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Abstract: When dealing with computed tomography volume data, the accurate segmentation of
lung nodules is of great importance to lung cancer analysis and diagnosis, being a vital part of
computer-aided diagnosis systems. However, due to the variety of lung nodules and the similarity of
visual characteristics for nodules and their surroundings, robust segmentation of nodules becomes
a challenging problem. A segmentation algorithm based on the fast marching method is proposed
that separates the image into regions with similar features, which are then merged by combining
regions growing with k-means. An evaluation was performed with two distinct methods (objective
and subjective) that were applied on two different datasets, containing simulation data generated
for this study and real patient data, respectively. The objective experimental results show that the
proposed technique can accurately segment nodules, especially in solid cases, given the mean Dice
scores of 0.933 and 0.901 for round and irregular nodules. For non-solid and cavitary nodules the
performance dropped—0.799 and 0.614 mean Dice scores, respectively. The proposed method was
compared to active contour models and to two modern deep learning networks. It reached better
overall accuracy than active contour models, having comparable results to DBResNet but lesser
accuracy than 3D-UNet. The results show promise for the proposed method in computer-aided
diagnosis applications.

Keywords: segmentation; fast marching method; lung nodules; computed tomography; lung phantom

1. Introduction
1.1. General

Lung cancer is one of the most lethal cancers in the world, and its 5-year-survival
rate is only 18% [1]. Noninvasive imaging is often used in clinical practice, and computed
tomography (CT) images have a crucial role in early lung cancer diagnosis and survival
time improvement [2]. The National Lung Screening Trial (NLST) showed a 20% decline
in mortality specific to lung cancer, stressing the importance of nodule detection and
assessment [3,4]. With the development of CT technology, images can be generated in
mere seconds and a single scan contains at least a few hundred images that radiologists
have to analyze. This can be very challenging work because radiologists must look at
a large number of images and detect lung nodules without mistakes; as a consequence,
the work can be a heavy physical and mental burden. Moreover, even if a lung nodule is
detected, in some cases it is difficult to judge its benignity or malignancy, because there
are not enough clear features to form an accurate classification. Computer-aided diagnosis
(CADx) systems for automatic diagnosis of pulmonary diseases and lung cancer have been
devised over the years to assist in this endeavor. These systems mainly depend on the
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segmentation of different pulmonary components. Computer-aided detection (CADe) is
usually restricted to marking the visible parts or structures in an image, whereas CADx
helps to evaluate the structures identified in CADe [5]. In this paper we provide a tool that
can perform measurements on already detected nodules, belonging to the CADx domain.
Automated measurements speed up screening activities and provide less dispersed results
than subjective criteria by different radiologists. Its performance was evaluated using
objective criteria such as Dice score and diameter precision. Nodule segmentation is
fundamental for automated lung cancer diagnosis and the predictors most widely used
to assess probability of malignancy are nodule size, shape and growth rate [6], all of
which are dependent on the accuracy of the segmentation. The task of segmenting lung
nodules poses many challenges and is plagued by their heterogeneity in CT images. Cases
that are problematic to segmentation arise when the surrounding tissue shares similar
visual characteristics with the nodules, making it hard for segmentation algorithms to
draw a clear boundary between them. Instances where nodules adhere to the pleura or to
blood vessels can be difficult, as the image intensity difference is often imperceptible. This
problem emerges also in sub-solid nodules, which are characterized by low contrast to the
surrounding tissue. Cavitary cases, which present a high-intensity differences for distinct
parts of the nodule, are also arduous. Additionally, when the diameter is small, the nodule
can be hard to distinguish from its surroundings and background noise. Furthermore,
in case radiologists need to draw the nodule’s contours, the task becomes much less time
consuming with a reliable tool that can draw an initial boundary. Lung phantoms are
used to assess the accuracy of volumetric, low-dose CT at detecting changes in nodule
volume [7,8] and to evaluate the performance of computer-aided detection [9]. In this
paper, a lung nodule phantom is employed to evaluate segmentation accuracy.

1.2. Related Work

In view of the exceptional importance of lung disease detection and diagnosis, large
efforts have been made over the years to improve multiple correlated fields of research,
including lung nodule segmentation, lung segmentation, lung nodule detection and diag-
nosis of other lung diseases.

Regarding lung nodule segmentation, which is the main topic of this work, many
advancements have been made and can be distinguished in traditional image processing-
based and machine learning-based techniques.

Traditional methods include different approaches: morphological operators, region
growing, energy optimization, fuzzy methods and other more specialized methods. Nu-
merous methods based on morphological operators were proposed to address nodule
segmentation. Kostis et al. [10] applied iterative morphological filtering to remove vessels
affixed to solid nodules. However, even though generally these methods are fast and easy
to implement, the size of the morphological operator is difficult to calibrate due to the
variety of nodule dimensions. Kuhnigk et al. [11] carried out a more complex morphologi-
cal correction which allows one to manage nodules regardless of size. In region growing
methods, starting from a specified seed point, pixels are included into the segmentation
iteratively if they satisfy a criterion. This approach can have difficulties converging in
juxtapleural cases due to the similarity between the nodules and surrounding regions [12].
To counter this issue, Dehmeshki et al. [13] proposed a new contrast-based region growing
method that employs a fuzzy connectivity map, although it did not perform well with
irregular nodules. The core issue in region growing methods is to properly set a merging
criterion, so that the segmentation is stable and accurate. In energy optimization methods,
the segmentation problem is formulated within an energy minimization framework. Level
set methods are a popular implementation of this idea, where images are represented
as level sets that are evolved iteratively to minimize an energy [14]. To better handle
juxtapleural nodules, Farag et al. [15] used the shape prior hypothesis along with level sets.
Boykov and Kolmogorov et al. [16] framed the problem within a maximum flow optimiza-
tion framework and applied a graph cut method for segmentation. Energy optimization
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methods are generally not well suited to ground glass opacity (GGO) and juxtapleural
nodules. There has been research aimed at improving performance with GGO nodules
with the expectation–maximization algorithm [17] and active contour models (ACM) [18],
where for part-solid nodules the solid and non-solid parts are segmented separately and
combined. Several algorithms have been developed that exploit fuzzy C-means clustering,
among which is the method proposed by Li et al. [19] that incorporates Gaussian mix-
ture models’ prior knowledge into the traditional fuzzy C-means algorithm to improve
robustness. The main drawbacks of fuzzy C-means segmentation methods are noise sensi-
tivity, outliers and initial cluster selection. Various specialized techniques have emerged
that tackle specific types of nodules. To quickly extract contours of juxtapleural nodules,
Mekali et al. [20] proposed a detection and segmentation method based on lung boundary
pixel extraction, concave point extraction and separation of pleural values from nodules.
To deal with inhomogeneity and fuzzy contours, Wang et al. [21] used an approach which
combined the enhanced total-variance pyramid and grab cut to segment solitary nodules.
They incorporated multiscale information to optimize the edge term and extract the nodule
boundary with a Gibbs energy functional. Despite their advantages, techniques that are
specialized to only one type of nodule naturally lack flexibility and are difficult to apply in
general settings.

In recent years, an increasing number of studies have developed artificial intelligence
tools in the field of medical image segmentation. Lu et al. [22] have proposed a stratified
learning framework including supervised image segmentation. Hu et al. [23] segmented
the lungs’ area and carried out a Hessian-based vascular feature extraction procedure to
remove the blood vessels and obtain candidate nodules, then classified them with the
aid of a neural network. Gonçalves et al. [24] developed a different approach that uses
Hessian-based strategies for lung nodule segmentation—a multiscale process that uses
the central medialness adaptive principle. The method proposed by Jung et al. [25] can
separate solid and non-solid components in GGO nodules using an asymmetric, multi-
phase, deformable model. Due to their increased efficiency in terms of computation and
number of parameters, deeper networks have obtained great success and deep learning
has become ubiquitous in most medical image processing applications, including lung
nodule segmentation. A convolutional neural network (CNN) is a multi-layered neural
network well adapted to image processing which learns hierarchical representations of an
image at every layer, with the last layer usually corresponding to a label. Thus, segmen-
tation turns into a voxel classification problem. For instance, Wang et al. [26] introduced
the multi-view convolutional neural network (MVCNN) for nodule segmentation, which
focused on extracting a miscellaneous set of features from axial, coronal and sagittal views.
Ronneberger et al. [27] proposed 2D U-Net architecture with an approach which was well
suited to biomedical imaging. However, due to the fact that CT images are originally
three-dimensional, the down-sampling and subsequent up-sampling causes spatial infor-
mation to be lost. Variations of CNN, such as the central focused convolutional neural
network (CF-CNN) proposed by Wang et al. [28], and the dual-branch residual network
(DBResNet) for lung nodule segmentation proposed by Cao et al. [29], have achieved com-
petitive performance. By targeting pure GGO nodules specifically, Qi et al. [30] performed
segmentation on initial and follow-up CT scans using a CAD system based on CCN, and
subsequently measuring and analyzing the nodules to determine growth and risk factors.
In most recent works the U-Net architecture has been popular with three-dimensional
implementations that improve its performance. Funke et al. [31] trained a 3D-UNet model
using using the STAPLE algorithm, and Xiao et al. [32] combined the 3D-UNet and Res2Net
architectures to create a new model which reached a Dice score of 95.3% on the Lung Image
Database Consortium (LIDC) dataset. In a different approach, Hu et al. [33] utilized a
hybrid attention mechanism and densely connected convolutional networks, reaching a
Dice score of 94.6%.

