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Abstract

Learning to discriminate between different sensory stimuli is essential for survival. In

rodents, the olfactory bulb, which contributes to odor discrimination via pattern separation,

exhibits extensive structural synaptic plasticity involving the formation and removal of syn-

aptic spines, even in adult animals. The network connectivity resulting from this plasticity is

still poorly understood. To gain insight into this connectivity we present here a computational

model for the structural plasticity of the reciprocal synapses between the dominant popula-

tion of excitatory principal neurons and inhibitory interneurons. It incorporates the observed

modulation of spine stability by odor exposure. The model captures the striking experimental

observation that the exposure to odors does not always enhance their discriminability: while

training with similar odors enhanced their discriminability, training with dissimilar odors actu-

ally reduced the discriminability of the training stimuli. Strikingly, this differential learning

does not require the activity-dependence of the spine stability and occurs also in a model

with purely random spine dynamics in which the spine density is changed homogeneously,

e.g., due to a global signal. However, the experimentally observed odor-specific reduction in

the response of principal cells as a result of extended odor exposure and the concurrent dis-

inhibition of a subset of principal cells arise only in the activity-dependent model. Moreover,

this model predicts the experimentally testable recovery of odor response through weak but

not through strong odor re-exposure and the forgetting of odors via exposure to interfering

odors. Combined with the experimental observations, the computational model provides

strong support for the prediction that odor exposure leads to the formation of odor-specific

subnetworks in the olfactory bulb.

Author summary

A key feature of the brain is its ability to learn through the plasticity of its network. The

olfactory bulb in the olfactory system is a remarkable brain area whose anatomical struc-

ture evolves substantially still in adult animals by establishing new synaptic connections
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and removing existing ones. We present a computational model for this process and

employ it to interpret recent experimental results. By comparing the results of our model

with those of a random control model we identify various experimental observations that

lend strong support to the notion that the network of the olfactory bulb comprises

learned, odor-specific subnetworks. Moreover, our model explains the recent observation

that the learning of odors does not always improve their discriminability and provides

testable predictions for the recovery of odor response after repeated odor exposure and

for when the learning of new odors interferes with retaining the memory of familiar

odors.

Introduction

Learning and long-term memory are to a large extent implemented through the plasticity of

neuronal connectivity. In adult animals this plasticity is typically dominated by long-term

potentiation and long-term depression, which change the strength of the synapses, while dur-

ing development structural plasticity in the form of the addition and removal of neurons as

well as the formation and pruning of synapses plays a central role. Strikingly, in olfaction struc-

tural plasticity appears to remain a key component of learning even in adult animals. Thus,

new adult-born granule-cell interneurons are persistently integrated into the olfactory bulb,

which is the first brain region to receive sensory input from the nose, and new synapses

between granule cells and the principal mitral cells are formed. In parallel, granule cells

undergo controlled apoptosis [1, 2], the extent of which, however, has recently come under

dispute ([3], see also discussion with the reviewers in [4]), and synapses are removed [5, 6].

This makes the olfactory bulb an excellent system to study structural plasticity.

A widely assumed function of the olfactory bulb is to aid in the discrimination between

odors by enhancing differences in the activity patterns that they evoke [7, 8]. Computational

modeling has identified a number of mechanism by which this can be achieved, which are not

mutually exclusive. This includes a nonlinear response of the neurons without any lateral

interactions among the neurons [9] or with random [10] or all-to-all connectivity [11]. Given

the extensive plasticity of the olfactory bulb, adaptive connectivity with linear or nonlinear

response of the neurons has also been identified as an efficient mechanism for pattern separa-

tion [6, 12–15]. A common approach to probe this function of the olfactory system is to test

whether animals learn to discriminate between two similar odors. In these tasks their correct

choice may or may not be associated with a reward. It has been found that certain types of per-

ceptual learning depend on the olfactory bulb [16], require adult neurogenesis [17], and are

associated with increased densities of the spines on granule-cell (GC) dendrites that form the

synapses with the mitral cells (MCs) [18]. The mechanisms controlling these plasticity mecha-

nisms are not very well understood. The survival of GCs is enhanced by odor enrichment [4,

19] and by GC activity [20]. Similarly, odor enrichment increases the stability of spines in bul-

bar regions that are activated by the enrichment odors [5, 21]. Simultaneous measurements of

the spine stability and the activity of the cells associated with that synapse are challenging.

Thus, knowledge about the response of the bulbar spine dynamics to signals (like glutamate,

BDNF) associated with neuronal activity is somewhat limited [22, 23]. So far no direct connec-

tion between the activity of individual neurons, the stability of their spines, and the circuits

emerging from that plasticity has been established experimentally. In fact, the organizational

principle of the network of mitral and granule cells is still only poorly understood, reflecting

also the lack of significant chemotopical organization of the bulb [24]. The overall dependence
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of the spine stability on odor enrichment suggests that the resulting connectivity would reflect

the specific odors that the animal has experienced. Computational modeling predicts such a

structure and suggests that it could underly the observed improvement in odor discrimination

[1, 2, 6].

In this paper we pursue two goals. Motivated by a number of experimental observations [6,

18, 22, 23], we first put forward a phenomenological model for the activity dependence of the

spine dynamics that incorporates the memory of previous odor exposures. We then use this

model to interpret two sets of experimental results [25, 26], focusing particularly on the ques-

tion to what extent these experiments support the computational prediction that the olfactory

bulb exhibits a learned, odor-specific subnetwork structure. In [25] the repeated exposure to

an odor over multiple days has been found to lead to a reduction of the mitral cell response

that is specific to that odor, i.e. the response of the mitral cell to a different odor changes only

little during the same time. A different set of experiments [26] revealed that repeated odor

exposure makes the bulbar mitral cell representations of two odors more discriminable if the

two odors are very similar. However, if the two odors are very different from each other, the

learning makes their representations actually less discriminable. Moreover, while the repeated

odor exposure leads to an overall reduction of the mitral cell responses, individual mitral cells

can exhibit an increase in activity and this increase can be odor-specific, i.e. for one of two

very similar odors the mitral cell response can increase, while it remains low for the other

odor, resembling differential disinhibition. Differential inhibition is also observed.

We show that our model is able to capture these observations. To disentangle the role of the

activity-dependence of the spine dynamics we also consider a control model with purely ran-

dom spine dynamics in which the statistically homogeneous spine density is modulated by a

global signal. Somewhat surprisingly, the control model can capture the learning-induced

improved discrimination of similar stimuli as well as the learning-induced reduced discrimi-

nation of dissimilar stimuli. However, the experimentally observed disinhibition of mitral cells

is extremely unlikely in such a model. In combination with [25, 26] our model gives therefore

strong support to the notion that the structural plasticity in the olfactory bulb leads to a

learned, odor-specific network structure in which MCs preferentially inhibit each other disy-

naptically, if they have similar receptive fields [6, 12, 14, 15]. Moreover, the model makes test-

able predictions for the recovery of MC responses after repeated odor exposures, for the

suppression of odor discrimination by odor exposure, and for the forgetting of odor memories

through interference. An earlier account of some of these results is available at [27].

Results

Formulation of the model

Using computational modeling we investigated the ramifications of the structural plasticity of

the reciprocal synapses between mitral cells (MCs) and granule cells (GCs). We focused on

those two cell types and did not include the processing in the glomerular layer between the

sensory neurons and the mitral cells. Instead, we considered the glomerular activation patterns

as inputs to the MCs (Fig 1A). The MCs and GCs were described by firing-rate models.

Reflecting the reciprocal nature of the MC-GC synapses the GCs inhibited those MCs that

excited them as indicated in the inset of Fig 1A, which depicts a spine on a GC dendrite and an

excitatory synapse (MC!GC) and an inhibitory synapse (GC!MC). Since the synapses are

located on the secondary dendrites of the MCs, which reach across large portions of the olfac-

tory bulb [28], we allowed synapses to be formed between all MCs and all GCs without any

spatial limitations. We recognize that this ignores the sparse structure of the dendrites, which

results in a decrease in the connection probability between widely separated MCs [29, 30].
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The MC-GC synapses do exhibit some synaptic-weight plasticity. Its nature is, however,

still quite unclear [31, 32]. Moreover, during perceptual learning the frequency of the inhibi-

tory postsynaptic currents received by the MCs from the GCs has been found to increase,

while their amplitude remained unchanged [18], suggesting that only the number but not the

strength of the synapses changed. We therefore assume all connections to have the same

weight and focus on the structural plasticity of the synapses. Thus, in each time step we add

and remove reciprocal synapses between MCs and GCs with probabilities that depend on the

activity of the cells that are connected by that synapse.

