed
that Japanese medical officers in Burma recognized it in outbreaks of disease in Japanese Forces or
European internees in Burma, Thailand, Malaya, Sumatra and Java [47]. However, they reported it
as only showing similarities, but with milder infections, to the tsutsugamushi disease endemic to
mainland Japan [48].

Based on the experience of the Allies during World War I and the anticipated wartime impact of
typhus fever in Western Europe and North Africa, the United States of America Typhus Commission
(USATC) was constituted on December 24, 1942 by Executive Order of President Roosevelt as a joint
Army, Navy and Public Health Service mission [6,49,50]. It transpired that epidemic or louse-borne
typhus was well controlled in the European Theater of Operations and had little impact on Allied
forces. Though there were thousands of cases in the civilian sector, only 104 cases were reported
in US troops for the entire war [47,50]. However, it soon became apparent to the commission that
a different rickettsiosis in the Far East was having a significant, potentially mission compromising
impact on deployed troops within the Asia-Pacific Theater of Operations. Subsequently members
of the Commission, some of whom were already working in the European Theater in Cairo, were
sent to the Far East to investigate. Complementary efforts were initiated between the United States
Army Scrub Typhus Research Unit in Burma and the British Field Typhus Research Unit at Imphal, in
eastern India [9]. Allied British, Australian and American military physicians and scientists, some
trained in epidemiology, medical entomology and clinical microbiology worked to control major scrub
typhus outbreaks among Allied troops from India to as far away as New Guinea and the Philippine
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Islands. At the end of the war, many of those medical officers continued their service and seized
the opportunity to further investigate scrub typhus. The efforts of those researchers, both during
the war, and soon thereafter together with scientists in Japan, allowed not only the better diagnosis
of cases, but also led to the isolation and propagation of the obligate intracellular etiologic agent,
currently named O. tsutsugamushi. Their work shows benefits to this very day [9,51,52]. With no
effective antibiotic therapy available, the negative military impact of scrub typhus during WWII was
indeed significant [17,36,53]. Approximately 18,000 scrub typhus cases were reported among allied
servicemen from 1941 to 1945 with fatality rates as high as 35.3 per cent [47,54]. Diagnostics tools in
the field were imprecise. There were no effective medical treatments, including the lack of effective
antibiotics. Finally, preventive medical measures were limited in their ability to ameliorate the effect of
the disease. In point of fact, in 2019, although there are effective treatments available, there is still no
licensed vaccine to prevent scrub typhus [17,36,52,53].

By the end of WWII, scrub typhus had been shown to be a significant threat to members of the
military within the Tsutsugamushi Triangle. Obviously, it also posed a serious medical threat to
civilian inhabitants in this same region. Medical researchers were concerned with developing new
strategies to diagnose and treat scrub typhus. Tools that emerged from the military medicine of WWII
resulted in the development of procedures for the stable culture of strains of the agent of scrub typhus.
These included improvements to the serial passage in mouse, hamster and guinea pig, development of
culture in embryonated chicken eggs and sample transfer on dry ice [19,54]. The development of these
techniques for research resulted in the availability of several established strains of O. tsutsugamushi
gathered during or soon after WWII, including the Gilliam and Karp strains which would become
generally accepted as prototype strains.

Investigations immediately following the war by American and British scientists such as
Dr. Joseph Smadel of the US Army Medical Department Research and Graduate School and
Dr. J.R. Audy, of the British Army Scrub Typhus Research Laboratory, Institute for Medical Research
(IMR), Kuala Lumpur, Malaysia (then, Malaya) were focused on the evaluation of antibiotic treatments
for scrub typhus. The highly productive collaboration of those scientists and their parent institutions,
initiated in March 1948, led to the establishment in 1953 of the United States Army Medical Research
Unit-Malaysia, a laboratory component of the Walter Reed Army Institute of Research (WRAIR) [55].
In therapeutic antibiotic testing using a mouse model, two of the prototype O. tsutsugamushi strains
described here, Gilliam and Karp, were among those used in the first successful evaluation of
chloromycetin (chloramphenicol) [56]. Subsequently, Smadel, Audy and others were instrumental
in using chloromycetin in the first successful antibiotic treatment of human scrub typhus [51,54,57].
Scrub typhus remains a disease that can be successfully treated when identified early in its course by
antibiotics such as tetracyclines, chloramphenicol and azithromycin (although other compounds such
as cephalosporins and ciprofloxacin are not efficacious).