Despite the remarkable advances in performance attributed to deep learning methods,
there are still several disadvantages which are to be considered. Deep learning requires
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large amounts of data, which can be especially laborious to prepare for supervised tasks
where data labeled by experts are necessary, such as in CT scans and X-rays. This issue
has been tackled by applying data augmentation techniques. The most widely used
are translations, rotations, resizing, flipping and cropping patches [34]. There have also
been more sophisticated approaches. For example, Gao et al. [35] utilized a generative
adversarial network to create more training data to improve lung nodule detection. Another
problem related to the data is class imbalance, which leads the network to specialize
only in specific classes that have the most samples. Simple solutions to this problem
are oversampling, undersampling and data augmentation. Overfitting is another issue,
which causes the networks to overly specialize on the training data, and it has been
reduced in many ways, such as data augmentation, cross-validation, regularization, batch
normalization and pooling. A more practical drawback of deep learning is the need for
powerful computers. Indeed, there is a tradeoff between the performance and complexity
of the network, which encourages the use of more powerful machines to train and execute
the network.

Apart from lung nodule segmentation, there are other closely related problems which
have been studied in order to improve the diagnosis of pulmonary diseases.

One such task is lung segmentation. Most often it is a necessary step in preprocessing
and has been tackled in different ways. Kavitha et al. [36] approached the problem with a
novel strip method and a marker-watershed method based on particle swarm optimization
(PSO) and fuzzy c-means clustering. Kim et al. [37] used a deep learning method based
on the U-Net architecture, where self-attention is exploited to reach better performance in
lung segmentation in chest X-rays.

Another relevant problem is lung nodule detection. Most often detection and segmen-
tation are incorporated to produce end-to-end systems; such a method was proposed by
Mekali et al. [20] to tackle juxtapleural nodules with a traditional approach. Recently, deep
learning has been a predominant solution to this task. Huang et al. [38] created an end-to-
end arrangement, combining detection performed via a regional-CNN and segmentation
via a fully convolutional network (FCN).

Lung cancer is just one of the many pulmonary diseases which have been studied by
methods that analyze CT and X-ray scans in order to detect abnormal tissue. To detect
diseased lung tissue, Polap et al. [39] proposed lung segmentation combined with a bio-
inspired algorithm, resulting in an automated assistance methodology which can help
radiologists quickly identify unhealthy tissue. To address the detection of pulmonary
diseases, various hybrid procedures have emerged which combine neural networks with
heuristic or fuzzy methods. Ke et al. [40] used a neural network for a preselection phase:
if the input X-ray image was determined to contain unhealthy tissue, it was passed on
to the detection phase. The detection phase was handled by a heuristic search over the
image which ascertained which pixels belonged to degenerated tissue. This neuro-heuristic
method reached about 79% accuracy in detection and has shown that neural networks are
efficient in the preselection phase. Adaptive neuro-fuzzy inference systems (ANFIS), which
integrate both neural networks and fuzzy logic principles, have also been applied to similar
tasks. For example, Santoso et al. [41] used this method for the detection of pneumonia
and pulmonary tuberculosis. To undertake diagnosis of COVID-19, Ukaoha et al. [42]
employed ANFIS and reached an accuracy of 96.6%. A different novel solution for COVID-
19 diagnosis in CT scans was proposed by Akram et al. [43]. The technique consists of
feature extraction followed by a selector based on an optimized genetic algorithm. Finally,
the selected features are used as input for a naive Bayes classifier, which resulted in a 92.6%
acccuracy. A deep convolutional approach was taken by Wang et al. [44] to build a network
architecture tailored for COVID-19 detection in chest X-rays. The network reached an
accuracy of 99.1% with a lightweight design.

All the related works mentioned and discussed are summarized in Table 1.
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Table 1. A list of algorithms that are related to the proposed method.

Authors Brief Description

Lung Nodule Segmentation

Kostis et al. 2003 [10] Applied iterative morphological filtering to remove vessels affixed to solid nodules

Kuhnigk et al. 2006 [11] Employed morphological correction allowing to manage nodules regardless of size

Dehmeshki et al. 2008 [13] Proposed a contrast based region growing method, that employs a fuzzy
connectivity map

Chan and Vese 2001 [14] Formulated segmentation as an energy minimization of an evolving contour seen
as a level set

Farag et al. 2013 [15] Used shape prior hypothesis along with level sets

Boykov and Kolmogorov et al. 2004 [16] Framed the problem within a maximum flow optimization framework and used a
graph cut method

Miao et al. 2016 [17] GGO lung nodule segmentation with expectation–maximization algorithm

Miao et al. 2017 [18] GGO lung nodule segmentation with ACM, solid and non-solid parts treated
separately and combined

Li et al. 2020 [19] Nodule segmentation with fuzzy C-means clustering and Gaussian
mixture models

Wang et al. 2021 [21] Enhanced total-variance pyramid and grab cut, boundary extraction with Gibbs
energy functional

Lu et al. 2011 [22] Proposed a stratified learning framework including supervised
image segmentation

Hu et al. 2016 [23] Utilized a Hessian-based vascular feature extraction procedure and classified
nodules with a neural network

Gonçalves et al. 2016 [24] Hessian-based strategies with a multiscale process that uses the central medialness
adaptive principle

Jung et al. 2017 [25] Separate solid and non-solid in GGO nodules using an asymmetric multi-phase
deformable mode

Wang et al. 2017 [26] MVCNN for nodule segmentation, which extracts features from axial, coronal and
sagittal views

Ronneberger et al. 2015 [27] U-Net architecture specialized for biomedical imaging

Wang et al. 2017 [28] Central focused convolutional neural network for lung nodule segmentation

Cao et al. 2020 [29] Dual-branch residual network for lung nodule segmentation

Qi et al. 2020 [30] GGO nodules segmentation using CAD system based on CCN, analyzing growth
and risk factors.

Funke et al. 2020 [31] Trained a 3D-UNet model using using the STAPLE algorithm

Xiao et al. 2020 [32] Combined the 3D-UNet and Res2Net architectures to create a new model

Hu et al. 2021 [33] Hybrid attention mechanism and densely connected convolutional networks

Lung Segmentation

Kavitha et al. 2019 [36] Novel strip and marker-watershed based on PSO and fuzzy c-means clustering for
lung segmentation

Kim et al. 2021 [37] U-Net with self-attention for lung segmentation in chest X-rays.

Lung Nodule Detection and Segmentation

Mekali et al. 2021 [20] Lung boundary pixels and concave points extraction, separation of attached
pleural from nodule

Huang et al. 2019 [38] Detection with regional-CNN and segmentation with a FCN.
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Table 1. Cont.