Our modeling is qualitatively motivated by a number of experimental studies. The overall

stability of spines has been observed to be enhanced if animals experienced an enriched odor

environment [5]. More precisely, across multiple days, spines in bulbar areas that were acti-

vated by the enrichment odors were stabilized, while those in other areas were not. Very

recently, a positive correlation between the stability of individual spines and the GC-activity of

the dendrite on which they are located has been observed [33]. Since filopodia often are pre-

cursors of spines, we also glean information from experiments addressing their dynamics. The

frequency of formation and removal of filopodia has been found to increase with NMDA-

receptor activation [22] and to decrease with Mg2+-concentration. This suggests that the for-

mation rate of spines increases with the activity of the GC-dendrite on which they are forming.

Fig 1. Computational model. (A) Sketch of the network. All spines provide reciprocal synapses that excite GCs (green arrow) and inhibit MCs (red

bar). (B) Spine formation is controlled by R = Mf(G). The figure shows f/τf for f> 0 and f/τr for f< 0 (cf. Eq 5). (C) Disynaptic recurrent inhibition

of MCs via GCs. The numbers in the right panel indicate the strength of the effective inhibition. (D) Simplified training stimuli. (E, H) MC activity

before and after training, respectively. (F, I) Connectivity between MCs and GCs before and after training, respectively. Each white dot represents a

connection between an MC and a GC. (G, J) Effective recurrent connectivity among MCs. The color represents the number of GCs that mediate the

mutual disynaptic inhibition of MCs via GCs (cf. C).

https://doi.org/10.1371/journal.pcbi.1010338.g001
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The dynamics of filopodia that are located on spine heads are often indicative of subsequent

dynamics of that spine. Specifically, the amplitude and direction of the movement of the spine

head has been found to be correlated with the lifetime and orientation of such a filopodium,

respectively [23]. Moreover, the dynamics of the filopodia have been found to be triggered by

presynaptic glutamate release, suggesting a role of MC-activity in the spine dynamics [23]. Bio-

physical details about the mechanisms relating the spine dynamics with the temporal evolution

of the neuronal activity during odor exposure are, however, not well known yet.

Based on these observations, we assume the formation and removal of synapses to follow

Poisson processes with rates that depend on the activities of the neurons connected by the

respective synapse (for details see Methods). We express the formation and removal rates in

terms of a single rate function R = Mf(G) that depends on the activities M and G of the MC

and the GC, respectively, that are connected by that synapse (Fig 1B). Similar to models for

synaptic weight plasticity [34, 35], we take this function to be non-monotonic. For GC activi-

ties above a threshold G(1) a new synapse is formed, while it is removed below that threshold as

long as it is above a second, lower threshold, G(0). For GC activities below G(0) structural

change is negligible. This lower threshold allows the synaptic connections of a GC to be

remembered during times when the GC is not activated by any odor. Connections are

removed, however, on GCs that are excited, but only weakly so. Since the change in the total

number of synapses appears to be limited in experiments [18, 36], we hypothesize that there

exists a homeostatic mechanism that keeps the total number of synapses on a given GC within

a limited range. For most of our results, we employ a top-k competition mechanism, in which

only the k strongest synapses survive. We show that qualitatively the same results are obtained

with a more biophysical mechanism that is based on a limited resource (see Realization of

competition through competition for a limited resource and Methods). Both mechanisms

operate on a relatively fast time scale, as is generally needed for the stability of networks with

Hebbian plasticity [37].

We are particularly interested in the impact of the plasticity on the ability of the network to

learn to discriminate between stimuli that the network is repeatedly exposed to. We train the

network by using a sequence of alternating stimuli A and B as sensory inputs. We assess the

ability of the network to discriminate between these stimuli by comparing the difference in the

MC activity patterns in response to the stimuli with the variability of these patterns across

repeated presentations of the same stimuli. The firing rates themselves do not fluctuate

between successive presentations. However, the spike trains underlying those mean firing

rates can fluctuate. Assuming Poisson-like spike trains, we take the mean firing rate of an MC

as a proxy for its variance (for details see Methods section). To illustrate the mechanism by

which the discriminability is modified, we use simplified stimuli (Fig 1D), while naturalistic

stimuli are used to compare with experimental data (Fig 2A).

Plasticity induces mutual disynaptic inhibition of co-activated MCs

To illustrate the network evolution resulting in the structural-plasticity model, we use a pair of

simple model stimuli A and B that excite partially overlapping sets of MCs (Fig 1D). In the

absence of any odors (‘air’) the input is taken to be non-zero and homogeneous, reflecting the

spontaneous activity of the MCs or of the neurons driving their input. Initially, the MC-GC

connectivity is chosen to be random (Fig 1F). The learning process reflects the effectively Heb-

bian character of the structural plasticity rule through which connections are established

between cells that fire together. If a GC responds to a stimulus by integrating excitatory inputs

from activated MCs, other MCs that are activated but not yet connected to this GC are likely

to form a connection with that GC. This is reflected by the two blocks in Fig 1I involving GCs
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with indices above�600. Each of these GCs is connected with either the MCs responding to

stimulus A (MC indices 60–110) or to stimulus B (MC indices 110–160). Conversely, if two

MCs respond to the same stimulus, the number of GCs they both connect to increases, if the

model is trained by that stimulus. Due to the reciprocal nature of these synapses, this induces

enhanced mutual disynaptic inhibition (Fig 1C) between these MCs. This is seen in the two

blocks along the diagonal line of their effective connectivity matrix, which gives the number of

GCs that mediate that inhibition (Fig 1J). As a result, the training preferentially reduces the

activity of initially highly activated MCs (Fig 1E and 1H), consistent with observations

[25, 38].

Fig 2. Easy and hard discrimination task using naturalistic stimuli. (A) Odors employed in the training. Top:

Glomerular activation patterns (cf. [39]). Bottom: Activation patterns down-sampled to 240 points, serving as stimuli

S(i). MCs are sorted based on the difference in activation by the stimuli of odor pair 1. (B) Computational protocol. (C)

Activity of each MC for the two stimuli used in the easy (black) and hard (red) task. (D, G) Difference in the response to

the two stimuli for each MC before and after training for the easy and the hard task, respectively. Color of the dots

represents the mean response |M(1) + M(2)−2M(air)|/2 before training. (E, H) Temporal evolution of the number of

responsive MCs and divergent MCs during the training in the easy task and hard task, respectively (cf. [26]). (F, I)

Temporal evolution of hd0ii for the easy task and the hard task, respectively. Parameters as in Table 1 except for γ = 1.7 �

10−4.

https://doi.org/10.1371/journal.pcbi.1010338.g002
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Training enhances or reduces stimulus discriminability depending on their

similarity

Intriguingly, in mice learning to discriminate between two odors the training enhanced the

discriminability of the training stimuli only if they were similar, i.e., for hard discrimination

tasks [26]. If the task was easy, i.e. if the stimuli were dissimilar, the training actually reduced
the discriminability of the training stimuli. Here discriminability was measured using d’,

which is given by the mean of the difference in MC-activity in response to the two odors rela-

tive to the square-root of the pooled variance. To provide insight into this surprising finding

we employed the same training protocol as in the experiment, using naturalistic stimuli that

were adapted from glomerular activation data of the Leon lab [39] (Fig 2A (top)) and down-

sampled to reduce the computational effort (Fig 2A (bottom)). These stimuli were used for the

easy discrimination task. As in [26], we used mixtures of the same stimuli for the hard discrim-

ination task (60%:40% vs. 40%:60%, see Methods). The two odors of the hard task drove each

MC to a very similar degree (Fig 2C).

Our model successfully reproduced several experimental observations of [26]. There it was

found that training with the easy task reduced the difference in the response of the MCs to the

two odors used in the task; the majority of the MCs fell below the diagonal in Fig 2D. Here the

response was defined as the difference between odor-evoked activity and air-evoked activity

and the color of the dots in Fig 2D and 2G denotes the average response of the respective MC

across the two odors before training. In contrast, the difference increased with training in the

hard task (Fig 2G). In particular, a fraction of cells showed the same response to both odors

before training, but significantly different responses after training (Fig 2G, dots along the y-

axis). As in [26], we quantified these changes by classifying MCs into responsive cells, i.e., cells

that showed a significant response to at least one of the two odors, and divergent cells, for

which the two odors evoked significantly different responses (see Methods). In the easy task,

not only the number of responsive cells decreased but also the number of divergent cells (Fig

2E). In the hard task the number of responsive cells also decreased. The number of divergent

cells, however, actually increased by a small amount (Fig 2H). Thus, both results recapitulated

the experimental observations [26]. These outcomes were not sensitive to the threshold θ that

classified the cells (S14 Fig).

