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Abstract

The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated
proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid
membrane environment. This paper focuses on applying a single step method leading to the formation of nanolipoprotein
particles (NLPs) capable of solubilizing functional GPCRs for biophysical characterization. NLPs were used to demonstrate
increased solubility for multiple GPCRs such as the Neurokinin 1 Receptor (NK1R), the Adrenergic Receptor â2 (ADRB2) and
the Dopamine Receptor D1 (DRD1). All three GPCRs showed affinity for their specific ligands using a simple dot blot assay.
The NK1R was characterized in greater detail to demonstrate correct folding of the ligand pocket with nanomolar specificity.
Electron paramagnetic resonance (EPR) spectroscopy validated the correct folding of the NK1R binding pocket for
Substance P (SP). Fluorescence correlation spectroscopy (FCS) was used to identify SP-bound NK1R-containing NLPs and
measure their dissociation rate in an aqueous environment. The dissociation constant was found to be 83 nM and was
consistent with dot blot assays. This study represents a unique combinational approach involving the single step de novo
production of a functional GPCR combined with biophysical techniques to demonstrate receptor association with the NLPs
and binding affinity to specific ligands. Such a combined approach provides a novel path forward to screen and characterize
GPCRs for drug discovery as well as structural studies outside of the complex cellular environment.
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Introduction

G-protein coupled receptors (GPCRs) are a diverse family of

membrane proteins that act as transducers of signals from

extracellular ligands, e.g. photons, odorants, hormones, nucleo-

tides, nucleosides, peptides, lipids and proteins, initiating a diverse

range of intracellular responses. [1–3] They represent the most

abundant drug target class of proteins. [4–5] Approximately 40–

50% of all drugs used today modulate some form of GPCR

activity. [6] Although over 350 human GPCRs have been

previously described, their function is only speculative and there

are many more putative orphan receptors (details regarding the

receptor families can be found at http://www.iuphar-db.org). [7–

8] Those GPCRs with unknown function are interesting

candidates to identify as potential novel targets for future studies

of their activity, which in turn may further lead to the discovery of

new drugs. However, more efficient methods for production and

characterization are needed.

Cell-free protein production has become a widely accepted

means to speed up the production and characterization of this

class of membrane proteins, as over-expression of membrane

proteins in vivo typically results in cell toxicity, protein aggregation,

misfolding, and low yield. [9–12] Cell-free expression can also

alleviate problems such as the need for time-consuming cloning,

cell transfection, cell growth, cell lysis, and challenges related to

subsequent purification. [13] Cell-free systems permit unique

labeling or tagging strategies not always readily available to whole

cell systems for protein characterization. [13–14] They have also

proven beneficial to structural studies by NMR and X-ray

crystallography. [15–17] However, previously published studies

of cell-free production of GPCRs typically required expression and

subsequent purification combined with detergent solubilization of

the proteins. [18] This often alters the conformation and function

of these membrane proteins. To overcome these aforementioned

problems, functional membrane proteins can be assembled in

lipid/protein-based particulate structures connoted as ‘‘nano-
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discs’’, or nanolipoprotein particles (NLPs). [19–21] Such methods

were previously used to express GPCRs and model proteins such

as bacteriorhodopsin reconstituted into NLPs. [22–26] These

nanoparticle complexes form a compelling approach for the

stabilization and characterization of membrane proteins. [23,25]

Recent work has described the self-assembly of a single integral

membrane protein into soluble nanoparticulate phospholipid

bilayers. [22–23,27–28] This approach has previously been

applied to the adrenergic receptor b2, and rhodopsin reconstituted

into NLP constructs [22–23,29] and shown to efficiently activate

the associated G protein (transducin for rhodopsin). This process,

however, relied on the separate expression and detergent

extraction of GPCRs of interest. [18–19].

We have previously demonstrated a single-step cell-free

approach for the expression of nanodisc-associated bacteriorho-

dopsin (bR), [26,30–31] a 7 transmembrane spanning protein,

which is the structural model protein for rhodopsins and other

GPCR family members. This complex was characterized using

fluorescence correlation spectroscopy (FCS) and showed unique

diffusion behaviour in solution. [26] Single molecule fluorescence

techniques have been used to study GPCR interactions in vivo since

the early 2000s [32–34] as well as to NLP associated complexes.

[23,35–36] These earlier studies set the stage for further

development of FCS to address protein-protein associations

combined with kinetic characterization of GPCRs.