3. The Importance of Prototype Strains for the Study of Scrub Typhus

As mentioned, although a number of strains of O. tsutsugamushi have been maintained in culture
and used by researchers, three strains stand out. These primary prototype strains are the Gilliam,
Karp, and Kato strains. In the research describing the new genus Orientia, details are given that
document the difference between strains of the new genus and the members of the genus Rickettsia, in
which these strains had formerly been placed [45]. Data from the three prototype strains were vital
in identifying differences between Orientia gen. nov. and Rickettsia. The Karp strain was designated
the type strain of the new genus Orientia, while the sequences of the 16S rRNA genes of the Gilliam
and Kato strains represented the primary initial molecular data which differentiated strains of scrub
typhus from strains of Rickettsia [44]. The three strains were also those chosen when first determining
the vital gene sequences that could be used to differentiate isolates of O. tsutsugamushi [43,58–60].

Increased medical relevance of scrub typhus, in general, and the prototype strain in particular, is
given credence by the dramatic increase in citations in the research literature. We have used Google
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scholar to track the number of publications that mention the terms “scrub typhus” or “tsutsugamushi”.
Through November 1, 2018, these terms appeared in 17,644 publications since the first mention of
tsutsugamushi disease in the tracked literature in the 1890s, with 17,257 of these mentions occurring
since the isolation of the prototype strains, Karp in 1943 and Gilliam in 1944. Google scholar was also
used to track the number of publications that mention one or more of the three primary prototype
strains (Gilliam, Karp and Kato) since the mid-1940s. The three prototype strains have been mentioned
directly within the body of 2680 publications in that time, with the number of references increasing
in recent decades. The increase over time is shown by the number of publications referring to the
prototype strains within each decade, as shown in Figure 1. The substantial proportion (>15%) of
all scrub typhus publications during the past 73 years that also refer to the use of the Gilliam, Karp
or Kato prototype strains as baselines for studies of new and improved diagnostics, and treatments,
or as tools to indicate the occurrence of scrub typhus indicates the importance of these strains to
our knowledge of scrub typhus. In contrast to the number of times that Gilliam, Karp or Kato are
mentioned in the literature, other strains that might be considered possible prototype strains, have been
used substantially less. Only three strains have appeared over 500 times in the literature, Kawasaki
(826), Boryong (536) and Ikeda (517). The latter two isolates represent the first two genome sequences
of Orientia. Six other strains, Kuroki (363), Shimokoshi (186), TA763 (169), TA716 (161), Saitama (156)
and TA686 (103) are mentioned over 100 times.

Trop. Med. Infect. Dis. 2019, 4, x FOR PEER REVIEW 5 of 17 

 

“tsutsugamushi”. Through November 1, 2018, these terms appeared in 17,644 publications since the 
first mention of tsutsugamushi disease in the tracked literature in the 1890s, with 17,257 of these 
mentions occurring since the isolation of the prototype strains, Karp in 1943 and Gilliam in 1944. 
Google scholar was also used to track the number of publications that mention one or more of the 
three primary prototype strains (Gilliam, Karp and Kato) since the mid-1940s. The three prototype 
strains have been mentioned directly within the body of 2680 publications in that time, with the 
number of references increasing in recent decades. The increase over time is shown by the number of 
publications referring to the prototype strains within each decade, as shown in Figure 1. The 
substantial proportion (>15%) of all scrub typhus publications during the past 73 years that also refer 
to the use of the Gilliam, Karp or Kato prototype strains as baselines for studies of new and improved 
diagnostics, and treatments, or as tools to indicate the occurrence of scrub typhus indicates the 
importance of these strains to our knowledge of scrub typhus. In contrast to the number of times that 
Gilliam, Karp or Kato are mentioned in the literature, other strains that might be considered possible 
prototype strains, have been used substantially less. Only three strains have appeared over 500 times 
in the literature, Kawasaki (826), Boryong (536) and Ikeda (517). The latter two isolates represent the 
first two genome sequences of Orientia. Six other strains, Kuroki (363), Shimokoshi (186), TA763 (169), 
TA716 (161), Saitama (156) and TA686 (103) are mentioned over 100 times.  

 
Figure 1. Number of scientific publications within each decade-long period that mention terms 
“tsutsugamushi” or “scrub typhus”, together with one or more of the prototype strain names “Karp”, 
“Gilliam” or “Kato”. 