The discriminability of two neuronal activity patterns depends not only on the difference of

their mean firing rates but also on the trial-to-trial variability of their spike trains. The latter is

not included in our firing-rate framework. It is quite common for the variability to increase

with the firing rate; for instance, for Poisson spike trains the variance in the spike count is

equal to the mean spike count, i.e. the variability increases like the square-root of the mean. As

a proxy for the discriminability of the response patterns, we therefore defined d0i of each diver-

gent neuron as the difference of the mean activity in response to the two odors divided by the

square-root of the sum of the means (see Eq (12) in the Methods). As in [26], training

increased the mean hd0ii across the MCs in the hard task (Fig 2I), but it decreased hd0ii in the

easy task (Fig 2F), indicating reduced discriminability.

Visualization of reduction and enhancement of discriminability

To better understand and visualize the mechanism underlying the change in discriminability,

we employed simplified stimuli (Fig 3A and 3B). As in the case of realistic stimuli, the stimuli

for the hard task were mixtures of two easily discriminated stimuli. Again, we first exposed the

network to a set of pre-training stimuli. They set up an initial connectivity that was indepen-

dent of the task stimuli (Fig 3A). It affected the initial response of the network to the training

stimuli (Fig 3C and 3G).
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In the easy task, the effective connectivity resulting from the training had only two blocks,

which were along the diagonal and corresponded separately to odors A and B (Fig 3B, top).

This inhibition reduced the MC activity and with it the number of responsive cells. Since most

MCs responded essentially to only one of the two stimuli, the response difference decreased

along with the overall response (Fig 3E, red line vs. black line), decreasing the discriminability.

In the hard task, both stimuli activated the same set of MCs, but to a different degree,

reflecting the difference in the concentrations of the two components. The discriminability of

the stimuli was therefore not compromised if the MC activities were reduced, as long as the

difference in the representations of the two stimuli was maintained. In fact, in that case the

discriminability in terms of d’ was enhanced, since we associate reduced overall activity with

reduced trail-to-trial variability (cf. Eq (12)). The effective connectivity resulting from the

training achieved this through the two additional, off-diagonal blocks (Fig 3B, bottom). Each

MC activated by component A received disynaptic inhibition from MCs that were activated by

component A as well as from MCs activated by component B. With increasing concentration

of component A the effective inhibition from the MCs activated by component A increased,

while that from the MCs activated by component B decreased. Thus, the overall inhibition was

Fig 3. Visualization of the differential learning outcome for easy and hard tasks. (A) Stimuli for pre-training and effective connectivity matrix

after pre-training. (B) Training stimuli for the easy task (top) and the hard task (bottom) and the resulting connectivity matrix after training. (C to

F) Easy task: (C) MC Activity before training (after pre-training). (D) MC activity after training. (E) Activity difference before (black) and after

training (red). (F) Temporal evolution of the discriminability during training. (G to J) As (C to F) but for hard task.

https://doi.org/10.1371/journal.pcbi.1010338.g003
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relatively independent of the concentration of A and therefore about the same for both mix-

tures, preserving the response difference. In fact, for a large number of MCs the difference in

the response even increased with training (Fig 3I). Assuming that for a cell to be classified as

divergent, this difference had to be above some threshold, the number of divergent cells

decreased in the easy task, while it increased in the hard task (Fig 3F and 3J, cf. S14C and S14D

Fig), as we found for the naturalistic stimuli (Fig 2E and 2H). Qualitatively similar results were

obtained without pre-training phase (S6 Fig).

Odor specific adaptation

Repeated odor exposure was seen in [26] to lead to the response of a smaller number of MCs.

A change in the response amplitude through repeated exposure has already been found earlier

[25, 40]. Specifically, it was found that the repeated exposure to an odor over the course of a

week substantially reduced the MC response specifically to that ‘familiar’ odor, but not to

‘novel’ odors, which the animal had experienced much less [25]. Such a differential response

could be due to a modulation of the overall gain in the olfactory bulb by a signal that indicates

the novelty or familiarity of the presented odors. Such a signal could arise some time after odor

onset, since the odor has to be recognized as familiar first. A more parsimonious explanation is

offered, however, by the activity-dependent spine dynamics of our plasticity model (Fig 4).

To mimic the procedure used in [25], we established a background connectivity by repeat-

edly exposing the network in the pre-training to two different naturalistic background odors

B1 and B2 in an alternating fashion (Fig 4A). In the training period we included a third odor F
in the odor ensemble as the ‘familiar’ odor and monitored the MC response to that odor as

well as to 11 other, ‘novel’ odors N1. . .11. For each MC-odor pair we quantified the change in

the network response using a change index. It was defined as the response of the MC to that

odor at the end of the training period minus that at the end of the pre-training divided by the

sum of those two activities [25]. As in [25], for the majority of MC-odor pairs the change

index for the familiar odor was negative (Fig 4B). This reduction in response resulted from an

increase in the number of GCs mediating the disynaptic inhibition among the MCs respond-

ing to the familiar odor (MC indices mostly between 30 and 150 in Fig 4D).

The network restructuring during the training generally also modified the MC responses to

other, novel odors. For MCs that responded to a novel as well as to the familiar odor we com-

pared the respective change indices. Since synapses that are not activated by the familiar odor

do not become stabilized by the repeated odor exposure, the response of MCs to the novel

odors was typically less reduced than that to the familiar odor, yielding a change index below

the diagonal in Fig 4B, in agreement with [25].

The network restructuring during the training did not increase the inhibition for all MCs.

For some MCs the inhibition was actually decreased leading to a positive change index (Fig

4B). Averaging across all responding MCs, the mean change index for a novel odor was nega-

tively correlated with how similar it was to the familiar odor as measured in terms of the Pear-

son correlation of the stimuli (Fig 4E). A particularly strong reduction in the inhibition

occurred among many of the MCs responding to novel odor N4 (marked blue in Fig 4B and

4D). This odor was actually identical to odor B2, which was used in the pre-training, where it

established mutual inhibition among MCs with indices in the range 30 to 90 and above 200

(left panel of Fig 4C). During the training period, which included odor F in addition to B2,

many of these connections were removed (Fig 4D), leading to a strikingly positive mean

change index for that odor (blue circle in Fig 4E). Positive change indices for familiar and par-

ticularly for novel odors were also observed experimentally for quite a few MC-odor pairs in

[25].
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Random spine dynamics can capture divergence and discrimination

So far we have seen that the model proposed here captured a variety of key experimental find-

ings [25, 26]. A key prediction emerging from the activity-dependence of the spine dynamics

is the formation of subnetworks of highly connected MCs and GCs that specifically respond to

one of the training odors. We therefore asked whether the activity dependence is necessary to

capture the experimental results and to what extent the experiments therefore allow to infer

the formation of an odor-specific, learned network structure in the olfactory bulb. Alterna-

tively, the spine dynamics could be statistically homogeneous with a density that is controlled

by a global signal reflecting, e.g., a neuromodulator indicating the novelty or familiarity of an

odor [41, 42].

As a control model, we implemented purely random, activity-independent spine dynamics,

where the training with the familiar odor lead to a change in the mean number of MC-GC

connections. Since the experiments [25] and the simulations (Fig 4) revealed a reduction in

the MC-activity in response to the familiar odor, we increased during the training the mean

number of connections between MCs and GCs, which is also consistent with an increase in the

number of spines during perceptual learning [18].

Fig 4. Odor specific adaptation (cf. [25]). (A) Simulation protocol. Pre-training with odors B1,2 established a background connectivity. During

training the network became familiar with an additional odor F. (B) The MC response to the familiar odor F is more reduced than to the novel odors

N1. . .11). (C) During pre-training connections are predominantly added from GCs to MCs that are activated by the background odors B1,2 (MC indices

below 90 and above 200). The color indicates the change in W(mm), i.e. in the number of GCs connecting the respective MCs. (D) During training the

number of connections of MCs responding to the familiar odor F increases, but that corresponding to odors B1,2 decreases (cf. (C)). (E) The mean

change index of the novel odors N1. . .11 is correlated with their similarity to the familiar odor.

https://doi.org/10.1371/journal.pcbi.1010338.g004
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For the hard task using simplified stimuli (cf. Fig 3) the fraction of responsive MCs

decreased when the number Nconn of connections was increased, while the fraction of diver-

gent MCs increased substantially over some range of Nconn (Fig 5B, cf. Fig 2). In parallel, the

discriminability measured in terms of d0 increased (Fig 5C). This reflects the fact that increas-

ing the random connectivity increased the inhibition for all MCs by roughly the same amount.