In this paper we report the de novo synthesis of several active

human GPCRs, and rapid solution-based functional binding

studies using FCS, a single molecule fluorescence technique.

Electron paramagnetic resonance (EPR) spectroscopy and fluo-

rescent dot blot assays were used for comparison as well.

Compared to the other assays, FCS provided a more quantitative

approach to rapidly determine the solution-based binding

constants for GPCR-ligand interactions. FCS was advantageous

by requiring small volumes of material for kinetic assessment.

Moreover, FCS can be extended to become a high-throughput

cell-free screening platform for GPCRs.

Results

NK1R, ADRB2 and DRD1 were codon-optimized and co-

expressed respectively with D49A1 in the presence of DMPC using

a cell-free E. coli expression system. The NK1R protein was

produced and purified to a total level of approximately 100 mg/

mL. The material was estimated to have an NLP insertion rate of

17% 65%. Figure 1a shows that the solubility increased

significantly (more than 2 fold) for all 3 GPCRs when associated

with NLPs as compared to when the GPCRs were expressed

alone. Figure 1b shows dot blot assays using various fluorescently

labeled ligands capable of recognizing NK1R, ADRB2 and

DRD1. Figure 1c shows the quantification of specific ligand

association for the dot blot assays. Compared with non-specific

binding of fluorescent-labeled ligands (when excessive non-labeled

ligands were added) to the GPCR-NLP complexes, the specific

binding demonstrated much higher fluorescence intensity, indi-

cating retained activity of all 3 GPCRs when co-expressed with

NLPs.

The formation of NK1R-NLPs was confirmed by FCS

measurements of dual-labeled NK1R-NLP complexes freely

diffusing in solution. Figure 2 shows the normalized diffusion

curves of individual NK1R proteins, NK1R-NLP complexes, and

lipid vesicles. NK1R can be distinguished by the green fluores-

cence of the GFP fusion that was constructed for this experiment.

Lipid vesicles were identified by the red fluorescence of Texas

Red-DHPE that was incorporated into the vesicles. For NK1R

alone (hydrodynamic diameter: 4.9 nm, measured by particle

sizer) we obtained a diffusion time of 0.1760.025 ms, while the

lipid vesicles yielded a diffusion time of 4.4661.55 ms (hydrody-

namic diameter on average: 73.0 nm, measured by particle sizer).

To identify and isolate NK1R-containing NLP complexes, we

determined the amount of cross correlation between GFP and

Texas Red, the fluorophores on the protein and lipids, respec-

tively. This positive cross correlation confirmed the formation of

NK1R-loaded NLPs. Moreover their diffusion time of

0.5160.37 ms indicates a diameter of 10.3 nm for these

complexes.

We have previously shown that a modified version of the

Substance P peptide containing the TOAC spin-label at the

position 4 (4-TOAC SP) binds and activates the NK1R protein in

a native-like environment using the cell membranes containing the

over-expressed receptor. [37] Furthermore, upon binding to the

NK1R on the surface of mammalian cells, the change in rotational

diffusion of the 4-TOAC SP can be detected by EPR spectroscopy.

Since the SP binding pocket requires proper 3-dimensional folding

of the receptor’s core helices, [37] we used 4-TOAC SP to

evaluate the ligand binding properties of the NLP-solubilized

receptor synthesized under cell-free conditions. Figure 3 shows the

EPR spectrum of 4-TOAC SP in the presence of NLPs containing

NK1R (red curve) compared to that in the presence of NLPs

containing bR (blue curve) with respect to that in a buffer control

(black curve). While the curves for the sample containing bR and

buffer alone were identical, the sample containing NLP-solubilized

NK1R showed a significantly broadened curve, indicating a

substantial loss in rotational averaging. The increase in correlation

time for the bound ligand resulted in inhomogeneous broadening,

where the magnitude of change can be estimated by the peak-

height ratio h21/h0. [38] The relative peak-height ratio is taken as

an empirical motional index for the spin label that was attached to

SP. Typically a higher ratio represents a greater motion freedom

of the attached spin label. In the absence of NK1R, 4-TOAC SP

displayed a peak-height ratio of 0.43. The line shape of the 4-

TOAC SP was similar to that in the presence bR-associated NLPs

(with a h21/h0 value of 0.44). However, in the presence of NLP-

associated NK1R, the peak height ratio decreased to 0.34,

indicating a substantial reduction on the rate of rotational

diffusion experienced by 4-TOAC SP. This positive confirmation

of binding between SP and NK1R-NLPs indicates that NK1R

folds correctly in NLPs and retains its bioactivity.