The number of references to the three prototype strains increases and continues to increase 
substantially in each decade from 1980 onwards, as molecular techniques begin to be used for the 
study of Orientia. The prototype strains of O. tsutsugamushi have been used to develop diagnostic 
methods such as the polymerase chain reaction (PCR) and quantitative real-time or qPCR [61]. In the 
molecular study of O. tsutsugamushi, the first DNA gene sequences were published in 1990, coming 
from the prototype strains Karp [58,59] and Gilliam [60]. The first sequence from the Kato strain did 
not appear until 1992 [62]. Meanwhile, even as evidence of emerging antibiotic resistance and 
increased disease incidence continues to be reported, research on scrub typhus continues.  

Figure 1. Number of scientific publications within each decade-long period that mention terms
“tsutsugamushi” or “scrub typhus”, together with one or more of the prototype strain names “Karp”,
“Gilliam” or “Kato”.

The number of references to the three prototype strains increases and continues to increase
substantially in each decade from 1980 onwards, as molecular techniques begin to be used for the study
of Orientia. The prototype strains of O. tsutsugamushi have been used to develop diagnostic methods
such as the polymerase chain reaction (PCR) and quantitative real-time or qPCR [61]. In the molecular
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study of O. tsutsugamushi, the first DNA gene sequences were published in 1990, coming from the
prototype strains Karp [58,59] and Gilliam [60]. The first sequence from the Kato strain did not appear
until 1992 [62]. Meanwhile, even as evidence of emerging antibiotic resistance and increased disease
incidence continues to be reported, research on scrub typhus continues.

4. The History of Three Prototype Strains of O. tsutsugamushi

4.1. Gilliam Strain

The Gilliam strain originated from the blood of Lt. Col. (Dr.) Alexander Gordon Gilliam, United
States Public Health Service (USPHS) (B: 22 December 1904, D: December 12, 1963; pronounced
“gillum”). Dr. Gilliam was a Senior Surgeon, a trained epidemiologist in the USPHS, and a member
of the USATC [47,63]. Prior to the war, he had been active in polio research with the USPHS in
Washington, DC, and, following the war, he worked on the Salk polio vaccine at the University of
Michigan [64]. In January, 1943, he deployed to the typhus laboratory in Cairo, Egypt, to assist in a field
trial evaluating the Cox-type epidemic typhus vaccine, no doubt becoming familiar with rickettsial
isolation models and diagnosis [63]. Figure 2 shows Lt. Col. Gilliam during his deployment in Cairo
in 1943. In September, 1943, he was posted to Chungking, China [64,65].
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Late in 1943 when it was recognized that an outbreak had occurred of what was termed “CBI
fever” (China–Burma–India Theater of Operations) in the Ledo (Assam) region, Lt. Col. Gilliam was
posted to the region to assist with the investigation [7,66]. An 8.9% case fatality rate had been reported
among United States troops in the India–Burma Theater [7]. In December, 1943, Gilliam and another
medical officer, WS Jones, became ill and were diagnosed with scrub typhus [47,67]. Their infection
was likely contracted while working in the “21 to 23” mile marker region of the Stilwell Road, where
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66 cases had been reported in November and December, 1943 [68]. This area was considered to be a
hotspot for scrub typhus, probably related to the occurrence of a “mite island” related to the clearance
of secondary (“scrub”) forest for the construction of the Stilwell Road [69]. Both Gilliam and Jones
were admitted to the 20th General Hospital, Marghuerita, (India) Assam in early January 1944, having
become febrile 13 and 14 days respectively after entering the endemic area. As detailed in recent
recorded interviews with Gilliam’s daughter (2013) and son (2014), Dr. Gilliam nearly died of the
disease [64,65,70]. They relate that, in an example of the era of WWII medicine before the availability
of effective antibiotics, their mother received a telephone call in January, 1944, telling her that her
husband was ill with typhus and that he was likely to die. Nevertheless, Gilliam survived the disease,
and returned home in March, 1944, but remained “sickly” and showed evidence of mental instability
for several months thereafter. He had survived scrub typhus but took nearly a year to fully recover
from his infection. Dr. Gilliam died of cancer in 1963.