In a linear firing-rate model this would preserve the difference between the MC responses;

with the saturation of the MC response used in our model, the difference actually increased

(Fig 5D and 5E).

Thus, the aspects considered in Fig 5 are not able to distinguish between the activity-depen-

dent and the random model. We therefore considered the results of the protocol of Fig 4 in

more detail.

Random spine dynamics fail to induce observed disinhibition

As in Fig 4, we exposed the random model in the pre-training to 2 background odors, added

odor F as the ‘familiar’ odor to that ensemble during the training period, and probed the

response to additional 11 ‘novel’ odors. As expected, and in contrast to the activity-dependent

model, the random model showed no qualitative difference in the change index distribution of

the familiar and the novel odors (Fig 6D). Strikingly, even though in the random model the

mean change index for the familiar odor was less negative than that in the activity-dependent

model (hCIirandom = −0.14 vs hCIi = −0.27), for none of the MC-odor pairs the change index

was positive in the random model. In contrast, in the activity-dependent model about 8% of

the MCs had a positive change index for the familiar odor (Fig 6E), which is in rough agree-

ment with the experimental findings [25]. These MCs were disinhibited by the training (Fig

Fig 5. Random network model can capture enhanced differentiability. A) Random addition of connections during training. (B) Increased

connectivity decreases fraction of responsive cells but can increase that of divergent cells (cf. Fig 2H). (C) Discriminability of the odors in the hard task

increases with increasing Nconn. (D, E) The difference in MC response does not decrease with increasing Nconn (cf. Fig 3I).

https://doi.org/10.1371/journal.pcbi.1010338.g005
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6A). For visualization purposes we also compared the changes in MC activity for the two mod-

els using simplified stimuli. Again, while in the random model the training led to a decrease in

the activity of all MCs, in the activity-dependent model there were quite a few moderately acti-

vated MCs that were disinhibited by the training (Fig 6C).

A more detailed analysis of the results of the activity-dependent model showed that the dis-

inhibition in the response of a given MC to two odors can be quite different even if the two

odors are very similar to each other. Considering again the mixtures used in the hard task of

Fig 2, we found a large number of MCs for which the difference in the response to the two sti-

muli was significantly increased by the network restructuring. For some of them the enhance-

ment arose from differential disinhibition, wherein the MCs were inhibited by both odors

before training, but only by one of them after training (Fig 6A). For other MCs the increased

difference was due to differential inhibition. While these MCs were excited by both odors

before training, they responded only to one of the very similar odors after training (Fig 6B).

Fig 6. Disinhibition in the activity-dependent but not in the random model. (A) In the activity-dependent model training in the hard

task with naturalistic stimuli (cf. Fig 2) disinhibited a large fraction of MCs differentially. The activity of a specific MC is shown on the

right. (B) In the activity-dependent model training also inhibited many MCs differentially. (C) Training-induced change in MC

activities for the random and the activity-dependent model for the simplified stimuli. (D) In the random model the change index for

familiar and novel naturalistic odors was statistically the same (cf. Fig 4B); Odor N4 is marked in blue. (E) The CDF of the change index

shows disinhibition only for the activity-dependent, but not the random model.

https://doi.org/10.1371/journal.pcbi.1010338.g006
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Both, differential disinhibition and inhibition were observed experimentally in [26] (their

Supp. Fig 1).

In contrast, in the random model no disinhibition was obtained. This is illustrated for one

odor in Fig 6C. It also manifested itself in the change index for novel and familiar odors Fig

6D (cf. Fig 4B) and the cumulative distribution of the change indices (Fig 6E).

Thus, the improved discrimination of pairs of very similar stimuli and the reduced discrim-

ination of dissimilar stimuli does not require the emerging connectivity to be odor-specific,

but only an overall increase in inhibition. The observed disinhibition, however, is not consis-

tent with random spine dynamics. But it is recapitulated with activity-dependent spine stabil-

ity, which leads to odor-specific network structure. Thus, combined with the experimental

observations of [26] our computational model supports the notion that odor exposure during

perceptual learning leads to a network structure that reflects the presented odor.

Removal of spines and forgetting by intermediate-amplitude re-activation

A key feature of our model is the non-monotonic behavior of the resilience function f (Fig

1B), which renders spines stable not only if the associated GC is strongly active, but also when

it is inactive. This allows previously learned connectivities to persist even if the corresponding

odors are not presented any more. If MCs and GCs are weakly driven, however, the corre-

sponding spines are removed. While the non-monotonicity of the resilience function is remi-

niscent of models for synaptic weight plasticity [34, 35], there is no explicit experimental

evidence for it so far for the bulbar structural plasticity.

To illustrate the impact of the non-monotonicity of the resilience function we used simpli-

fied stimuli. During pre-training two dissimilar odors A,B were presented, which resulted in a

connectivity comprised of two blocks on the diagonal (Fig 7A). In a subsequent training period

we tested the persistence of the memory of the block corresponding to odor A when the net-

work was re-exposed to that odor, but with a different amplitude (labeled A1. . .4 in Fig 7).

When that amplitude was small, the connectivity remained essentially unchanged by the train-

ing (Fig 7B). For intermediate activities, however, a fraction of the connections established in

the pre-training were removed since the GC activity fell into the range in which the resilience

function was negative (Fig 7C and 7D). For large amplitudes the resulting GC activity was

large enough to render the resilience function positive and the connections were stable

(Fig 7E).

Experimentally the connectivity itself is only poorly accessible. One can, however, probe

the predicted changes using the response of the MCs to odor A, similar to the experiments in

[25]. When the connections are retained during the training, the response of the MCs to that

odor will not change compared to their response before the training. However, if intermediate

stimulus amplitudes are used in the training, the removal of the connections manifests itself in

an increase of the mean response of the MCs to odor A after the training (Fig 7F). Correspond-

ingly, the distribution of the differences between the MC activities after and before the training

shifts and broadens in a non-monotonic fashion when the amplitude of the stimulus used in

the training is increased (S2 Fig).

Thus, if the odor exposure experiments in [25] were to be continued with the same odor

but at a suitably reduced concentration, the model predicts that the MC response to that odor

would increase again within days rather than undergoing the slow recovery over a period of

1–2 months that was observed in the absence of that odor [25].

The protocol used in Fig 7 does not have a simple behavioral read-out. Moreover, it relies

on a change in the overall activity of the MCs. Since the input to the MCs is pre-processed in

the glomerular layer, which is thought to provide an overall gain control of the input [43],
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changes in the odor concentrations may not translate directly into corresponding changes in

MC activation and the ensuing change in the connectivity predicted by the model. We there-

fore considered also a slightly modified protocol using mixtures composed of two dissimilar

odor components. To reduce the impact of the overall gain control, only the concentration of

one of the two components was varied (Fig 8A). Exposing in pre-training 2 the network to two

mixtures in which that component had similar but large values (Fig 8A, middle) enhanced the

discrimination between these two mixtures (teal-magenta line in Fig 8G), However, due to

pre-training 2 the network developed strong mutual inhibition between the MCs responding

to the two mixture components (Fig 8E). This allowed the strong component in the training

stimulus (Fig 8A, right) to suppress the response to the weak component completely (Fig 8B).

Subsequent training with the mixtures in which that component was weak, removed many of

those connections (Fig 8A right and Fig 8F) and largely reversed that suppression (Fig 8C).

This enhanced the discriminability of those mixtures above its initial value without any inhibi-

tion (blue-green line in Fig 8G).

Fig 7. Removal of connections for intermediate GC activation. (A) Pre-training with two odors, then training with only one of the two odors at

different amplitudes A1. . .4. (B to E) The connectivities W(mm) resulting from the training depend non-monotonically on the stimulus amplitude

A1. . .4 during training. (F) Non-monotonic mean change in the response to odor A after training as a function of the amplitudes A1. . .4 used in the

training.

https://doi.org/10.1371/journal.pcbi.1010338.g007
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The removal of spines on GCs that are only intermediately activated lead also to forgetting

of a discrimination task by learning a subsequent discrimination task, if the odors of the sec-

ond task overlapped to some extent with those of the first task and therefore interfered with

the retention of the relevant connections (Fig 4). Upon re-exposure to the odors of the first

task, the network very quickly re-learned to discriminate between those odors. In fact, the rele-

vant connectivity was re-stablished faster than it had been learned in the first odor exposure

(S3G Fig). In general re-learning occurred noticeably faster than the forgetting (S4 Fig).