To determine the binding affinity of FAM labeled SP (FAM-SP)

interacting with NK1R-NLPs, reactions were tested using dot blot

assays. We measured the fluorescence image of a dot blot

containing 3 replicates of NK1R-NLPs binding with different

concentrations of FAM-SP and another 3 replicates of NK1R-

NLPs binding with the same series of FAM-SP but with excessive

amounts of non-labeled SP included. For the control, there were

additional 3 replicates of the ligand FAM-SP alone that were

adsorbed on the filter paper using the same series of concentra-

tions. After subtracting specific and non-specific signals by the

control signal (FAM-SP only), the curve for specific binding was

fitted to a OneSiteBind model where non-specific binding

indicated a linear fit (Figure 4). This was consistent with our

expectation that increasing amounts of FAM-SP bind to NK1R-

NLPs until the reaction reaches saturation. Data analysis of the

binding curve produced a dissociation constant of 3467.8 nM.

Compared with the dot blot assay, FCS is a more accurate

method to rapidly study the binding affinity of FAM-SP

interacting with NK1R-NLPs in aqueous solution without

substrate and thus exhibiting significantly reduced non-specific

binding. Here, we measured the diffusion time of FAM-labeled

GPCRs Supported in Nanolipoprotein Discs
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SP by FCS after adding different concentrations of NK1R-

NLPs. Since the FAM-labeled SP has a significantly smaller

hydrodynamic radius than the NLPs, we expected a significant

increase in diffusion time upon interaction of SP with NK1R-

NLPs. Figure 5 shows that after increasing the total number of

NK1R-NLPs by adding larger volumes of NK1R-NLP suspen-

sion, the diffusion curves for FAM-SP continuously shifted to

longer diffusion times. This indicates that a larger number of

FAM-SP were interacting with NK1R-NLPs forming bigger-size

Figure 1. Co-expression with NLPs increased solubility for NK1R, ADRB2, and DRD1 and retained their activity. (a) Comparison of
GPCR solubility when expressed with or without NLPs. NK1R, ADRB2, and DRD1 were expressed as GFP fusion proteins. (b) The dot blot of GPCR-NLPs
when incubating with (i) 100 nM fluorescent-labeled ligand and (ii) 100 nM fluorescent-labeled ligand and 100 mM non-labeled ligand. (iii) Non-
specific signal of 100 nM fluorescent-labeled ligand alone on the filter paper as the control. The tests were done with 3 replicates for NK1R, 2
replicates for ADRB2 and 2 replicates for DRD1. (c) Quantification of dot blot assay. The significant difference of fluorescence intensity between (i) and
(ii), (iii) indicates activity of NK1R, ADRB2 and DRD1.
doi:10.1371/journal.pone.0044911.g001

Figure 2. Diffusion curves of lipid vesicles, NK1R and NK1R-NLP complexes. The lipids and NK1R were labeled by Texas Red and GFP
respectively. The cross correlation of Texas Red and GFP represents the interaction between lipids and NK1R, indicating the formation of NK1R-
associated NLPs. The diffusion times of lipid vesicles, NK1R and NK1R- NLP complexes are 4.46, 0.17, and 0.51 ms respectively.
doi:10.1371/journal.pone.0044911.g002

GPCRs Supported in Nanolipoprotein Discs
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species in solution, and therefore caused an increase in diffusion

times, until the binding of FAM-SP to NK1R became saturated.

Each of the individual diffusion curves for FAM-SP were fitted

to a 2-species complex diffusion model. [26] The average diffusion

times were determined as a result of the fit parameters for bound

FAM-SP and unbound FAM-SP. Since we also had control data of

diffusion times for FAM-SP and NK1R-NLPs alone, by compar-

ing the average diffusion times of the mixture with the controls, we

were able to infer the percentage of bound FAM-SP (Ligand

bound %) versus the total amount of FAM-SP added and the

concentration of free NK1R-NLPs at equilibrium ([NK1R-

NLPs]). By plotting Ligand bound % versus [NK1R-NLPs] and

fitting it to an ‘‘OneSiteBind’’ model (Figure 6), we calculated the

dissociation constants Kd and Bmax. The results are 83633 nM

and 3665.6 nM, respectively. This dissociation constant is

consistent with the dot blot assays (Kd = 3467.8 nM) in the

range of tens of nanomolar but albeit 2,3 fold higher when

measured by FCS. FCS measured ligand binding directly in

solution and maintained an aqueous environment where back-

ground and non-specific binding were minimal. Compared with

results from dot blot assays, the fitting results obtained from FCS

are considered more accurate when the background/noise and

non-specific binding were seen in the dot blot assays but not

included for the fitting analysis.