The passage history and disposition of the Gilliam strain, from the initial inoculation of a guinea
pig with Dr. Gilliam’s blood in January, 1944, to the present, is relatively complete [21]. The original
isolation and source information is noted on Walter Reed Army Medical Center (WRAMC) Form 543
maintained at WRAIR/Naval Medical Research Center (NMRC) as “1944-China–Burma–India Theater,
from patient Dr. Gilliam.” Blood from the infected guinea pig was serially passed in guinea pigs and
transported to the USNIH, Bethesda, MD, USA, received March, 1944. In Crisis Fleeting [66], Jones
described a Life Magazine issue dated May 1, 1944, in which a photograph of an incubator at the United
States National Institutes of Health (USNIH) showed an egg labeled “Gilliam”. It likely represented
the culture of the isolate in question (as illustrated in the Life Magazine photo, above, Figure 3). The
number of passages in guinea pigs prior to egg inoculation is unknown, but materials were serially
passed in embryonated hen eggs upon receipt at the USNIH. In 1946, Dr. Norman H. Topping of
the USNIH recorded the transfer of the Gilliam strain, as the 11th egg passage, to the Army Medical
Service Graduate School, which in 1953 was renamed Walter Reed Army Institute of Research [71].
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Wilmington strain of Rickettsia prowazekii and Rickettsia typhi, respectively, and Case #9, a New Guinea
isolate from a scrub typhus patient. Picture appeared in Life Magazine, May 1, 1944, page 65.
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Records show continuous passages of the Gilliam strain at WRAIR, together with the other two
prototype strains (Karp and Kato), until 1988 when the entire rickettsial inventory was transferred
to the Rickettsial Diseases Department, Naval Medical Research Institute (NMRI), now the NMRC.
This was part of the United States Department of Defense mandated consolidation of the Army and
Navy Rickettsial Diseases Programs, completed in November, 1988. Gilliam strain passage information
from a WRAIR publication of that era reads: Rtsu Gilliam, E164 (L-3) E 8. Note that “E” indicates
egg passage and “L3” indicates triple plaque purification using murine L-cells to maintain genetic
identity of the strain [72]. The three strains were initially provided to the NMRI by B.L. Elisberg
and F.M. Bozeman, Department of Rickettsial Diseases, WRAIR. The Gilliam strain was originally
deposited with the American Type Culture Collection or ATCC by Elisberg and Bozeman and assigned
as ATCC VR-312. Stocks of ATCC VR-312 are no longer available from the ATCC, although a 1980s-era
ATCC catalog lists Gilliam as “GP/3?, CE/133 (Lot#1)”.

The relatively low virulence of Gilliam in mice following multiple passages prompted some to
suggest the strain as a potential vaccine candidate [73–75]. However, the organism remained quite
virulent for humans. For example, an anecdote provided by Dr. Charles Wisseman, Jr., a preeminent
wartime (WWII) rickettsiologist and professor at the University of Maryland, underscored the virulence
of the Gilliam strain in humans. During an open forum of a meeting of the American Society for
Rickettsiology in which the strain was being discussed as a potential vaccine candidate he stated that
it might not kill mice but that “I knew Gilliam and it damned near killed him.” [76]. In their early
studies, Smadel et al. showed the Gilliam strain also to be quite toxic, relative to other strains of
O. tsutsugamushi [71]. Compared to Karp strain, the Gilliam strain causes less severe disease in various
mouse strains. However, the Gilliam strain versus the Karp strain in rhesus macaque scrub typhus
model caused more severe clinical signs and overall induced more pronounced host immune responses
similar to human scrub typhus [77]. Finally, the continued virulence of the strain was apparent. A
military laboratory technician performing intravenous inoculation of the Gilliam strain into mice in
the early 1980s became ill requiring hospitalization and antibiotic treatment [76]. Clearly, the isolation
of the Gilliam strain from the blood of Alexander Gordon Gilliam and successful transport of the
temperature labile isolate to Washington, DC, in that very difficult war-time environment has proven
very useful for subsequent and extensive investigations of the disease.