Authors Brief Description

Other Pulmonary Disease Detection

Polap et al. 2018 [39] Diseased tissue detection via lung segmentation and bio-inspired algorithm

Ke et al. 2019 [40] Detection of pulmonary disease with neuro-heuristic method

Santoso et al. 2020 [41] ANFIS for detection of pneumonia and pulmonary tuberculosis

Ukaoha et al. 2020 [42] ANFIS for diagnosis of COVID-19

Akram et al. 2021 [43] COVID-19 diagnosis in X-rays via optimized genetic algorithm selector and naive
Bayes classifier

Wang et al. 2020 [44] Deep convolutional network for COVID-19 detection in X-rays

1.3. Objective

This study proposes an algorithm based on the fast marching method (FMM) that
can accurately segment lung nodules in CT images, creating a powerful tool that can be
employed in CADx systems. This approach can help radiologists quickly and accurately
find the contours of lung nodules without needing powerful computers and complex
learning models. The proposed technique is based upon existing work done in the field of
image processing, which has been combined in a novel way and applied to the problem of
lung nodule segmentation. Regarding the same problem, this study means to overcome
several limitations of existing methods. One typical weakness is the sensitivity of merging
criteria in region growing methods, which was tackled in order to provide more stable
convergence. Another limitation is over-specialization of methods. As a matter of fact,
the technique proposed in this work aims to accurately segment different nodule types
with varied surroundings. Indeed, the heterogeneity of nodules was taken into account
at the development stage and the evaluation was addressed categorically. This method
segments nodules in a simple and fast way, in contrast to deep learning techniques, which
require much higher computational costs to yield quality improvements. The performance
will be quantified by experimenting with a hybrid method of segmentation evaluation,
by combining results from an objective method employed on the simulation data and a
subjective method employed on real patient data. During evaluation, the simulated lung
nodules will be monitored to check whether they successfully emulate features of real
lung nodules.

1.4. A Summary of the Novel Contributions

This work was based and built upon existing image processing techniques, with the
following original contributions:

• Better handling of juxtapleural nodules by refining segmentation of the lungs’ area
during the preprocessing stage, by using convex hulls instead of traditional morpho-
logical operators, and by devising a padding scheme that counters the undesirable
effect the pleura has on the speed function.

• The region-based method was inspired by existing multi-label fast marching method
implementations, with the original addition of using k-means to cluster the regions
before merging, resulting in more robust segmentation without having to sacrifice
detail. An existing automatic seed grid generation method has been improved, making
it more suitable for lung nodule segmentation, by utilizing the gradient mean as the
threshold and shifting seeds diagonally as well. Furthermore, the method for selecting
the first cluster to be merged is original, and it combines distance from the center and
mean intensity to make the decision.

• Evaluating the performance with both an objective method and a subjective method
for comparison—in this way the evaluation can be done in greater depth, recognizing
possible biases each method can have. For the objective method a simulated nodule
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dataset was created from lung phantom scans. For the subjective method a question-
naire was designed with which each segmentation instance was rated by subjects
experienced in radiology.

2. Methods

The segmentation technique is based on the fast marching method [45] with multiple
seed points to produce a set of regions in the image that will be merged accordingly in
order to segment the nodule. This method is a consistent, accurate and highly efficient
algorithm based on fully utilizing entropy-satisfying upwind schemes and fast sorting
techniques. It was chosen as the core of the segmentation algorithm due to its efficiency:
the algorithm sweeps through a grid of N points in Nlog(N) steps to obtain the evolving
time position of the front as it propagates through the grid. Several applications of the
fast marching method in image segmentation were proposed; a multi-label version of the
algorithm was introduced [46], as was a generalized method [47]. Specific applications
in medical image processing have yielded successful results; in [48], FMM was used for
automatic liver segmentation in CT images. The variation of the fast marching method that
will be discussed is specifically tailored for lung nodule segmentation and consists of ideas
and methods inspired by previous work that have been combined in a novel way.
The segmentation method is divided into three parts:

• Input preparation: By utilizing the nodule image, a grid of starting points (or seeds)
and a speed function are created. Both these elements are necessary for executing
FMM. The seed grid generation method was drawn from [49]; it was reshaped the
concept to better fit lung nodule segmentation (see Section 2.2.1).

• Fast marching method: It is applied iteratively until an arrival time is calculated for
every pixel and every pixel is assigned to a region. The end results are two matrices,
the first containing all the arrival times and the second containing labeled regions.
The base implementation was performed by following the algorithm as described
by J.A. Sethian in [45], with the addition of a region assigning component [46] (see
Section 2.2.2).

• Region merging: The regions are merged into a final segmentation mask by utilizing a
region growing method aided by the k-means algorithm. This new way of combining
FMM with k-means greatly improves robustness, without having to sacrifice detail
(see Section 2.2.3).

2.1. Background

The fast marching method [45] is an algorithm that was developed as a quick numerical
scheme for solving the Eikonal equation, which is a non-linear partial differential equation
found in wave propagation. It is utilized in many diverse applications, including path
planning, optimal control, computational geometry, computational fluid dynamics and
image processing. Its formulation is shown in Equation (1).{ |∇u(x)| f (x) = 1 ∀x ∈ Ω ⊂ Rn

u(x) = q(x) ∀x ∈ ∂Ω
(1)

where f (x) : Ω̄ → (0,+∞) is a positive speed function, q(x) : ∂Ω → [0,+∞) is the exit
time-penalty and u(x) is the value function, i.e., the minimum time to exit Ω̄ through ∂Ω
starting from a point x ∈ Ω. This interpretation for the solution of Equation (1) comes
from isotropic time-optimal control problems [50]. In practice, firstly the speed function
is defined for every point in the spatial grid and a starting point is chosen, from which
arrival times are calculated iteratively using the fact that information only flows outward.
This problem is a special case of level set methods [51], namely, it is a more efficient and
discrete application. While taking a two dimensional case with a front moving with speed
F(x, y) > 0, let us suppose that for the propagating curve we graph the evolving zero level
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set above the xy plane. That is, let T(x, y) be the time at which the curve crosses the point
(x, y). Then the surface T(x, y) satisfies Equation (2).

|∇T|F = 1 (2)

The gradient of the arrival time surface is inversely proportional to the speed of the
front. The gradient of T is approximated as seen in [52] and each arrival time is calculated
with the method found in [53]. Having a uniformly sized spatial grid, the points (x, y) can
be denoted using two indices (i, j). The main idea underlying the fast marching method is
to systematically construct the solution in a downwind fashion, stemming from the fact that
the upwind difference structure of the arrival time equations means that the information
propagates outward, from smaller values of Tij to larger values [54]. Only a small subset of
points around the front, called the narrow band, are examined at each iteration, making
the algorithm fast. The aim is to propagate the front by updating the narrow band in an
efficient manner [55].

The technique is most easily explained algorithmically [45]. Considering a grid of
equidistant points and a set of seed points, for each point a speed Fij is defined and the
objective is to calculate each arrival time Tij. At first all the points are set to their initial
values, and then the algorithm marches forward in a loop.

Setting Initial Values:

1. (Known points,K): The seed points are added to setK; this will be the initial front.
The most simple case is just one seed point; for multiple seeds the procedure is similar.
Let S be the set of seed points; set Tij = 0 ∀(i,j) ∈ S

2. (Near points, narrow band,N): LetN be the set of all grid points that are neighboring
the known points; in the simplest case it is just the four neighbors of the single seed
point.
Set Tij =

1
Fij
∀(i,j) ∈ N, which are the first calculated arrival times.

3. (Far away points,F): Let far away points be defined as all the points in the grid that
are not known or near. Set Tij = ∞ ∀(i,j) ∈ F.

Marching Forward (as shown in Algorithm 1):

Algorithm 1: FMM forward marching loop

whileN 6= ∅ do
(imin, jmin) = Minheap.pop();
Add (imin, jmin) toK and Remove (imin, jmin) fromN ;
for (i, j) ∈ {(imin − 1, jmin), (imin + 1, jmin), (imin, jmin − 1), (imin, jmin + 1)} do

if (i, j) ∈ F then
Add (i, j) toN and Remove from F ;

end
if (i, j) ∈ N then

Calculate new value for Tij and substitute old value if smaller ;
end

end
end

This technique is made efficient by storing the values of T for each point belong-
ing to the narrow band in a minimum heap structure. The smallest time value can be
instantaneously obtained by popping the root element of the heap.
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2.2. Proposed Method

To separate the image in regions using the FMM algorithm, it is necessary to create
multiple propagating fronts starting from multiple seed points. For each seed, a region
is defined which at first only contains the seed and then expands to all the points that
the seed reaches in the shortest time. This functionality can be added to the algorithm by
taking note whenever a new time is calculated, for when the seed propagated. When the
algorithm is finished and all points are known, every point has been assigned to a region,
creating sort of a “stained glass” effect. In Figure 1 an example is shown; in this case there
are two seeds that propagate; the darker colors symbolize the known points (final values)
and the brighter colors the narrow band (trial values); the arrows show which points in the
narrow band have been just updated. The speed function is very simple; since the values
on the right side are higher, seed B will expand into a larger region by reaching the middle
points in less time. The initial order in which the seeds are set to known is irrelevant.

(a) Speed function (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Iteration 6

(f) Iteration 7 (g) Iteration 9 (h) Iteration 11 (i) End

Figure 1. Examples of region assigning.