Discussion

Compared to other approaches for obtaining membrane-bound

receptor proteins, cell-free co-expression provides a one-step viable

method to produce functional GPCRs such as NK1R. The NLP

serves as an ideal membrane mimetic that renders the protein

Figure 3. EPR spectra of 4-TOAC SP are sensitive to the presence of NLPs containing NK1R. 4-TOAC SP in buffer or combined with bR-
containing NLP gave a narrower spectrum (h21/h20 ,0.44). The spectrum for 4-TOAC SP was significantly broadened when NK1R-NLP complexes
were present (red line, h21/h0 = 0.34) reflecting the diminished rotational freedom of its receptor-bound state.
doi:10.1371/journal.pone.0044911.g003

Figure 4. Saturation binding assay of FAM-SP on filter paper
after interacting with NK1R-NLPs. The fluorescence intensity was
averaged through 3 replicates with the error bar showing the standard
deviation. Each data point represented intensity of different amounts of
FAM-SP interacting with NK1R-NLPs subtracted by non-specific
adsorption of the same amounts of FAM-SP to the paper. The solid
curve represents specific binding. The dashed curve represents non-
specific binding (NK1R-NLPs saturated by excessive amount of non-
labeled SP). The binding curve was fit to an ‘‘OneSiteBind’’ model Y =
Bmax 6X/(Kd + X), where Y represents fluorescence intensity caused by
binding and X represents concentration of FAM-SP in the solution after
reaction. The fitting results gave (3.560.3) 6106 (fluorescence intensity)
for Bmax and 3467.8 nM for Kd (dissociation constant).
doi:10.1371/journal.pone.0044911.g004
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soluble and thus easily accessible for ligand binding studies using

methods such as EPR spectroscopy and FCS. Compared to other

‘‘nanodisc’’ or NLP based studies, we showed the first functional

GPCR through de novo expression using the DNA sequence

representing the full-length protein, independent of a fusion

protein for stabilizing the receptor. Furthermore, we were able to

demonstrate kinetic characterization of the solubilized receptor

using FCS. For comparison, in a recent publication describing the

cell-free synthesis of functional adrenergic receptor b2 complexed

with nanodiscs, [39] the receptor required insertion of a T4

lysozyme sequence in the loop region to obtain functional

adrenergic receptor b2 protein. Using our method NK1R,

ADRB2 and DRD1 were all functional in ligand binding assays

after a single-step co-expression and co-assembly system without

requiring detergents or protein modification for stabilization. It is

also worth noting that in other nanodisc-related GPCR studies or

cell-free production of GPCR assays, separate protein production

and purification preprocessing with detergents was required prior

to NLP complex assembly. [29] Our results indicate that adding

additional purification steps can be avoided as well as the

requirement for using a fusion protein for stabilizing the GPCRs.

Assessment of NK1R activity was independently validated by

three different methods that included fluorescent dot blot assays,

EPR spectroscopy and FCS. Dot blot assays and EPR spectros-

copy demonstrated that NK1R loaded into NLPs were bioactive.

Furthermore, the nM affinities were comparable to earlier

published studies using mammalian derived NK1R. [37] Among

these three approaches, FCS is a particularly powerful tool for

characterizing NLPs, as it provided a more quantitative approach

to rapidly determine the solution-based binding constants for

NK1R-SP interaction studies. FCS also enabled us to determine

the hydrodynamic radii of the diffusing complexes along with their

concentrations (based on the amplitude of the correlation

function). In addition, FCS was advantageous by requiring less

material (proteins) in volumes as small as ,10 mL for kinetic

assessment in our studies. The measurments are typically rapid

and take ,5 minutes. However, as it requires concentrations of

,100 nM or less of fluorescently labeled compounds, the main

challenge of FCS is its limited dynamic range for interaction

Figure 5. Diffusion curves of FAM-SP after binding with different amounts of NK1R-NLPs. Sample a to e represent 80 mL FAM-SP binding
with 0.5, 4, 8, 12, 20 mL NK1R-NLP complexes respectively. Sample f to h represent 20, 10, 4, 2 mL FAM-SP binding with 10 mL NK1R-NLPs complexes
respectively.
doi:10.1371/journal.pone.0044911.g005