4.2. Karp Strain

When WWII military operations began in the Southwest Pacific, medical officers were generally
unaware of the disease that soon developed into a serious problem resulting in hundreds and later
thousands of cases. In the summer of 1942, cases of scrub typhus were reported in Australian
and American troops in regions of Papua and the Mandated Territory of New Guinea, including the
Buna-Gona area [50]. In October 1943, USATC doctors arrived and began examining ongoing outbreaks,
which included a pair of fatal cases. Their epidemiological studies developed several isolates including
the Kostival and Buie strains [12]. Around that time, an American soldier named Karp who had been
deployed in the Buna-Guna region of New Guinea was wounded and subsequently evacuated from
the region to the 42nd US Hospital, Brisbane, Australia [19]. While hospitalized, he became febrile. He
was diagnosed with scrub typhus and had been presumably infected while deployed in New Guinea.
His collected blood was submitted to the Laboratory of Microbiology and Pathology, Queensland
Health Dept. on 15 January, 1943. The blood clot was inoculated intraperitoneally into a guinea pig
and at 10 days post inoculation, the febrile guinea pig was sacrificed, liver-spleen-kidney emulsions
were prepared, then sequentially passed. During the multiple passes, rickettsiae appeared to become
more virulent, killing about 50% of inoculated guinea pigs, an unusual finding for this organism in this
animal model. The material also proved virulent in mice, killing them in 6 to 10 days and showing
organisms upon staining of peritoneal fluid. The isolate was sent to Dr. F.M. Burnet, the future Nobel
Prize recipient, at the Walter and Eliza Hall Memorial Institute for Medical Research, Melbourne,
Australia, and was there passed again in guinea pigs. Tissues were provided to CDR I.L.V. Norman,
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MC, US Navy by Burnet for transport on dry ice to the United States. The initial dry ice shipment of
infected tissues to the USA was unsuccessful, probably due to thawing during transit. On the second
attempt, frozen samples were received at the NMRI, Bethesda MD USA on 17 August, 1943. The isolate
was subsequently used in scrub typhus vaccine and immunological studies at NMRI [12,18,19,78].
Although the rickettsia did not kill soldier Karp, the strain subsequently infected or killed several
laboratory workers including a close associate and collaborator of Burnet at the Hall Institute, Dora
Lush [49,79].

Note that, as stated above, O. tsutsugamushi is very infectious, but is highly temperature labile,
making it difficult to both transport and work with. It is unusual to have a strain virulent for guinea
pigs. As with the Gilliam strain, records show continuous passages at WRAIR of the Karp strain until
1988 when the rickettsial inventory was transferred to the Rickettsial Diseases Department, NMRI. The
Karp strain was deposited in the ATCC by H.S. Fuller and assigned as ATCC VR-150. The primary
reason that elevated the Karp strain to its current status, and to its label as a prototype strain, is that it
was the first isolate to become generally available for studies [19].

4.3. Kato Strain

According to Dr. Tsunehisa Suto [80], the Kato strain is purported to have been isolated from a
classic human scrub typhus case of a febrile 15-year-old boy from Kurosawa village, Naka-Kanbara
district, Niigata Prefecture, September 2, 1952. The culture then involved mouse inoculation of blood
from the patient. The “1955 Professional Report” of the US Army 406th Medical General Laboratory
in Japan describes the successful isolation of rickettsiae from two patients from Niigata Prefecture,
including a positive OX-K Weil–Felix reaction to “Kato” strain infected mice. This is presumably the
same Kato strain described by Shishido in 1958 [81] as “originally isolated from a patient of scrub
typhus (tsutsugamushi disease) in Niigata Prefecture, Japan”. According to Dr. Suto, there were
two passage histories, one at Niigata University, and a second documented at the Japanese National
Institute of Health (JNIH), presumably from a subculture of the isolate at Niigata University transferred
prior to 1957. The Kato strain has been retained in labs at the JNIH. Documentation indicates that
the Kato strain was subsequently passed to a laboratory in the USA, specifically the WRAIR lab of
Elisberg, in 1964 [82]. It was from this subculture that Elisberg and Bozeman deposited the strain to
ATCC, where it has been assigned as ATCC VR-609.

Finally, it is important to note that in molecular studies published in the early 1990s from Japanese
labs, which are discussed in the next section, mention is clearly made that material from all three
prototype strains was obtained from cultures maintained at the JNIH, apparently since the mid-1950s.
This indicates that parallel culture of the prototype strains in the United States and Japan have been
present for over 50 years without any indication that the cultures were transferred between the two
main repositories since that time.