Realization of competition through competition for a limited resource

In order to keep a Hebbian model stable, different compensatory processes can be imposed

depending on the state of nearby synapses on the same dendrite [37]. In the model that we

Fig 8. The discrimination of weak components of similar stimuli is abolished by training with strong components,

but recovers through training with weak components. (A) Protocol: left: pre-training 1 with only 1 odor; middle: pre-

training 2 based on a mixture of that and a dissimilar odor; right: training with a mixture in which the second component

is only weak. (B) Response to the training stimulus before training; due to pre-training 2 the response to the weaker odor

component is suppressed completely. (C) Training with the weaker component recovers that component. (D) MC

response difference between odors A and B before and after training. (E,F) MC-GC connectivity before and after training.

(G) Fisher discriminant for odor pair (A,B) and (C,D).

https://doi.org/10.1371/journal.pcbi.1010338.g008
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have discussed so far we used top-k competition because of its simplicity, without identifying a

specific, biologically feasible mechanism. In this section, we discuss one such mechanism.

The idea behind the competition is that within a single neuron, possibly within a single den-

dritic branch, resources used for the formation of synapses are limited. In hippocampal CA1

neurons, stimulating spines leads to the shrinking of neighboring unstimulated spines [44]. A

plausible explanation of this phenomenon is that some resource is limited within the neuron.

A computational model based on this idea has reproduced the fast multiplicative scaling

behavior of synapses and explained a transient form of heterosynaptic plasticity [45]. Along

similar lines, we assumed that the formation of each synapse depletes a resource pool by a

fixed amount, and the formation rate is proportional to the fill-level of the resource pool. Fur-

ther, we assumed that the resource for a synapse is returned to the pool when the synapse is

removed and that the removal rate is independent of the resource pool size. We took the acti-

vation function (Fig 9A, red curve) to be comprised of a formation term, which depends on

the fill-level of the resource pool (Fig 9A, blue curve), and a removal term, which is indepen-

dent of the fill-level (Fig 9A, green curve).

Fig 9. Synaptic competition via a common resource pool. The training protocol is the same protocol as in Fig 2. (A) The modified activation function
~�ðGÞ (red) is the difference between the formation function (blue) and the removal function (green). P = P0 (thick), P> P0 (dotted), P< P0 (dashed).

(B) (Top) For P> P0 synapses tend to form (solid arrow in (A)). (Bottom) For P< P0 synapses tend to be removed even though the GC activity is the

same (open arrow in (A)). (C) In the easy task, left: Responsive and divergent cells and right: discriminability (cf. Fig 2E and 2F). (D) Same as (C) but

for the hard task (cf. Fig 2G and 2H). (E, F) Differential disinhibition and inhibition (cf. Fig 6). (G) Removal of spines for training with intermediate

activities leads to an increase in MC activity (cf. Fig 7).

https://doi.org/10.1371/journal.pcbi.1010338.g009

PLOS COMPUTATIONAL BIOLOGY Structural spine plasticity and odor-specific subnetworks in the olfactory bulb

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010338 October 24, 2022 16 / 30

https://doi.org/10.1371/journal.pcbi.1010338.g009
https://doi.org/10.1371/journal.pcbi.1010338


It is easy to see how the limited resource pool provides a homeostatic mechanism. For low

pool levels synapses are removed (open arrow in (Fig 9A)), which replenishes the pool, while

for high pool levels new synapses are formed (solid arrow in Fig 9A)), decreasing the pool level

(Fig 9B). The equilibrium pool level and with it the number of synapses in the steady state is

regulated by the activity of the GCs, which in turn depends on the number of synapses via the

activity of the MCs connected to the GCs.

With this biophysically plausible stabilization of the structural plasticity, our model yielded

results that were qualitatively similar to those obtained with the simpler, top-k competition

model (compare Fig 9C–9F with Fig 2D and 2E and S5 Fig with Fig 3).

Discussion

In the rodent olfactory bulb structural plasticity in the form of the extensive formation and

removal of synaptic spines persists into adulthood [6] and may be a key factor in establishing

and maintaining the network structure of the olfactory bulb. Since it is operating on timescales

that are comparable to some learning processes [6, 18] it may play an important role in these

processes. In this study, we proposed a simple Hebbian-type model to investigate this role.

Our model shows that a local unsupervised learning rule according to which the formation

and removal of spines depends on GC and MC activity is consistent with and explains a host

of experimental observations [18, 25, 26]. Among them is the intriguing observation that train-

ing can have opposite impact on the discriminability of very similar and of dissimilar odor

pairs. As observed experimentally, in our model training enhanced the discriminability of sim-

ilar odors, but it reduced the discriminability of the training odors if they were quite different

from each other. In fact, for the dissimilar odors, the number of MCs that responded differ-

ently to the odors decreased with learning, deteriorating the performance.

Since a key prediction of our activity-dependent model is that upon repeated exposure with

relevant odors the olfactory bulb develops subnetworks associated with these odors, we investi-

gated whether the experimental results are also consistent with a model in which learning

modifies the inhibition in a random, statistically homogeneous fashion, independent of the

activity, and therefore without forming odor-specific subnetworks. Surprisingly, the random

model also captured the differential outcome of training with similar and with dissimilar odor

pairs. It failed, however, to recapitulate the observation that during that learning process,

which led to an overall increase in the number of inhibitory connections, a sizable fraction of

the MCs became more, rather than less active, i.e. they were disinhibited rather than inhibited

[26]. Similarly, the activity-dependent, but not the random model, captured the odor-specific

reduction in MC activity that is observed after an animal has been familiarized with an odor,

which is much more pronounced for that familiar odor than for less experienced odors [25].

One could imagine that the reduced response to a familiar odor is the result of an inhibition-

enhancing global modulatory signal that may be triggered by the recognition of the odor as

familiar. This would, however, not explain the significant fraction of MCs that are disinhibited

in response to the familiar or the novel odor [25]. Thus, in combination with [25, 26] our

model provides strong indirect evidence that perceptual learning leads to the formation of

MC-GC subnetworks comprised of MCs and GCs having significantly overlapping receptive

fields.

Moreover, the model offers a foundation for further studies of learning-related functions in

the olfactory bulb. For instance, in the current version of the model the novelty or salience of

an odor is not considered explicitly. Only implicitly it is assumed that the presented odors

have sufficient salience, since experiments suggest that the plastic changes occur predomi-

nantly for novel or otherwise salient odors [19, 46].
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In contrast to a previous model for structural spine plasticity [6], the model presented here

describes a learning mechanism that allows the network to remember previously learned tasks

in its connectivity. These memories are robust against subsequent learning of dissimilar tasks.

The learned connectivity is only erased by exposure to interfering stimuli, which overlap sig-

nificantly with previously learned ones. This prediction should be amenable to experimental

tests using sequential perceptual learning [47] with two odor pairs, each comprised of two sim-

ilar odors. Repeated exposure with one of the two odors of the first pair will enhance the spon-

taneous discriminability of the odors in that pair. The subsequent repeated exposure with an

odor from the second pair is expected not to affect the discriminability of the odors in the first

pair, if the odors in the second pair are dissimilar from the first pair. However, if there is a sig-

nificant overlap between the pairs, the second training is expected to compromise the discrimi-

nability of the first pair. Note, however, that if the odors in the second pair are very similar to

those in the first pair, this interference is not expected. The latter aspect would differentiate

this forgetting from the widely observed retrieval-introduced forgetting [48].

When assessing the role of structural spine plasticity in forgetting, attention has to be paid

to the time scales of the experiments. In recent experiments the successive perceptual learning

and forgetting of different odor pairs has been investigated [4]. There it was found that learn-

ing a second pair of odors seven days after the training with the first pair strongly interfered

with the memory of the first pair, while learning after 17 days did not. The experiments indi-

cated that this interference arose from the enhanced apoptosis of adult-born GCs that was trig-

gered if the time between the training periods was only seven days. Since the results of [25]

suggest that significant changes in the connectivity arise already within the first day of expo-

sure, performing the interference experiments on that shorter time scale may avoid complica-

tions arising from the apoptosis found in [4] and may focus on the role of the structural spine

plasticity described by our model.