The proposed method can be divided into three stages, as can be seen in Figure 2.
The first stage generates a seed grid and a speed function which will be the inputs of the
next stage, which will implement the region-based multiple-front FMM algorithm, resulting
in a set of regions. To obtain the segmentation mask, the regions are firstly clustered using
k-means and then recursively merged depending on a mean intensity criteria. The different
stages will be explained thoroughly in the following subsections.

Figure 2. Flowchart of the proposed method.

2.2.1. Input Preparation

The speed function depends on the gradient of the input, and the seeds are distributed
on a grid based on the local gradient mean. Since the speed function is an image with the
same dimensions as the input, it can also be referred to as speed image. A good propagation
speed image for segmentation is close to zero near object boundaries and relatively high in
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between. To obtain the speed image, at first the input image is denoised with an anisotropic
diffusion filter, which removes noise without influencing edges. Afterwards, the magnitude
of the image gradient is computed. The speed image needs to be an inverse function of
the image gradient; the function chosen was an exponential with a negative exponent—
specifically, F(x, y) = e−2∇(x,y). After normalizing the speed image, the values are near
zero at the boundaries, and in homogeneous regions they are close to one. In the case
of jutxapleural nodules, an issue arises: since the pleura are removed during the lung
segmentation step in the preprocessing section, there will be a high image gradient because
of the sharp transition, and this will influence the segmentation negatively. To render the
image gradient, and subsequently the speed image, invariant to this undesired effect, a
padding scheme was devised and applied to the input before calculating the gradient.

An optimal seed grid should have a higher concentration of seeds in uniform areas in
the image; a good way to satisfy this condition is to use the normalized image gradient as
a criterion. Another thing to consider is that the images that need to be segmented are low
resolution; this means that in order to obtain accurate results, a dense seed grid is needed.
Keeping these two requirements in mind, the algorithm works in the following way:

• At first the mean of the image gradient is calculated and will be used as a decision
threshold; this variable is called total grad mean.

• The seed grid is initialized with equidistant points; the distance can be varied, but to
get the densest possible grid, the minimum value is chosen, which is three. For each
seed a local area is assigned; with distance equal to three, the local area corresponds to
the 8-connected neighborhood. For each seed’s local area, a mean is calculated using
the gradient values; this variable is called local grad mean(i), with i being an integer
that identifies the seeds.

• Based on the value of local grad mean(i) for seed i, three possible things can happen:

1. If local grad mean(i) > β · total grad mean, then seed i is deleted from the grid.
The local area is not sufficiently uniform.

2. If α · total grad mean ≤ local grad mean(i) ≤ β · total grad mean, then seed i is
shifted. For each point in the local area, the local gradient mean is calculated;
the point corresponding to the minimum value is chosen as seed i, thereby
moving it towards a more uniform area.

3. If α · local grad mean(i) < total grad mean, then seed i is kept as is; the local area is
sufficiently uniform.

The parameters that define the thresholds for keeping/shifting/deleting seeds have
been fixed to the values of α = 1 and β = 2 . These values have been selected after
extensive experimentation.

An example is shown in Figure 3; since the nodule is juxtapleural, the outside of the
lungs is ignored in the grid creation, and the addition of shifting renders the grid denser
and better distributed.

(a) (b) (c) (d)

Figure 3. A seed grid generation example. (a) Input image. (b) Initial equidistant seed grid. (c) Seed grid after only deletion
of points with high local gradient mean. (d) Seed grid after shifting and deletion.
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2.2.2. Fast Marching Method

The speed matrix F and the seed points will be the inputs; the algorithm is run
iteratively by using the techniques previously discussed, until all points are known. Finally,
the end result will be two matrices with the same size as F:

• T: the times matrix containing all the shortest arrival times.
• R: the regions matrix carrying the information of which point belongs to which region.

Examples are shown in Figures 4 and 5, where i is the iteration counter.

(a) i = 0 (b) i = 500 (c) i = 1000 (d) i = 1444

Figure 4. Evolution of the times matrix (T).

(a) i = 0 (b) i = 500 (c) i = 1000 (d) i = 1444

Figure 5. Evolution of the regions matrix (R).

2.2.3. Region Merging

The segmentation mask is obtained via a region growing method, starting from a
region that is sure to belong to the nodule neighboring regions are added recursively if
they match a certain criteria. The selected criteria is the mean intensity of each region,
if the mean intensity difference between two regions is higher than the threshold this
means that there should be a boundary between them, conversely if it is lower than the
threshold they should both belong to the nodule. Since the regions are relatively small,
due to the densely packed seeds, neighboring regions will often have a mean difference
that is lower than the threshold even in presence of a boundary. A way to remedy the
aforementioned issue, without sacrificing seed density, would be to group together regions
into larger ones. Looking at the way the seed grid is constructed, seeds in uniform areas
are packed closer together and should be grouped together based on Euclidean distance.
This step was implemented by using k-means to put regions together into clusters. The
default choice for initial centroids for the k-means algorithm is random, but this has the
disadvantage of giving non-repeatable and varied results, often obtaining clustering that
worsens segmentation performance. It makes sense to apply the same method used for
the seed grid generation, because optimally the cluster centroids should stay away from
the nodule border. For picking the initial centroids the distance can be varied to improve
segmentation quality and this tunable parameter will be called cluster density. An example
of how regions are grouped into clusters is shown in Figure 6.
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(a) (b) (c)

Figure 6. An example of grouping regions into clusters with k-means. (a) Regions. (b) Clusters.
(c) Seed grouping shown over input image.

The regions are bundled into clusters with a more pronounced mean intensity differ-
ence between them, consequently the merging criteria is more effective. A starting cluster
needs to be chosen that is sure to belong to the nodule. When there are no obstructions or
other tissue with similar radiodensity, a nodule is usually identified by a higher intensity
in the image, but this is not always the case. The images that are used as input are centered
on the nodules, but in edge cases like cavitary nodules the cluster containing the central
pixel is not part of the nodule. Both closeness to the center of the image and high mean
intensity are taken into account when selecting the starting cluster. For each cluster a
ratio is calculated between the mean intensity and distance of centroid to the image centre,
the cluster with the highest ratio wins and is selected as the starting point for merging.
In Figure 7 an instance of cluster merging is shown.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 7 (e) Step 11 (f) Segmented

Figure 7. Merging of clusters, with a step counter.

2.2.4. Parameter Tuning

There are several parameters which have set fixed and altering them does not change
segmentation accuracy in a significant way. All the values were selected empirically.
The fixed parameters are the following:

• σ = 1: Before calculating the gradient magnitude the image is convolved with a
Gaussian kernel with this standard deviation value.

• τ = −2: The speed function is an exponential of the gradient magnitude, the exponent
τ is negative because it needs to be an inverse function of the gradient magnitude.

• α = 1 and β = 2: When generating the seed grid, these parameters determine the
thresholds at which seed points will be kept, removed or shifted.

• seed distance = 3: This parameter determines how dense the seed grid is; the small-
est possible value is picked because it provides the most detailed segmentation
results. The side-effects of choosing this value are mediated by the addition of
k-means clustering.

Furthermore, there are two tunable parameters that can be altered to improve segmentation:

• Cluster density: It determines how dense the cluster centroid grid is, thereby deter-
mining the size and total number of clusters. Lowering this parameter can improve
segmentation accuracy, but the tradeoff is that the mean difference between neigh-
boring clusters is less pronounced and thus an unwanted cluster (does not contain
nodule tissue) could be merged. The default value of this parameter is 7.
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• Mean threshold: It determines which clusters are suitable for merging and will be part
of the segmentation mask. If the mean intensity difference between a cluster and its
neighbor are below the threshold they are merged. The default value of this parameter
is 0.15.

The two parameters have been set by exploring the space of possible values deemed
effective, separately from each other, in multiple iterations in order to verify the inter-
relationships of their effects. The criteria of choice were to maximise the perceived visual
quality of the contour, and the spatial overlap between nodule and segmentation mask.
Cluster density largely affected the perceived visual quality, while mean threshold mostly
influenced the spatial overlap and stability of the segmentation. Future investigations will
be necessary to study optimal setting of both parameters and to determine an automated
procedure which maximizes the criteria.

3. Data

For this study two different datasets were used:

• Altered phantom dataset: It is comprised of nodules taken from lung phantom scans
and modified using image processing tools. The CT images employed for this dataset
have been specifically generated for this study by Tianjin chest hospital; the data were
produced by scanning a lung phantom containing spherical nodules with different
sizes.