5. Molecular Comparison of Parallel Samples of Prototype Strains

When considering the use of a prototype strain in setting benchmarks for research, several
uncertainties can be raised. One can first question whether each particular application of a prototype
strain in new research truly involves the use of the strain, or whether problems such as contamination,
mislabeling or other errors could result in the inadvertent use of an alternative unidentified strain.
A second question relates to whether genetic changes, mutations, have occurred in a prototype strain
over time while the strain has been passaged at a research center, such as the NMRC, a culture center,
such as ATCC, or in a lab that uses the prototype strain. Such changes could result in the attenuation
of an isolate, making it easier to culture, or less pathogenic. An example of such a change is well
known, the Madrid E strain of Rickettsia prowazekii. That strain originated from a 1941 isolate from
a case of typhus treated during an outbreak in Madrid, Spain. The isolate was passed routinely in
eggs. A change abruptly occurred in culture, yielding reduced virulence for guinea pigs, first noted
during the 11th passage. Work done with this strain of R. prowazekii, initially by Clavero and Perez
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Gallardo and later by Fox and associates, resulted in the development of the attenuated vaccine strain
E [83]. If changes in genes of the O. tsutsugamushi prototype strains have occurred since the origin of
the prototype strain, they could theoretically be tracked back, using the tools of molecular biology,
to some point in time, and/or their subsequent dispersal to various centers or labs.

Both of these questions can be addressed, at least partially, by comparing DNA sequences that
have been deposited by various laboratories into the international DNA sequence repositories such as
GenBank [84]. As previously mentioned, some DNA sequences for O. tsutsugamushi prototype strains
have been reported and deposited since the early 1990s. Duplicate deposits were made for a number
of these genes, sequences having been determined independently by different labs. In addition, in the
genome era of the past few years (characterized here by the introduction of next-generation sequencing
(NGS) technology), four labs have independently obtained either complete or nearly complete genome
sequences from the three prototype strains, Gilliam, Karp and Kato.

In our genetic analysis of prototype strains over time, we have compared the sequences of the
following genes: the 56-kD TSA gene, the 47-kD membrane protease (htrA) gene, the 60-kD GroEL
chaperonin gene, and the 16S rRNA gene (rrs). In each case, some DNA sequences were obtained from
a prototype strain prior to the genome era, often by two independent laboratories. These sequences
can be compared with one another and can then also be compared with the genome sequences from
the four sequencing groups for the Karp strain and three each for the Gilliam and Kato strains. The
results can be used to test whether the sequences obtained from putatively identical samples of a strain
will yield comparisons that are within the limits of expected sequencing error, or whether any error has
occurred in labeling the prototype strain. In some cases, these comparisons can also indicate whether
any changes have occurred over time, at least from the 1990s and, in some cases, since the mid-1950s as
the strains remained in culture.

Sequences for the four genes were downloaded, for older sequences, directly from the nucleotide
database GenBank, or, for genome sequences, extracted from the NCBI whole genomic sequences (WGS)
or sequence read archive (SRA) databases. Sequences were aligned using the alignment subroutine
of MEGA6 [85]. The aligned sequences were then analyzed for pairwise sequence differences, as
computed within MEGA6. Information about the sequences used for the analysis is provided in
Supplement 1.

Results of Gene Comparisons:

In pairwise comparisons of the genome sequences for the four genes, all genome sequences for four
duplicate genomes of Karp, and the three duplicate genomes from Kato, were identical (Tables S1–S4).
For comparisons of the genome sequences of the Gilliam strain, pairwise comparisons of the three
replicate genomes were identical for the 56-kD TSA gene, the 47-kD HtrA gene, and the 16S rRNA gene.
The sequence of the 60-kD GroEL chaperonin gene from the LANO genome (contig LANO01000026)
differed by a single nucleotide from the other two genome sequences (Table S3). The conclusion from
these comparisons is that all genome sequencing groups appear to have valid duplicate samples of the
three prototype strains.