We discussed two fast homeostatic mechanisms that stabilize the network activity despite

the Hebbian-type learning rule: an abstract top-k competition and a biologically plausible

competition of synapses for a limited resource that operates via a sliding threshold for the for-

mation of synapses, somewhat reminiscent of the BCM-model [34]. The overall behavior of

both models did not depend much on which homeostatic mechanism was at work. It is worth

noting that the specifics of the stabilization mechanism may vary across brain areas. Moreover,

resource-dependent competition may be too local to lead to competition across different den-

drites or the whole neuron. In addition, heterosynaptic plasticity may be controlled more by

activity rather than a limited resource [44]. For these reasons, we leave open the question of

how to implement the stabilization mechanism.

In principle, activity-dependent network restructuring could also arise from synaptic

weight plasticity rather than structural plasticity. Recent experiments show, however, that in

adult-born GCs the amplitudes of evoked IPSCs were not significantly changed after learning

[18]. This suggests that changes in the inhibitory synaptic weights are not likely to be the domi-

nant mechanism for learning. At the same time, in the same experiment, the frequency of the

evoked IPSCs was significantly up-regulated after learning, which highly suggests an increase

in the number of synaptic spines [18].

What aspects of olfaction might favor structural plasticity even in adult animals, despite its

seemingly high metabolic cost? A characteristic feature of olfaction is the high dimensionality

of odor space. As a consequence, the layout of the olfactory bulb does not allow substantial

chemotopy and MC dendrites have to reach across large portions of the bulb [28, 49], where

they establish only a very sparse connectivity with GCs. To wit, each of the about 5 million

GCs connects with on the order of 50–100 of the 50,000 MCs [50]. Thus, only less than 1% of

the possible connections are actually made. The sparseness of the connectivity has recently
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been identified as a key factor favoring structural plasticity over synaptic-weight plasticity in

the context of feedforward networks [51]. This may also be the reason why structural plasticity

seems to be essential in the adult motor system, as has been found recently [52].

A characteristic feature resulting from the structural plasticity implemented in our model is

the emergence of MC-GC subnetworks that are specific to the learned stimuli. The interaction

between the excitatory MCs and the inhibitory GCs is known to drive the γ-rhythms that are

prominent in the olfactory bulb [53]. Since their power is enhanced with task demand [54]

and since the optogenetic excitation of GCs in the γ-range enhances discrimination learning

[55], they are presumed to play a role in odor processing. The different subnetworks that are

predicted by our model to emerge from learning different odors are likely to generate each its

own γ-rhythm with its own frequency. The question then arises whether these rhythms will

synchronize if the bulbar network is driven by the corresponding odor mixtures. Depending

on the temporal window over which the bulbar output is read out in downstream brain areas

[56, 57], the perception of such mixtures may then well vary with the degree of synchrony of

the different rhythms. Interestingly, the synchrony of such interacting rhythms can be

enhanced by uncorrelated noise and by neuronal heterogeneity via a paradoxical phase

response [58, 59].

A prominent feature of the olfactory bulb is its extensive centrifugal input via top-down

projections that target particularly the GCs. Our model for the structural spine plasticity sug-

gests that the GC develop receptive fields for specific odors of the training set and are preferen-

tially connected with MCs with similar receptive fields. Due to the reciprocal nature of the

MC-GC synapses, this implies that the activation of such a GC inhibits specifically MCs with

the same response profile. If the top-down connectivity was able to target specific GCs, top-

down inputs could modulate bulbar processing in a controlled fashion by inhibiting specific

MCs. Computational modeling [15] suggests that the extensive adult neurogenesis of GCs

observed in the bulb naturally leads to a network structure that allows just that. That model

predicts that non-olfactory contexts that have been associated with a familiar odor allow to

suppress that odor, enhancing the detection and discrimination of novel odors. The spine plas-

ticity investigated here leads to a network structure that is similar to the bulbar component of

the network obtained in the bulbar-cortical neurogenesis model. Structural spine plasticity is

therefore expected to support the specific control of bulbar processing by higher brain areas.

Methods

The computational model comprises MCs and GCs (Fig 1A) that are described by the firing-

rate models

tM
dM
dt

¼ � M þ FMðS � gW
ðmgÞ GÞ; ð1Þ

tG
dG
dt

¼ � Gþ FGððW
ðmgÞÞ

TM � gthrÞ: ð2Þ

Here the vectors M and G represent the firing rates of NMC MCs and NGC GCs, respectively.

The MCs receive sensory inputs S from the glomerular layer and inhibitory input from GCs,

with γ denoting the inhibitory strength. The GCs receive excitation from MCs, with gthr> 0

setting a non-zero firing threshold for the GCs. Reflecting the reciprocal nature of the MC-GC

synapses the connectivity matrix W(gm) is the transpose of W(mg). Focusing on the structural

plasticity of the synapses, we do not include synaptic weight plasticity, the characterization of

which is still somewhat incomplete [31, 32]. We therefore keep the weight γ fixed and set
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W(mg) either to 1 or 0. Initially, each row of W(mg) has Nconn non-zero entries, reflecting that

each granule cell connects to Nconn mitral cells.

Reflecting the large spread of the secondary dendrites of MCs [28], we allow synapses to be

formed between all MCs and all GCs without any spatial limitations. Thus, the ordering of the

MCs and the GCs is arbitrary.

The firing rates depend on the neurons’ inputs via the activation functions FM and FG given

in Eqs (3 and 4), which are taken to be sigmoidal and piecewise linear, respectively. MCs

within the olfactory bulb experience saturation behavior. In [60] the authors recorded

responses of MCs when the concentration of the odorant changed 10-fold. Among the

recorded cells, 38% of MCs responded linearly to stimuli, and 29% of the MCs experienced sat-

uration behavior. This saturation may be the result of saturation in the inputs to the MCs or in

the MCs themselves. The activity of the sensory neurons saturates on a log scale when the odor

concentration changes 1000-fold [61]. For the concentration changes (0.6: 0.4 mixture or pure

odorant) relevant in our studies, we therefore assumed that saturation occurred mostly in the

MC rather than their sensory inputs and took the activation functions in Eqs (1 and 2) to be

FMðxÞ ¼ ½tanhðxÞ�
þ
; ð3Þ

FGðxÞ ¼ ½ðxÞ�
þ
: ð4Þ

Based on the observations in [5, 22, 23, 33], we assume the rate of formation and removal of

a synapse connecting MC i and GC j to depend on the activities of those neurons. As a proxy

for those activities we take the steady-state solutions of Eqs (1 and 2) for given stimulus S. We

express the formation and removal rates in terms of a single rate function,

RijðMi;GjÞ ¼ Mi fðGjÞ ; ð5Þ

where Mi and Gj are the respective steady-state activities. The activation function f(Gj),

fðGjÞ ¼ ½Gj � Gð0Þ�
þ
ðGj � Gð1ÞÞ ; ð6Þ

changes sign at a threshold G(1), which controls whether a new synapse is formed or an existing

synapse is removed (Fig 1B), giving the structural plasticity a bidirectional dependence on the

GC activity. In addition, there is a second threshold, G(0), below which the structural change is

negligible. Specifically, in each trial of duration Δt, which is one step in our simulation, a new

synapse is formed with probability Pþij ,

Pþij ¼ 1 � expð� lf ½Rij�þ DtÞ ; if WðmgÞ
ij ¼ 0: ð7Þ

Conversely, an existing synapse is removed with probability P�ij ,

P�ij ¼ 1 � expð� lr½� Rij�þ DtÞ ; if WðmgÞ
ij ¼ 1 : ð8Þ

Here, λf and λr are the formation and removal rates, respectively.

Since the change in the total number of synapses appears to be limited in experiments [36,

62], we introduce a homeostatic mechanism that limits the maximal number of synapses on a

given GC. For most of our results, we employ a top-k (k> Nconn) competition mechanism, in

which only the k synapses with the largest values of Rij survive if a GC has more than k synap-

ses. A soft top-k competition can be realized by a resource-pool competition with additional

assumptions, as discussed in the section Realization of competition through competition for a

limited resource. However, other mechanisms like scaling [63] or the ABS (Artola, Bröcher

and Singer) rule [64] may alternatively restrict the total number of synapses. Since the stability
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mechanism was not our focus, we mostly used the (hard) top-k competition without directly

specifying its biological cause.

Summarizing the algorithm, in each step the steady-state firing rates M and G in response

to a randomly chosen odor S from the training set are computed. Based on the resulting for-

mation/removal rates Rij the connectivity matrix W(mg) is updated in two parts. First, we

implement homeostasis by top-k competition: if any GC has more than k synapses, the corre-

sponding number with the smallest values of Rij are removed. Then, in the learning step the

connectivity is updated based on the Hebbian learning rules Eqs (7 and 8), except that synapses

that were just removed in the homeostasis step are not recreated in this time step. We simulate

the model long enough for the connectivity to reach a statistically steady state as measured by

the discriminability of the training odors (see Sec.Characterizing discriminability). As initial

condition we take a connectivity in which each GC is randomly connected to Nconn MCs.