• LIDC dataset: It is comprised of nodules selected from CT images taken from the
Lung Image Database Consortium (LIDC) database [56]. Those scans were acquired
from multi-detector row CT scanners with a wide range of scanning parameters [57].

The values or ranges from the two datasets are shown in Table 2, for the phantom
scans the only parameter that changes between scans is the tube current (higher tube
currents result in better image quality and reduced noise). Conversely the LIDC dataset
contains a great number of different scans and the parameter range is broad, providing
good variety.

Table 2. Computed tomography (CT) scan parameters for both datasets.

Phantom LIDC

Tube current [mA] 30–197 40–582 (average 177)
Kilovoltage peak [kVp] 120 120, 130, 135, 140

Slice thickness [mm] 0.625 0.625–3.000 (average 1.7)
Pixel size [mm] 0.683 0.508–0.946 (average 0.66)

The segmentation algorithm has been tested on both datasets and evaluated using
two separate methods. This novel approach was taken for two reasons, the first being that
this way the results of both evaluations can be compared in order to gain insight on which
features the evaluation methods prioritize. The second reason is validation of the altered
phantom dataset, by comparing the results it can be verified that the altered phantom
nodules are in fact comparable to real patient nodules.

3.1. Altered Phantom Dataset

This dataset is entirely comprised of simulated lung nodules, it was constructed by
modifying the CT data from the lung phantom scans. The advantage of using a phantom
is having a more controlled and homogeneous environment to test the segmentation on,
and compared to real patient data the simulated nodules have a predetermined size and
shape. This way the ground truth images can be easily obtained, and there is no need
for radiologist annotations. Spherical simulated nodules of three different sizes (5 mm,
10 mm and 20 mm) have been placed in a CT scanner and four different scans were
performed, with varying tube currents. Higher tube currents give improved image quality
and decreased image noise, but raise the radiation dose, which is not an issue when dealing
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with a phantom. The scans were performed with tube currents of 30 mA, 60 mA, 99 mA
and 197 mA. The rest of the parameters were the same for every scan and can be seen
in Table 2. A Philips Brilliance 256 iCT scanner was used for scanning, with a collimator
width of 128 × 0.625 mm and rotational speed of the X-ray tube of 0.27 s/round. Idose3
was used for iterative reconstruction.

The lung phantom can be seen together with an axial slice in Figure 8.

Figure 8. Lung phantom placed in CT scanner and a single axial slice.

The nodules found in this type of scans are of a circular shape and thus only represent a
small portion of lung nodules. To overcome this lack of complexity and variety, the images
were modified by using image processing tools. More specifically, the desired nodule
boundary was selected and fitted to a new boundary using image warping and, in order to
make the edges appear more realistic, the border was smudged. The ground truth image
was also modified to fit the new boundary. These alterations were made so that the new
simulated nodules could share similar characteristics with real nodules. Subsequently,
a dataset containing 108 nodules of different sizes, shapes, surroundings and tube currents
was created. The nodules were then categorized in an analogous way as the ones from the
LIDC subset (see Section 3.2). The resulting categories were of varying size as is shown in
Table 3. In addition, juxtapleural, juxtavascular, sub-solid and cavitary cases required extra
steps to simulate their real features.

Table 3. The number of cases in each category and subcategory of the altered phantom dataset.

Isolated Juxtapleural Juxtavascular Total

Solid-round 24 6 6 36
Solid-irregular 24 6 6 36

Sub-solid 12 3 3 18
Cavitary 12 3 3 18

3.2. LIDC Dataset

The complete LIDC database contains 1018 scans, encompassing a large number of
nodules with analogous features. A smaller representative subset (82 cases) was hand
picked in order to have a varied set of nodules with different sizes and characteristics,
making the subjective evaluation more manageable and efficient. Lung nodules can be clas-
sified in a number of different ways [58] based on their appearance and clinical significance.
For sorting the nodules in different categories, a simple classification was devised based
on visual appearance, by following guidelines from the Fleischner Society [59] and by
taking a cue from the review presented by Shaukat et al. [60], with the addition of cavitary
nodules taken from the glossary of terms for chest imaging proposed by the Fleischner
Society [61]. Solid nodules were split in two categories to account for the vastly different
boundaries they can have, and subcategories have been added to divide nodules based
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on their surroundings. The representative subset has been compiled and sorted in the
following categories and subcategories, as shown in the examples in Figure 9.

(a) Solid-round and
Isolated

(b) Solid-round and
Juxtapleural

(c) Solid-round and
Juxtavascular

(d) Solid-irreg. and
Isolated

(e) Solid-irreg. and
Juxtapleural

(f) Solid-irreg. and
Juxtavascular

(g) Sub-solid and
Isolated

(h) Sub-solid and
Juxtapleural

(i) Sub-solid and Jux-
tavascular

(j) Cavitary and Iso-
lated

(k) Cavitary and Jux-
tapleural

(l) Cavitary and Jux-
tavascular

Figure 9. Examples of Lung Image Database Consortium (LIDC) nodules from every category and subcategory.

Categories:

• Solid-round: These nodules have a fairly uniform image intensity and are character-
ized by a simple convex shape. They are a kind of solid nodules, the most common
type, distinguished by homogeneous soft tissue attenuation. Nodules with this smooth
and almost round shape are more likely to be benign.

• Solid-irregular: These nodules are also typified by a uniform intensity and belong
to solid nodules, but have a more irregular shape. Nodules with irregular, lobu-
lated or spiculated borders are associated with a progressively higher probability of
malignancy than those with a smooth border.

• Sub-solid: The pixels containing the nodule have a highly varied image intensity and
are not uniform. These correspond to ground glass opacifications (GGO) and are a
subset of pulmonary nodules or masses with non-uniformity and less density than
solid nodules. They are usually described as either non-solid or part-solid, and have a
higher probability of malignancy.

• Cavitary: These nodules are ring shaped and identified by a cavity with darker
intensity in the image. A pulmonary cavity is a gas filled area of the lung in the center
of a nodule. The most commonly encountered cavitary nodules are malignant.

Subcategories:

• Isolated: nodules of this type are independent and do not appear connected to other
anatomical structures.

• Juxtapleural: these nodules are attached to the neighboring pleural surfaces.
• Juxtavascular: this particular type of nodules is characterized by strong adherence to

nearby blood vessels.

The number of cases for each category and subcategory is shown in Table 4.
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Table 4. The number of cases in each category and subcategory of the LIDC subset.

Isolated Juxtapleural Juxtavascular Total

Solid-round 12 5 6 23
Solid-irregular 12 8 7 27

Sub-solid 14 4 4 22
Cavitary 5 1 4 10

3.3. Data Preprocessing

The raw data provided by a CT scanner need to be processed with the purpose of
rendering it more meaningful and useful. The input of this preprocessing segment is a
.dcm file representing the CT volume data of a scan, and the output is a set of appropriately
sized images centered on lung nodules. Various methods and code were utilized from two
separate solutions to the preprocessing part of the LUNA16 challenge [62,63].

The following steps were taken, as shown in Figure 10:

Figure 10. Preprocessing flowchart.

1. Resampling: The slice images and parameters were extracted from the .dcm files;
the slices had varying pixel spacing. It is more convenient to resample all scans
from the database to the same pixel spacing, rendering the data more homogeneous.
The selected values correspond to 0.5 × 0.5 (mm2/pixel); this spacing was chosen
to avoid loss of details in the images, since it is lower than the minimum spacing
of the whole dataset, thereby resulting in images with slightly higher resolution.
The resampling was performed via third order spline interpolation.

2. Lung segmentation: To remove all the undesired elements from the slice image and
only keep the lung tissue, a segmentation method was used based on thresholding,
connected component analysis and morphological operators. This helped reduce the
problem space and is an important step for juxtapleural nodules. As the intensity
values of both attached pleural and juxtapleural nodules are the same, traditional
lung segmentation procedures result in concavity by exclusion of present juxtapleural
nodules [20]. To counter this issue and to improve lungs’ area segmentation in cases
of juxtapleural nodules a convex hull based method was employed. Afterwards the
image is normalized to fit the range of −1000 HU to +400 HU; anything outside of
this range is of no interest (bones with different radiodensity).

3. Cropping: The images were cropped to a smaller and more manageable size. The final
nodule images were centered and included enough surrounding tissue (length and
width are double the nodule diameter). For the altered phantom dataset the nodule
diameter corresponds to the actual diameter of the spheres, and the approximate
centroid coordinates were annotated by the author. For the LIDC dataset the diameter
and centroid were taken from the annotations provided for the LUNA16 Kaggle
challenge. This work is mostly focused on the segmentation of lung nodules, which



Sensors 2021, 21, 1908 17 of 32

in a fully automated set-up should be preceded by a CADe system providing the
coordinates of the nodule candidates. In a real setting where annotations are not
available, the proposed method would be a block of a pipeline, located after detection
and before feature extraction and classification.