When comparing the genome sequences with earlier pre-genome sequences deposited in the DNA
databases, some differences were observed. The most striking difference occurs for the 56-kD TSA gene
from the Karp strain (Table S1). Here, the original sequence of the gene reported in 1990 (acc# M33004)
differs from the genome sequences and from the other two pre-genome sequences by the presence of
two in/del changes in the sequence that result in six nucleotide differences in the pair-wise aligned
comparisons with the genome sequences. The changes would also alter a small segment of the amino
acid sequence of the protein. The other two pre-genome sequences of the 56-kD TSA gene for Karp
(acc#’s AY956315 and AY283180) each differ from the genome sequences by two nucleotide changes,
but each of the latter pre-genome sequences differ at unique sites. The differences in these latter two
pre-genome sequences are most likely to be simple sequencing errors. The differences observed for
the original Karp sequences (acc# M33004) may be more complicated. The sequence differences may
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simply be due to sequencing errors from 1990s technology. However, the unique in/del changes in
M33004 appear to be shared with several non-prototype isolates deposited in the DNA databases,
although M33004 is not identical to any other sequence in the database. Are the differences simply
pre-genome sequencing errors, or do they represent the presence, at least in the early stage of the
analysis of scrub typhus molecular biology, of an alternative “Karp” strain in culture? The answer
is equivocal, since DNA from the specific culture used for the original Karp 56-kD TSA sequence is
unlikely to be available [58].

For comparisons of the pre-genome sequences of the 47-kD HtrA gene, all pre-genome sequences
showed some differences from the genome sequences (Table S2). Each of the three pre-genome
sequences (acc#’s L31933, L31934, and L11697) was produced from the same laboratory, and showed
four differences from Karp genomes, four differences from Gilliam genomes and two differences for
Kato genomes. It appears likely to us that all differences represent simple sequencing errors.

For the 60-kD GroEL gene segment, the pre-genome sequences of Karp and Gilliam are identical
to the genomes sequences, while the Kato pre-genome sequence differs from genome sequences at two
sites, most likely representing simple sequencing errors (Table S3).

Finally, for the 16S rRNA gene, pre-genome sequences from two labs are identical to genome
sequences for Karp, sequences from three labs are identical to genome sequences for Gilliam, and
sequences from two labs differ from each other by one nucleotide, with one of the sequences (acc#
D38624) agreeing completely with the genome sequences (Table S4).

The 16S rRNA gene sequences have additional importance since they indicate that isolates that
have been separated since the 1950s were either identical or showed only a single difference (probably
a sequencing error) from each other and from the genome sequences. In fact, the 16S rRNA gene
sequence (acc # D38624) that was identical to genome sequences represents the isolate traceable to the
JNIH and therefore represents the longest JNIH separation time between different versions of the same
prototype strain. Likewise, the pre-genome era sequence of the Gilliam 56-kD TSA from Japan (acc #
M33267, [60]) was identical with genome sequences that had been separated from it by culture in the
United States at least since the 1950s.

The sequence stability that we have observed over time for genes in the three prototype strains
does not necessarily indicate that the genomes, or the sequences of genes between genomes of different
O. tsutsugamushi isolates, are essentially genetically stable. Information from comparison of complete
genomes indicates that the order of genes in different isolates may be quite unique [46]. While there
are “islands” of core genes that have similar gene order in various isolates, the order of these “islands”
between the genomes of individual isolates of O. tsutsugamushi is variable. We have compared the
gene sequence order of duplicate genome sequences of the three prototype strains obtained from
assorted laboratories that have been deposited in the international DNA databases. In general,
these comparisons indicated that the orders of genes between the duplicate versions of a prototype
genome are the same. Our confidence in these results must be tempered by the fact that only the
Batty et al., 2018 [46], study used methodologies that could easily span long ranges of sequence that
include repetitive elements. Additional comparisons of genomes sequences collected using methods
that provide long sequence reads are required to provide high confidence in our conclusions. Further,
the study of whether gene order might change between multiple time periods for a specific isolate has
certainly not been done.

The importance of intra- versus inter-genomic recombination for Orientia is a vital area of interest
for our understanding of scrub typhus. Results from comparison of variation in the position of “islands”
of core genes within the genomes of different isolates of O. tsutsugamushi [46] suggest that genome
stability between isolates, may be affected by forces that have greater importance within the Orientia
pan-genome than in most other bacterial taxa [86,87]. Orientia genomes appear to have been affected
by intra- and inter-genome recombination, facilitated by repetitive sequences that are more abundant
within the genome of Orientia than in most bacteria [88]. These processes can result in the scrambling of
gene order within the genome and appear to have been responsible for potential horizontal transfer of