Unless specified otherwise, the model parameters are as listed in Table 1. The steady states are

obtained by setting τG = 0, solving Eq (1) using ODE45 in Matlab, with G solved from Eq (2).

We found that the overall behavior of the model is robust with respect to changes in its

parameters (Supplementary Materials).

Instead of the hard top-k competition the number of synapses can also be limited by a

resource-pool competition. To this end we replace the activation function f(G) in Eq (5) by a

function ~�ðG; PÞ that also depends on the fill-level P of that resource pool (Fig 9A, red curve)

and assume that it is comprised of a formation term ~�form (Fig 9A, blue curve) and a removal

term ~�rem (Fig 9A, green curve),

~fðG; PÞ ¼ ~fformðG; PÞ � ~fremoveðGÞ ; ð9Þ

which are, respectively, given by

~f formðG; PÞ ¼ tanh kform ðG � rformÞ
� �

þ 1þ R0

� � P
P0

; ð10Þ

~fremðGÞ ¼ ðtanhðkrem ðG � rremÞÞ þ 1Þ=2þ R0 : ð11Þ

The fill-level P of the resource pool depends on the current number of synapses n,

P = P(all) − n, where P(all) is the total amount of the resource in the cell, which was assumed

to have the same constant value for all GCs. Here P0 is the equilibrium size of the resource

pool for which no spines are formed or removed when the GC is not active. Thus, for low

GC-activity P eventually goes to P0 and the number of the synapses on that GC goes to the

initial value n = Nconn = P(all) − P0.

In analogy to the original model, we define the two thresholds ~Gð0Þ < ~Gð1Þ via
~�ðGð0;1Þ; PÞ ¼ 0. The formation of synapses on significantly active GC is controlled by ~Gð1Þ. As

Table 1. Parameters used in the simulations of the model (unless stated otherwise).

NMC 240 NGC 1000

Nconn 60 k 66

τM 1 τG 0

Δt 1

gthr 4.4 γ 5e − 4

G(0) 1 G(1) 4

λf 6 � 10−4 λr 6 � 10−3

https://doi.org/10.1371/journal.pcbi.1010338.t001
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more synapses are formed and the fill-level decreases, ~Gð1Þ increases. This makes it more diffi-

cult for synapses to form on that GC, leading to a saturation of the number of its synapses.

This dependence of the threshold ~Gð1Þ is reminiscent of the sliding threshold of the BCM

model for synaptic-weight plasticity [34]. However, the sliding is caused here by the changes in

the limited resource instead of a temporal average over the previous activities. The change in

~Gð0Þ is opposite to the change in ~Gð1Þ when the size of the resource pool changes.

In [26], mice were exposed to the test odors only when they were on the training stage.

When they were back in the cage, the training odors were absent, and the activities of GCs cor-

responding to those odors were likely to be low. In the original model, the activation function

~�ðGÞ vanishes when G< G(0), which means synapses are neither formed nor removed. Thus,

the network is static. However, in the resource-pool model the activation function ~�ðGÞ is in

general non-zero when G< G(0). As a result, periods of low input also lead to changes in the

connectivity. We include such ‘air trials’, during which only spontaneous activity is presented,

after every four training trials. During air trials, the GC activity is very low and synapses are

formed and removed based particularly on the size of the respective resource pool, pushing

each pool towards P0. Given the uniform input to the MCs during air trials and the depen-

dence of spine formation on MC activity (cf. Eq (5)), the formation is biased towards MCs that

receive less inhibition, i.e., that have fewer connections with GCs, while the removal is biased

towards MCs that receive more inhibition. We find that inserting such air trials increases the

dynamics of the synapses and speeds up the convergence of the network evolution. It may

compensate for the fact that in the resource-pool model an existing synapse is removed only if

the activation function is negative, ~�ðG; PÞ < 0, while in the top-k competition model, synap-

ses can be removed not only when f(G)<0, but also directly by that competition.

The top-k mechanism and the competition via a resource pool lead to similar results. We

expect that this would also be the case for other mechanisms that may restrict the total number

of synapses, like scaling [63] or the ABS (Artola, Bröcher and Singer) rule [64]. Since the stabil-

ity mechanism was not our focus, we mostly used the (hard) top-k competition without

directly specifying its biological cause.

The additional parameters of the pool-competition model are listed in Table 2.

Generation of simplified stimuli and naturalistic stimuli

The naturalistic stimuli are based on glomerular activation data [39], which contains 2-d imag-

ing z-scores of the glomeruli responses for a variety of odorants. In our simulations, we used

carvone, citronellol (pre-training), ethylbenzene, heptanal (training, pure, and mixture). For

the novel odors employed in Figs 4 and 6 we used in addition limonene, ethylvalerate, 2-hepta-

none, acetophenone, valeric acid, iso-amylacetate, iso-eugenol, 1-pentanol, p-anisaldehyde.

Since in the original data, not all pixel values were available for all odorants, we kept only those

that were common to all of them. We then downsampled the resulting 2074 data points to 240

sample points S(orig).

Table 2. Table of parameters for the resource-pool model (unless stated otherwise).

κform 2.5 κrem 5

rform 2 rrem 1

R0 0.8 P0 20

Δt 1 γ 4.2 � 10−4

λf 1 λr 1

https://doi.org/10.1371/journal.pcbi.1010338.t002
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The z-score data S(orig) do not include the baseline activity of the glomeruli. Thus, a z-core

of 0, which represents the mean activity across the whole population, does not imply that the

activity was not affected by the odor presentation. To obtain a rough calibration of the mean

activity, we used the observation that around 60% of the MCs are activated by any given strong

stimulus [25]. In the absence of other information, we used this as a guide to re-calibrate the

40% percentile z-score S(40%) as 0. Then, we normalized the data by their maximum, resulting

in

~S ¼
SðorigÞ � Sð40%Þ

maxðSðorigÞ � Sð40%ÞÞ
:

Further, MCs are activated by the airflow even without any odorants, and odor representa-

tions change mostly linearly with the concentration of odorants [60]. For any given mixture

with concentration p of odor A and (1−p) of odor B we therefore modeled the stimulus as

S ¼ ½p ~SðAÞ þ ð1 � pÞ ~SðBÞ þ ~SðairÞ�
þ
:

Here ~SðairÞ ¼ 0:1 is the ‘air’ stimulus and [�]+ the rectifier, [x]+ = max(x, 0).

For the simplified model stimuli we used scaled Gaussian functions with different mean

and standard deviation as ~SðA;BÞ and set ~SðairÞ ¼ 0:2.

Definition of responsive cells and divergent cells

We defined the response of an MC as the change in activity induced by an odor compared to

the activity with air as stimulus. Specifically, if a MC had activity M(A, B) in response to stimuli

S(A, B), and it had activity M(air) when presenting air as a stimulus S(air), we defined the

response to odor A, B as MðA;BÞ
i � MðairÞ

i .

The definitions of responsive and divergent cells were adapted from [26]. A cell was classi-

fied as responsive, if its response to one odor in an odor pair was above a given threshold θ, i.e.

maxðMðAÞ
i � MðairÞ

i ;MðBÞ
i � MðairÞ

i Þ > y. A cell was classified as divergent, if the difference in its

response to the two odors was above the same threshold, jMðAÞ
i � MðBÞ

i j > y. Our results were

robust over a range of values of the threshold θ (S14 Fig).

Characterizing discriminability

We used d-prime and the Fisher discriminant to assess the discriminability of activity patterns.