Figure 6. Saturation binding curve of NK1R-NLPs to FAM-SP.
[NK1R-NLPs] is the concentration of free NK1R-NLPs at equilibrium and
was calculated from the subtraction of the amount of NK1R-NLPs
bound with FAM-SP from the total amount of NK1R-NLPs added. The
ligand bound % was calculated by comparing the average diffusion
time of the mixture (free FAM-SP and FAM-SP bound with NK1R-NLPs)
with the individual controls (diffusion times of free FAM-SP and free
NK1R-NLPs). The experimental data (blue dots) were fitted to an
‘‘OneSiteBind’’ model Y = Bmax 6 X/(Kd + X). Y represents the
percentage of bound ligand in the total amount of ligand, and X
represents the concentration of NK1R-NLPs in the solution after
reaction. The fitting results in 3665.6 nM for Bmax and 83633 nM for
Kd.
doi:10.1371/journal.pone.0044911.g006
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analysis. This can be overcome by an appropriate design of a

combinatorial screen of initial concentrations for NK1R-NLPs

and SP. Mixing fluorescently labeled compounds with appropriate

amounts of unlabeled compounds is the strategy for extending the

concentration range. After reaching equilibrium, the actual

concentrations of each species were then inferred and used to

calculate the dissociation constant.

The technique of FCS can be generalized for screening multiple

GPCRs to assess binding constants as well as drug binding studies.

The most popular method for screening binding activity for

GPCRs is using radioactivity assays, however this is often

disadvantageous since it requires the handling of isotope labeled

ligands. Other screening approaches include dot blot assays and

EPR spectroscopy as described above. All of these methods require

larger amounts of reagents that are not always easily achievable for

the GPCRs of interest. In comparison, FCS can be performed in

small volumes (,10 mL) or even less when microfluidic delivery

methods are employed, and it is very sensitive to concentrations as

in the range as low as picomolar. Therefore, generalizing the

method of using FCS to assess binding constants for screening

other GPCRs is warranted.

Lastly, FCS can be extended to become a high-throughput cell-

free screening platform for GPCRs by facilitating simultaneous

measurements in multi-well plates, providing real-time monitoring

of production, purification, and functionality of GPCRs as well as

other synthetic receptors based on the cross correlation between

signals from the proteins and their specific ligands as demonstrated

here. Furthermore, the diffusion curves provide detailed structural

information about the particular association between GPCRs and

NLPs to form complexes as well as monitoring interactions

between GPCRs and specific ligands or other small molecules such

as lipids.

In contrast to cell-based assays, our approach is currently

limited to demonstrating ligand binding for a very specific set of

GPCRs. Although ligand binding alone does not conclusively

demonstrate the entire protein is folded natively, it does show that

critical tertiary structure is achieved since the binding of

tachykinins has been shown to involve liganding from residues

on a least 3 different transmembrane domains. [40] GPCRs

involve a greater level of complexity. This includes G-protein

activation and receptor internalization, which are more complete

measurements of GPCR function. [5] Because our system also

lacks post-translational modifications, cell membrane lipid com-

ponents, and the heterotrimeric G-protein, we do not expect our

assays to fully mirror the protein in a cell membrane. In the future,

such studies could be possible using techniques such as FCS within

cells. FCS is highly amenable to measurements in solution utilizing

cross-correlating measurements, which would potentially allow

measurements in heterogeneous environments such as cell

membranes and cell fractions. [32–33] In the future such

experiments could be designed to better access both the in vitro

and in vivo biology of GPCRs complexed with NLPs.

In summary, we applied a de novo synthesis, cell-free co-

expression, and in-situ analysis method to produce nanolipoprotein

particles (NLPs) capable of solubilizing three GPCRs (NK1R,

ADRB2 and DRD1) while maintaining their biological activity.

We also demonstrated a robust method for assessing binding

constants for NK1R-NLPs that interact with SP using FCS. This

combined approach should be capable of high-throughput

screening for active GPCRs produced by cell-free co-expression.