Trop. Med. Infect. Dis. 2019, 4, 75 12 of 17

gene segments, by recombination, between strains [87,89]. It should be noted that such recombination
has only been inferred, not directly observed experimentally. The result, however, is that any strain of
Orientia will represent a mosaic of gene histories, with each gene or block of genes, having a history that
may be partially or substantially independent of the history for other genes. This mosaic will be as true
of the prototype strains as it would be for any new strain isolated in the 2020s. The history and stability
of genes, on the other hand, are not affected by these recombinational forces. Our studies, indicating
the genetic stability of isolates over short evolutionary time periods is not in conflict with the picture
of the dynamic genome mosaic. The fact that the order of genes within gene “islands” of duplicate
versions of a prototype strain appears to remain constant is also not in conflict with a mosaic genome.
The prototype isolates in culture do not have any opportunity to interact with other isolates, so there is
no opportunity for inter-isolate genomic recombination. Whether, and how frequently, intra-cellular
recombination might occur is currently unknown. The genes themselves are stable, indicating that
there is no hypermutability at the nucleotide level. Each prototype strain represents the culmination of
a unique evolutionary history made up of a mosaic of individual gene histories. Much information is
still to be gleaned from genome analysis of the prototype strains and comparisons with each other
and with the genomes of other strains from nature. This is an area of unique importance since the
question remains unanswered as to exactly how the tremendous variability seen in isolates from nature
progresses [40,90–92]. This question must be addressed if an effective vaccine can be developed.

6. Discussion/Conclusions

We have documented the continuity of three prototype strains of O. tsutsugamushi that serve today
as the basis of continued work on scrub typhus. Why are prototype strains important? Comparisons
among strains using the established prototypes as baselines permit validation of new assays, both
serological and molecular. Our review shows that the Gilliam, Karp and Kato strains that have been
used for over 70 years remain stable and consistent. New findings on scrub typhus can be confidently
grounded in the foundation that these strains have provided. The development of new diagnostic
procedures can be founded on a stable base. The potential development of vaccines may ultimately
be an area where prototype strains are important because they have failed to provide a consistent,
successful product. Here, the prototypes are important because they can provide information about
the heterogeneity of O. tsutsugamushi in nature.

We believe the continued use of the established prototype strains and the inclusion of other
unique strains into research and product development to be very important. The initial recovery and
successful maintenance of the prototype strains, often under difficult war-time conditions, is nothing
short of amazing. We have shown that the maintenance and genetic fidelity of those early strains has
been successful. The identity of these strains has been maintained through hundreds of passages of
eggs, animals and cell cultures.

Serological testing of new isolates recovered from patients, rodents, and vector mites by
complement fixation, direct and indirect fluorescent antibody testing and, more recently DNA
sequence analysis indicate that the scrub typhus rickettsiae isolated from natural sources are highly
variable, especially for those genes that are thought to be most important in eliciting immunological
responses to infection [1,91,92]. Comparisons using the established prototypes as baselines permit
validation of the new assays.

From a phylogenetic framework, information for the prototype strains allows a context to be
formed for more divergent taxa, which may be associated with O. tsutsugamushi. These include rare
divergent strains such as the Shimokoshi strain, isolated in Japan [62]. The prototypes also put in
context newly recognized taxa such as “Candidatus Orientia chuto”, isolated in Australia from a patient
believed to be infected in the United Arab Emirates, as well as currently unnamed forms that have
been reported to exist in Africa, South America and possibly even Europe [2].

The history of these agents puts into context the sociological conditions that led to isolation and
study of the agents, warfare and medicine [93]. The stories of the Karp and Gilliam isolates indicate
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the importance of military medicine to our understanding of disease. For scrub typhus, information
about the disease was scattered and unfocused until the occurrence of outbreaks in WWII caused the
military to respond.

The faithful curation of the collections of these fastidious organisms, including the willingness
to maintain and share genetically consistent pure cultures, is essential to the ongoing research of the
rickettsiae. In terms of the genetically hypervariable O. tsutsugamushi, these collections are necessary
to address difficult questions such as how such diversity originated and how it is maintained in nature,
given that their trombiculid vector feeds but once in its lifecycle and appears not to stably acquire and
maintain new strains in contrast to other vector-parasite pairs, such as mosquitoes and the malaria
parasite. The continued collection and maintenance of older strains, as well as the acquisition of new
strains, will allow us to develop and test effective vaccines, develop new detection and identification
systems, and control this hypervariable human disease.

Additional information on the background of these and other isolates, and on general topics of
scrub typhus is available at https://u.osu.edu/scrubtyphus.
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Table S4: Pairwise comparisons of 16S rRNA gene sequences.
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