For each divergent neuron d-prime is given by the difference between the mean activities of

the neuron for the two presented odors scaled by the combined variability of the activities. In

our firing-rate model Eqs (1 and 2) the MC-activity exhibits fluctuations only on the time scale

of network restructuring, which is much longer than the odor presentation. Assuming, as in

[15], that the MC firing rates MðA;BÞ
i represent the mean values of independent Poisson spike

trains, the variances S(A, B) of those spike trains are given by their respective means, SðA;BÞii ¼

MðA;BÞ
i and S A;Bð Þ

ij ¼ 0; i 6¼ j. Thus, for each MC we have

d0i ¼
MðAÞ

i � MðBÞ
i

�
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðAÞ
i þMðBÞ

i

q : ð12Þ

One way to characterize the overall discriminability of the activity patterns is then given by

the average hd0ii of the d-prime values across all neurons, as was done in [26]. This average hd0ii
may decrease when additional, less-discriminating MCs are included in the ensemble.
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However, the information transmitted by the ensemble does not decrease. We therefore used

also the Fisher discriminant to measure the discriminability. In general, it is given by

F ¼
ðw � ðMðAÞ � MðBÞÞÞ

2

wTðSðAÞ þ SðBÞÞw
;

where w is an arbitrary vector, which can be interpreted as the weights with which the MC

activity is fed into a linear read-out neuron. The weights w that maximize F are given by w(opt)

= (S(A) + S(B))−1(M(A) −M(B)). The optimal Fisher discriminant used to assess discriminability

is then given by

Fopt ¼
XNMC

i¼1

ðMðAÞ
i � MðBÞ

i Þ
2

MðAÞ
i þMðBÞ

i

: ð13Þ

It is related to the d-prime values of the individual neurons via

Fopt ¼
XNMC

i¼1

ðd0iÞ
2
:

Thus, Fopt always increases with the addition of MCs, reflecting the fact that even poorly dis-

criminating MCs provide some additional information about the odors. The optimal read-out

w(opt) puts less weight on the poorly discriminating MCs to avoid that the trial-to-trial variabil-

ity associated with those MCs deteriorates the overall discrimination.

Supporting information

S1 Fig. Randomly rewiring trained networks. (A to C) Connectivity matrices after rewiring a

network that was trained with the hard task (Fig 3C, bottom). Rewiring probability prewire = 0,

0.5, 1, respectively. (D) For the hard task discriminability predominantly decreases with increas-

ing rewiring probability prewire. (E) Activity differences are reduced after rewiring. (F) For the

easy task discriminability predominantly increases with increasing prewire (cf. Fig 3C, top).

(TIFF)

S2 Fig. Removal of Spines for Intermediate GC Activation. CDF for the increase in the MC

response to odor A due to training with that odor at a reduced amplitude 2A after the network

has been pre-trained with that odor at amplitude 2. For protocol see Fig 7.

(TIFF)

S3 Fig. Interference leads to forgetting. (A) Training protocol. (B) Non-interfering stimuli

for odor pair 2. (C) Connectivities after pre-training, training, and retraining, respectively. (D)

Discriminability is retained throughout the training. (E to G) as (B to D) but for interfering sti-

muli. During the training the network forgets most of the previously learned structure.

Retraining recovers the previous performance.

(TIFF)

S4 Fig. Alternating training does not impair learning ability. (A) Expanding the training

protocol of S3A Fig to 10 phases. (B) (Top) Stimuli of odor pair 1. (Bottom) Interfering stimuli

of odor pair 2. (C) The Fisher discriminant of odor pair 1 (top) and pair 2 (bottom). Learning

(increasing Fisher discriminant) proceeds faster than forgetting (decreasing Fisher discrimi-

nant). The numbers above the x-axis indicate the learning phase. (D) Effective connectivity

W(mm) alternates.

(TIFF)
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S5 Fig. Results of the resource-pool model when trained with simplified stimuli. Here γ =

1.7 � 10−3. Training with dissimilar stimuli reduces their discriminability (E to H), whereas

training with very similar enhances their discriminability (I to L) (cf. Fig 3).

(TIFF)

S6 Fig. Training results without pre-training phase. The training starts with a random

homogeneous network (cf. Fig 3).

(TIFF)

S7 Fig. Modifications with asymmetric inhibitory and excitatory synapses show similar

results in a hard task with simplified stimuli. (A–C) The results of setting maturation of the

inhibitory synapses lagged 2 timesteps. (A) The effective connectivity after training. (B) Activ-

ity difference before and after training. (C) The cumulative distribution function of synapse

age. When the lag is 2, only a limited fraction of connections does not inhibit MCs. (D, E) The

results when the inhibitory synapses have a geometry limitation. Organized as (A, B).

(TIFF)

S8 Fig. The overall inhibition of the model depends only weakly on the number NGC of

GCs. (A-C) Training with simplified easy stimuli as in Fig 1D and random initial network as

in Fig 1F, but with twice as many GCs. (A) MC activity after training (cf. Fig 1H). (B) Connec-

tivity W(mg) after training. (C) Effective connectivity W(mm). Compared to Fig 1J the connectiv-

ity is not quite as selective. (D) The maximal and mean MC activity after training as a function

of the number of GCs. (E) The number of activated GCs (G> G(1)) depends only weakly on

the total number of GCs. In (D, E) the vertical dashed line marks the value used in the rest of

the paper.

(TIFF)

S9 Fig. The overall inhibition of the model depends only weakly on the inhibitory strength

γ. The results are organized as in S8 Fig. (C) The connectivity is slightly less selective than in

Fig 1J. (D,E) The vertical dashed line indicates the value used in the rest of the paper. (D, E) To

allow a direct comparison, W(mm) and NðhighÞ
GC have been re-scaled by g

gðorigÞ with γ(orig) = 5 × 10−4.

(TIFF)

S10 Fig. Increasing G(1) impairs the ability to form connections between activated MCs

and GCs. (A,B,C) Results for G(1) = 1. (A) MC activity after training. (B) Connectivity W(mg)

between MCs and GCs. (C) Effective connectivity W(mm). (D,E,G) as (A,B,C) except for G(1) =

10. Activated MCs are connected with fewer GCs (compare E with B), resulting in weaker disy-

naptic inhibition (compare F with C) and higher MC activity (compare D to A). In (F) most of

the GCs cannot reach the high threshold. As a result, the synapses that connect to strongly acti-

vated MCs are removed faster than those connecting to weakly activated MCs. Thus, the effec-

tive connectivity among the activated MCs is lower than the background. (G) Maximal and

mean MC activity increase with increasing G(1). The gray lines indicate the corresponding val-

ues without inhibition from GCs (by setting γ = 0). (H) The number of responsive GC

decreases with increasing G(1). (G,H) The vertical dashed line indicates the value used in the

rest of the paper.

(TIFF)

S11 Fig. Learning ability is not affected by G(0), but the memory is. (A-G) Phase 1. (A)

Training stimuli in phase 1. (B) MC activity after training. (C) Connectivity W(mg). (D) Effec-

tive connectivity W(mm). (E to G) as (B to D) except for G(0) = 4. (H) Maximal and mean MC

activity after training in phase 1 as a function of G(1). (I to M) as (A to G) but after Phase 2. (I)
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Interfering training stimuli. (J-M) For G(0) = 0 the network forgets the previously learned con-

nectivity, but not for G(0) = 4. (N) The Fisher discriminant for odor pair 1 is unaffected by G(0)

in phase 1, but substantially reduced in phase 2 for small G(0). (O) For odor pair 2 the Fisher

discriminant depends only little on G(0). The vertical dashed lines in (H,N,O) indicate the

value used in the rest of the paper.

(TIFF)

S12 Fig. The selectivity of GCs is influenced by the number of connections each GC makes.

Easy stimuli as in Fig 1D with random initial network as in Fig 1F. The ratio of maximal to ini-

tial number of connections is kept fixed at k/Nconn� 1.1. (A, B) The MC activity is very similar

for Nconn = 60 and Nconn = 120. (C) Maximal and mean MC activity decrease with increasing

Nconn. The gray lines indicate the corresponding values without inhibition from GCs (by set-

ting γ = 0). (D) The selectivity of the GCs is impaired for Nconn > 60: a population of cells

emerges that respond to both odors (red line).

(TIFF)

S13 Fig. Increasing the number of GCs does not reduce the interference-induced forgetting

of odor pair 1 during training phase 2. Independent of the number of GCs, the discriminabil-

ity of odor pair 1, which is learned during phase 1 (black line in panel A), is substantially

reduced by the subsequent training during phase 2 (gray line in panel A). The discriminability

of odor pair 2 that is reached after training with those odors during phase 2 also does not

depend on the number of GCs. Only the learning of odor pair 2 during the training with odor

pair 1 is slightly improved in the larger network. (G(0) = 1, cf. S11 Fig. N,O).

(TIFF)

S14 Fig. Qualitatively, the results for the fraction of responsive and divergent cells do not

depend on the threshold θ for their classification. (A, B) Training with naturalistic stimuli

for different thresholds θ. The results in Figs 2 and 9 are based on θ = 0.2. (C, D) as (A, B) but

for training with simplified stimuli. (E, F) as (A, B) but in the resource-pool model.

(TIFF)
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