4. Evaluation

There were two separate evaluation procedures for the two datasets:

• Objective: Carried out by using the altered phantom dataset, which was specifically
generated for this study. Due to the simplicity of the phantom nodules, the images
were altered to give more complexity. The results were evaluated by comparing
ground truth with the segmentation mask using different metrics. This method was
used to gauge how well the segmentation would perform in a CADx system, since it
employed automated metrics as criteria.

• Subjective: Performed using data obtained from the public LIDC dataset and with
the help of five subjects experienced in radiology. A questionnaire was compiled
where each segmentation instance was shown and the subjects were asked to rate
each instance with three scores.

This type of hybrid evaluation has certain advantages, by analyzing and comparing
both results the segmentation algorithm can be evaluated in greater depth. In this fashion
dissimilarities between the two methods and datasets can be examined, highlighting which
features are prioritized when evaluating lung nodule segmentation accuracy. The objective
method will be considered as the primary evaluation, and the subjective method will be
used as comparison and validation for the efficacy of the altered phantom dataset.

4.1. Comparison Method

In order to establish how well the segmentation algorithm performs, another method
is necessary for comparison; with this in mind, active contour models were chosen. Active
contour models, also called snakes, are iterative image segmentation algorithms. Using
active contour models, initial curves on an image need to be specified and then the curves
evolve towards object boundaries. As input it requires the image to segment and binary
mask specifying the initial contour, after the stated number of iterations the final contour is
returned as a binary mask.

The active contour model used for segmentation is the Chan and Vese region-based
energy model described in [14], the activecontour function uses the sparse field level set
method, similar to the method described in [64], for implementing active contour evolution.
In Figure 11 an instance of lung nodule segmentation with active contour models is shown.

(a) Initial contour (b) 50 iterations (c) 100 iterations (d) 150 iterations

Figure 11. An example of activecontours segmentation.

The number of iterations has been set to 300 to make sure that the algorithm has
enough time to accurately segment the nodule. The initial contour was set as a square
whose sides were at a distance of five pixels from the image border. To regulate the degree
of smoothness of the boundary, the parameter SmoothFactor was set to 0, to make sure that
the irregularities on nodule borders were not unnecessarily smoothed. The tendency of the
contour to grow outwards or shrink inwards was controlled by the parameter Contraction-
Bias, which was set to 0, meaning that there was no preferred direction of evolution.
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4.2. Objective

Both segmentation algorithms were applied on the nodules from the altered phantom
dataset, and the resulting binary masks were compared to the ground truth. The perfor-
mance evaluation was done via two metrics.

The first metric is the Dice similarity coefficient, which quantifies the overlapping
area between the segmentation mask and ground truth. It is a spatial overlap index and a
reproducibility validation metric often used for image segmentation [65]. For two sets A
and B, it is defined as shown in Equation (3).

Dice(A, B) = 2
|A ∩ B|
|A|+ |B| (3)

Having two binary images, A and B become matrices containing ones and zeros.
The intersection can be obtained as an element wise multiplication between the two
matrices, and the denominator via a sum. To calculate the areas from the binary matrices,
it is sufficient to calculate the sum of all elements in the matrices.

The second metric is the relative error of long-axis and short-axis diameter measure-
ments. The measured lengths of the ground truth are compared to the measured lengths of
the segmentation. Manual diameter measurements are the most widely used technique for
quantifying the size of lung nodules in CT scans; this automated method will follow the
same procedure. Following recommendations for measurement of nodules in CT images
from the Fleischner Society [66], the long-axis diameter is taken as the maximal distance
from two points on the nodule border and the short-axis diameter is taken as the maximum
distance that is perpendicular to the long-axis. The values should be expressed to the
nearest whole millimeter. These are usually performed manually by radiologists, for this
automated procedure an algorithm was written that performs the same measurements.
After calculating long-axis and short-axis diameters, what remains is to compare the mea-
surements performed on the segmentation result with those performed on the ground truth.
To this end, the relative error percentage is calculated for both axes, using the classical
definition from Equation (4), where ms is the measurement obtained from the segmentation
and mgt is the measurement obtained from the ground truth.

δ = |
ms −mgt

mgt
| · 100% (4)

4.3. Subjective

The LIDC database also contains annotations which were collected during a two-phase
annotation process using four experienced radiologists. Each radiologist marked lesions
they identified as non-nodule, nodule < 3 mm, and nodules >= 3 mm [67]. A ground truth
can be estimated using these annotations, but trying to extract a ground truth by combining
four different readings adds unnecessary complexity and can introduce errors [68]. For
this study a more direct approach was chosen. Normally the radiologist would draw the
ground truth of each nodule manually and then it would be compared using a metric,
but manual annotation takes time and can be cumbersome, instead a different technique
was devised based on mean opinion score (MOS). Which is a numerical measure of the
human judged overall quality of an event or experience. In telecommunications, a MOS
is a ranking of the quality of voice and video sessions. Most often judged on a scale of
1 (bad) to 5 (excellent), these scores are the average of a number of other human scored
individual parameters. They can be utilized to evaluate the quality of almost any visual or
audio media, it has been used to evaluate the quality of medical images [69] and also to
evaluate image segmentation quality [70].

A four-part questionnaire (one for each category) was devised in order to evaluate the
region-based fast marching method and for the preservation of diagnostic information. The
questionnaire has not been validated before, as it was used for the first time in this study. It
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was filled out by five subjects experienced in radiology from Tianjin Chest Hospital. The
questionnaire had the following structure:

• Introduction: A paragraph that explains the purpose of the document.
• Data: A paragraph the gives a overview on how the data was processed and how the

nodules were segmented.
• Rating: In this section, the rating scale was established. The segmentation quality

was rated on a scale from 1 to 5, where 1 is the worst possible score and 5 the highest.
In previous studies where MOS was used to evaluate image segmentation [69,70],
a single score was used. To obtain a more insightful evaluation, for each segmentation
instance three different scores were assigned. Since this kind of evaluation has never
been done before for lung nodule segmentation, the scores have been devised while
keeping in mind which aspects are the most important. The scores are described
as follows:

– Area preservation: this score quantifies how close the area of the segmented
nodule is compared to the ground truth.

– Shape preservation: this score indicates how similar the shape of the boundary
of the segmented nodule is compared to the ground truth.

– Overall diagnostic quality: this score rates the general quality of the segmentation,
while taking all the features of the nodule into account; it should quantify how
well the segmentation captures all these features.

To quantify these scores and to make the task clear, for each part examples are shown
on how different segmentation instances can be rated. A short justification for the
rating is given, followed by the scores and a figure displaying the segmentation
instance evaluated, as shown in Figure 12a.

(a) Rating scale examples from questionnaire (b) Example of segmentation instance evaluation

Figure 12. Excerpts from the questionnaire part one.

• Evaluation: in this final section each segmentation instance is displayed. Every nodule
was segmented and shown twice, once using the fast marching method and once
using active contour models. The instances shown in the questionnaire have been
randomly shuffled to make it impossible to know beforehand which method was
used. For each segmentation instance a figure is displayed with the results, with three
editable text fields to input the scores, as shown in Figure 12b.
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5. Results
5.1. Objective

The results of the objective evaluation performed on the altered phantom dataset
are summarized in Table 5. Overall, the proposed method performs better than active
contour models, having higher mean Dice score and lower mean diameter measurement
errors. In addition, there is a noticeable difference in standard deviation, with the proposed
method having lower values.

Table 5. Objective evaluation results—means and standard deviations of the criteria for each category, specifying the
number of cases considered.

Fast Marching Method Active Contour Models
Category № Dice elong−axis

[%]
eshort−axis

[%] Dice elong−axis
[%]

eshort−axis
[%]

Solid-round 36 0.933 ± 0.034 5.94 ± 5.32 7.32 ± 7.48 0.819 ± 0.230 34.4 ± 49.2 33.6 ± 48.0
Solid-irregular 36 0.901 ± 0.059 10.6 ± 9.51 9.56 ± 8.09 0.821 ± 0.187 32.5 ± 44.9 25.2 ± 37.6

Sub-solid 18 0.799 ± 0.130 20.4 ± 26.0 18.6 ± 19.8 0.699 ± 0.230 54.2 ± 61.5 32.1 ± 30.9
Cavitary 18 0.614 ± 0.244 28.2 ± 20.0 41.8 ± 32.5 0.576 ± 0.269 68.4 ± 67.7 47.9 ± 54.7

The results for solid-round nodules are shown in Figure 13. In this case FMM obtains
superior scores for all metrics and demonstrates to work better than active contour models.
FMM can handle these nodules well because they are solid with a convex shape and
sufficiently regular border. FMM performs better than ACM in juxtapleural cases and all
the segmentation instances with Dice score less than 0.5 correspond to shortcomings of
the ACM method when dealing with juxtapleural nodules. Additionally, in juxtavascular
nodules FMM manages to capture the border better, whereas ACM sometimes erroneously
includes the vessels in the segmentation. Long-axis and short-axis diameter errors are
in line with the Dice scores, due to the sufficiently regular border of this type of nodule,
meaning that area overlap is consistent with diameter measures.

Figure 13. Solid-round nodules’ objective evaluation results as boxplots, overlayed with the values
of individual cases divided into subcategories.

The results for solid-irregular nodules are shown in Figure 14. As in the previous case,
FMM obtains superior scores for all metrics and overall works better than ACM. Similarly
to round nodules, irregular nodules are solid and are well suited for this segmentation
method. When it comes to juxtapleural nodules the behavior is similar as before, and also
the juxtavascular cases are better handled by the FMM algorithm. Due to the irregular
nature of the border, long-axis and short-axis diameter errors in some cases are not aligned
with Dice scores.
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Figure 14. Solid-irregular nodules’ objective evaluation results as boxplots, overlayed with the values
of individual cases divided into subcategories.

The results for sub-solid nodules are shown in Figure 15. These types of nodules
are hard to segment due to the non-homogeneous intensity of the nodule tissue and
the presence of non-solid parts. Both methods struggle and obtain varied results, al-
though FMM still obtains superior overall scores on all metrics. In most cases where
FMM performs poorly, the result is under-segmentation; conversely, for ACM the problem
is over-segmentation.

Figure 15. Sub-solid nodules’ objective evaluation results as boxplots, overlayed with the values of
individual cases divided into subcategories.

The results for cavitary nodules are shown in Figure 16. Cavitary nodules have proven
to be the toughest targets for segmentation. Indeed, both methods perform poorly, even
though FMM earns moderately higher scores on average. These types of nodules are
arduous to segment due to the presence of the cavity. In case of FMM, if the nodule tissue
around the cavity is too thin, it can cause problem since it tends to merge larger clusters.
The ACM algorithm does not take the cavity into account and returns only a single contour
and, in the worst case, it confuses the internal cavity boundary with the external nodule
boundary. A more accurate segmentation of cavitary nodules with ACM could be possible
by running the algorithm again on the segmented nodule, thereby segmenting the cavity
and obtaining a second boundary. However, this approach would create new processing
costs and difficulties.
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Figure 16. Cavitary nodules’ objective evaluation results as boxplots, overlayed with the values of
individual cases divided into subcategories.

In Figure 17 are some examples where FMM segmentation performed well and ob-
tained high Dice scores, shown with their related Dice scores and the categories/subcategor-
ies they belong to. In Figure 17a,d one of the advantages of FMM can be seen; i.e., it can
properly handle juxtavascular cases as it excludes the vessels from the final contour. In
Figure 17e,f the slight difference between ground truth and segmentation mask is attributed
to FMM’s flaw in preserving detail with sharp and irregular borders. In Figure 17g,h are
examples where FMM segments sub-solid nodules well despite their inhomogeneous
intensity. Finally, Figure 17i shows an example where a cavitary nodule with a thick ring is
segmented with a suitable internal and external contour.

(a) Solid-round and Juxtavascular (b) Solid-round and Isolated (c) Solid-round and Juxtapleural

(d) Solid-irregular and Juxtavascular (e) Solid-irregular and Isolated (f) Solid-irregular and Juxtapleural

(g) Sub-solid and Isolated (h) Sub-solid and juxtavascular (i) Cavitary and Isolated

Figure 17. Examples with high Dice scores.

In Figure 18 are some examples where FMM segmentation performed poorly and ob-
tained low Dice scores, shown with their related Dice scores and the categories/subcategories
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they belong to. Most cases with low scores correspond to sub-solid and cavitary nodules,
with the exception of Figure 18a where FMM is unable to accurately obtain the border due
to the small size and irregular shape of the nodule. In Figure 18b,c sub-solid cases where
the boundary is hard to distinguish are shown; thus, FMM does not manage to differentiate
between nodule tissue and external tissue or anatomical structures. Figure 18d–f show
examples where FMM cannot capture the thin nodule tissue around the cavity.

(a) Solid-irregular and Juxtavascular (b) Sub-solid and Isolated (c) Sub-solid and Juxtavascular

(d) Cavitary and Isolated (e) Cavitary and Isolated (f) Cavitary and Juxtavascular

Figure 18. Examples with low Dice scores.

5.2. Subjective

The results of the subjective evaluation performed on the LIDC subset can be seen
in Table 6. Altogether, active contour models perform slightly better than the proposed
method, on all three scores. Furthermore, there is an apparent difference in standard
deviation, with FMM presenting higher values.

Table 6. Subjective evaluation results as means and standard deviations of the scores for each category, specifying the
number of cases considered.

Fast Marching Method Active Contour ModelsCategory № Area pres. Shape pres. Overall d. q. Area pres. Shape pres. Overall d. q.

Solid-round 23 3.84 ± 0.72 3.70 ± 0.68 3.62 ± 0.92 4.08 ± 0.63 3.82 ± 0.55 3.82 ± 0.64
Solid-irregular 27 3.86 ± 0.51 3.73 ± 0.57 3.65 ± 0.70 4.26 ± 0.49 4.19 ± 0.50 4.14 ± 0.53

Sub-solid 22 3.07 ± 0.72 3.09 ± 0.68 2.79 ± 0.58 3.42 ± 0.66 3.34 ± 0.73 3.08 ± 0.68
Cavitary 10 2.92 ± 1.06 2.80 ± 0.98 2.7 ± 0.96 3.57 ± 0.56 3.21 ± 0.36 3.15 ± 0.35

Solid-round nodules are relatively easy to segment because of their simple shape and
regular border. Both segmentation algorithms perform well and the average scores are
close to 4. ACM has a slightly higher mean for all three scores. In most cases where FMM
segmentation received a lower rating, it was penalized for not encompassing enough of
the surrounding tissue, which the subjects deemed important to include. In Figure 19 the
resulting scores are displayed for each nodule.
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Figure 19. Solid-round nodules’ subjective evaluation results as boxplots, overlayed with the values
of individual cases divided into subcategories.

When it comes to solid-irregular cases, which have a more complex border and are
more difficult to segment than the previous type, both segmentation algorithms obtain
good results with high average scores. Similarly to the antecedent case, ACM has a slightly
higher mean for all three scores. In these cases ACM gives a more detailed segmentation,
because it better captures the sharp edges present in irregular nodules. On the other hand,
FMM tends to give smoother and more convex shaped results. In Figure 20 the resulting
scores are displayed for each nodule.

Figure 20. Solid-irregular nodules’ subjective evaluation results as boxplots, overlayed with the
values of individual cases divided into subcategories.

Due to the non-homogeneous intensity and part-solid components, sub-solid nodules
can prove challenging when it comes to segmentation. Nonetheless, both segmentation
algorithms received fair scores. In most cases where ACM was rated higher, it was mostly
due to the algorithm including more of the non-solid part of the nodule in the segmentation.
In Figure 21 the resulting scores are displayed for each nodule.
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Figure 21. Sub-solid nodules’ subjective evaluation results as boxplots, overlayed with the values of
individual cases divided into subcategories.

The presence of a cavity makes cavitary nodules particularly difficult to segment. Both
algorithms obtained fair results, but in terms of average scores ACM was rated higher.
This is due to FMM having difficulties with cases where the ring shaped tissue around the
cavity is thin. In Figure 22 the resulting scores are displayed for each nodule.

Figure 22. Cavitary nodules’ subjective evaluation results as boxplots, overlayed with the values of
individual cases divided into subcategories.

MOS is calculated as the mean of the three subjective scores, in Figure 23 are some
examples where FMM segmentation obtained a high MOS, shown with their related MOS
and the categories/subcategories they belong to. In Figure 23a,d FMM segments the nodule
accurately by leaving out the vessel from the final contour. Figure 23b,c show juxtapleural
cases where the contour is segmented with sufficient detail even in case of irregular shapes.
Shown in Figure 23e is a case where, despite the inhomogeneous intensity and indistinct
border, FMM manages to provide an accurate result. Figure 23f shows a cavitary case for
which FMM is well suited due to the thickness of the ring.
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(a) Solid-round and Juxtavascular (b) Solid-round and Juxtapleural (c) Solid-irregular and Juxtapleural

(d) Solid-irregular and Juxtavascular (e) Sub-solid and Isolated (f) Cavitary and Isolated

Figure 23. Examples with high mean opinion scores (MOS).

In Figure 24 are some examples where FMM segmentation obtained a low MOS,
shown with their related MOS and the categories/subcategories they belong to. All the
instances correspond to sub-solid and cavitary cases. In Figure 24a,b FMM segmented only
the solid part leaving the rest of the nodule outside the contour. In Figure 24c,d the final
contour erroneously excluded thin nodule tissue, and in Figure 24e a part of the nodule
that is seemingly detached from the main body is ignored.

(a) Sub-solid and Isolated (b) Sub-solid and Juxtapleural (c) Cavitary and Isolated

(d) Cavitary and Juxtavascular (e) Cavitary and Isolated

Figure 24. Examples with low mean opinion scores (MOS).

5.3. Comparison with Active Contour Models

Altogether, the fast marching method performed better with the objective evaluation
on the altered phantom data, and worse with the subjective evaluation on the LIDC data.
This phenomenon can be attributed to two factors: the datasets and the evaluation criteria.

The altered phantom dataset was constructed to be as close as possible to how real
nodules appear on a CT image, replicating the most important features that different
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nodules possess. The only discernible difference in datasets can be attributed to the fact
that ACM segmentation fails on most juxtapleural nodules from the altered phantom
dataset, as opposed to the LIDC subset where this phenomenon does not manifest. Indeed,
in the altered phantom dataset on average the removed pleura occupies a larger area in the
image, causing ACM to ignore the nodule contour and only focus on the pleura boundary.

The other more impactful difference is caused by the evaluation criteria, that prioritise
distinct aspects of segmentation. In the evaluation of solid-round nodules, the subjects
gave higher ratings to juxtavascular nodules, which included parts of the blood vessels
in the segmentation. Instead, the objective method focused more on rewarding cases
where the structure of the nodule separate is maintained separate from any surrounding
anatomical objects. When it comes to solid-irregular nodules, the subjects assigned higher
scores to ACM in cases where FMM could not capture in detail the sharp edges along the
nodule border. However, FMM performed better in case of large obstructions, which it
can partly ignore, wherein ACM includes them in the segmentation. ACM has the upper
hand in segmenting the boundary in a detailed way, and FMM excels in conserving the
overall shape and area. In the case of sub-solid nodules, the fast marching method is
more robust and works well in segmenting the solid part; for the non-solid part it is more
conservative and sometimes it fails to capture it in its entirety, producing under-segmented
results. The ACM segmentation is more open to adding the non-solid part, but it can fail
and include too much surrounding tissue, generating over-segmented results. In the case
of cavitary nodules, an important difference in evaluation is that the objective method
takes the cavity into account when calculating the Dice score, but the subjects evaluated
only based on the outside boundary. Generally FMM obtains better results when the part
around the cavity is thicker.

5.4. Comparison with Deep Learning

An indirect comparison can also be made between FMM and recent segmentation
techniques based on deep learning. For this reason, two of the works brought up in
Section 1 were chosen. Cao et al. 2019 (DBResNet) [29] and Xiao et al. 2020 (3D-UNet) [32]
both proposed lung nodule segmentation methods which obtained competitive results.
Their proposals have been evaluated on the public LIDC dataset, and produced Dice scores
of 82.74% and 95.30% respectively. The mean Dice scores for FMM segmentation results
in all the categories belonging to the altered phantom dataset are shown in Table 7, along
with the mean Dice scores obtained by 3D-UNet and DBResNet on the LIDC dataset.

Table 7. Comparison between the fast marching method (FMM), DBResNet and 3D-UNet.

Dice Score

Solid-round (FMM) 0.933 ± 0.034
Solid-irregular (FMM) 0.901 ± 0.059
Sub-solid (FMM) 0.799 ± 0.130
Cavitary (FMM) 0.614 ± 0.244

DBResNet 0.827 ± 0.102
3D-UNet 0.953 ± n/a

Given that FMM was tested on a different dataset, it is impossible to tell with certainty
which method performs better, but based on these scores it can be considered comparable
to DBResNet and lesser than 3D-UNet. FMM performed worse than the DBResNet average
on sub-solid and cavitary nodules, but in the LIDC dataset these types of nodules are much
rarer than solid types; thus, they would have a small impact on the average Dice score
achieved by DBResNet. The accuracy achieved by 3D-UNet is noticeably higher than FMM
and will be considered a standard to strive for in future work, where improvements will be
made to the algorithm to overcome its limitations and to reach a better overall accuracy.
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5.5. Discussion

The region-based fast marching method performs excellently when it comes to solid
nodules, where splitting into regions, clustering and merging results in an accurate segmen-
tation. Regarding juxtapleural cases, the method works well since it takes the segmentation
of the lungs’ area of the preprocessing stage into account. In juxtavascular cases, the method
can effectively isolate the nodule from the surrounding vessels. In nodules that are usually
tougher to segment, it gives good overall performance, with varied degrees of success in
edge cases. Sub-solid nodules are handled quite well, except for extreme cases where the
non-solid part is hard to differentiate from the adjacent tissue. In cavitary cases, the method
gives an accurate segmentation in nodules with sufficiently thick nodule tissue surrounding
the cavity, but struggles in some cases where this tissue covers a small area.

A direct comparison was performed with a classical image processing technique
(ACM) and also an indirect comparison was made with two of the most recent deep learn-
ing techniques (DBResNet and 3D-UNet), both obtaining satisfactory results. The latter
comparison was useful to set a new goal for the proposed method to aim for. The two dif-
ferent evaluations allowed to gain insight on how accurately the fast marching method can
segment lung nodules, with this proposed method prevailing with the objective method
and reaching comparable performance with the subjective method. Furthermore, the fact
that both datasets produce similar outcomes with completely unrelated evaluation criteria
implies that the nodules from the altered phantom dataset are similar to real nodules and
successfully emulate their most relevant features. However, the developed method also
has limitations and overcoming them will be the direction of continued future efforts.

Our method needs improvements on the preservation of features along the border,
where some irregular contours are not accurately segmented. This behavior can be seen in
Figures 17, 18, 23 and 24 and also from the subjective evaluation where shape preservation
scores tend to be lower than area preservation scores, seen in Table 6. Another aspect
which needs to be improved upon is robustness for cavitary and sub-solid cases, seen in
Figures 18 and 24. In cavitary cases where FMM performed poorly, thin areas belonging
to the nodule are not added to the segmentation mask. In part-solid cases where FMM
faltered only the solid part was segmented, and in non-solid cases with poor performance
the issue was over-segmentation.

In terms of advantages, the region-based approach is well suited to preserving the
area of the segmented nodules, and with a future 3D extension could show improvements.
Furthermore, the low computational complexity makes the process of segmentation quick
and efficient. It can be concluded that a subjective method and an automated method,
based on metrics such as Dice and diameter measurements, can provide complementary
assessments. Both are beneficial for different reasons: the subjects can give a more detailed
evaluations based on complex features that are of interest, wherein the objective metrics
can gauge how well the segmentation would operate in a CADx system.

6. Conclusions

The segmentation method discussed in this paper takes a region-based approach to the
fast marching method, which proved to be robust and can give an accurate segmentation
of the nodule in most cases. It is able to properly handle juxtapleural and juxtavascular
nodules, as no particular drop in performance was noticed for these types of nodules. The
proposed technique was evaluated using an objective method applied on simulation data
and a subjective method applied on real patient data: it achieved satisfactory results. Espe-
cially in the objective evaluation, it outperformed a classic segmentation technique (active
contour models), provided comparable results to DBResNet, and resulted in lesser accuracy
than 3D-UNet, leaving room for improvement. The proposed method demonstrated good
overall performance and promise in computer-aided diagnosis applications. With further
development, it could be used as part of a CADx system and provide fast and accurate
segmentation results for a variety of nodule types. The obtained mask and measurement
will be used to assess the clinical significance of the examined nodules.
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In future work, the algorithm will be improved while we strive for state-of-the-art
performance. To render the segmentation fully automated, an optimal parameter search
will be implemented. An extension to 3D segmentation is planned as well.
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