In the future, it will be of interest to build upon these studies to

explore mechanisms behind G-protein activation and potential

receptor uptake in cells.

Materials and Methods

Materials
FAM (Fluorescein amidite) labeled Substance P was purchased

from Anaspec Inc. (Fremont, CA). DMPC (1, 2-ditetradecanoyl-

sn-glycero-3-phosphocholine) was purchased from Avanti Polar

Lipids, Inc. Texas RedH DHPE (Texas RedH 1, 2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine triethylammonium salt), the

SDS and native PAGE kits were purchased from Life Technol-

ogies. D49A1 (a truncated apolipoprotein A-1) and bOp sequence,

which encodes bR, were described previously. [30] The D49A1

sequence was cloned into pIVEX2.4b vector. Protein sequences

for NK1R, ADRB2 and DRD1 were obtained from the National

Center for Biotechnology Information (NCBI) protein database.

The corresponding DNA sequences were codon optimized for E.

coli expression by DNA2.0 and cloned into a pJexpress414 vector.

Information about all the sequences is shown in Table S1. RTS

500 ProteoMaster Kits were purchased from Roche Molecular

Diagnostics. The fluorescent-labeled antagonists for ADRB2 and

DRD1 were purchased from CellAura Technologies.

Lipid Preparation
Small unilamellar vesicles of DMPC were prepared by probe

sonicating a 25 mg/mL aqueous solution of DMPC on ice until

optical clarity was achieved, typically for 15 minutes. Two minutes

of centrifugation at 13,700 RCF was used to remove any metal

contamination from the sonication probe tip. DMPC small

unilamellar vesicles were added to the cell-free reaction at a final

concentration of 2 mg/mL.

Expression, Purification and Solubility Tests of GPCR-NLP
Complexes

A myriad of commercial cell-free kits, to include mammalian,

yeast, insect, E. coli and others, are available for providing cell-free

expressed proteins. [31,39] For this study preparative 1 mL

reactions were carried out using the Roche RTS 500 Proteo-

Master Kit to optimize for protein yield combined with functional

ligand binding. Lyophilized reaction components (Lysate, Reac-

tion Mix, Amino Acid Mix, and Methionine) were dissolved in

reconstitution buffer and combined as specified by the manufac-

turer. DMPC was used either as non-labeled or as fluorescently

labeled by mixing 99.5% DMPC and 0.5% Texas RedH DHPE

(Molar concentration). To co-express GPCRs and D49A1,

different ratios of plasmids were added to the lysate mixture

along with added DMPC vesicles for screening. The reactions

were incubated at 30uC overnight. SDS-PAGE was used to

confirm the protein yields [30] and determine the optimized

plasmid ratios between the D49A1 plasmid and GPCR expression

vector. The optimized ratios 100:1 for NK1R: D49A1, 20:1 for

ADRB2: D49A1 and 20:1 for DRD1: D49A1 were used to

produce GPCR-NLP complexes for characterization. To charac-

terize the solubilities of GPCRs produced by cell-free co-

expression method, the relative fluorescence units (RFU) were

measured for the supernatant solution after spinning the vials for

10 minutes at an rpm of 13K and then taking the spectrum using a

Nanodrop ND-3300. [13].

Immobilized metal affinity chromatography was used to isolate

the protein complex of interest (D49A1 or D49A1 associated with

GPCR of interest) using the D49A1 encoded His tag. None of the

GPCR proteins contained a His tag. The soluble fraction (,1 mL)

was mixed with Ni-NTA Superflow resin (1 ml of 50% slurry,

Qiagen) according to the manufacturer’s protocol using native

purification conditions with the following modifications: 12-

column volumes of 10 mM imidazole in PBS buffer was used to

GPCRs Supported in Nanolipoprotein Discs
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wash the column. A total of 6 mL of elution buffer (400 mM

imidazole in PBS) were used to elute the bound protein in 1-mL

aliquots. All of the elution fractions were combined, concentrated

and buffer exchanged into TBS using a 100 kDa molecular weight

sieve filter (Vivascience) to achieve a final volume of ,200 mL.

This material was used for all subsequent characterization assays.

The purification quality was confirmed by SDS PAGE. [30].

Dot Blot Assays of Fluorescence Labeled Ligands Binding
with GPCR-NLP Complexes

A total of 100 mL of 100 nM fluorescence labeled ligands for

NK1R, ADRB2 and DRD1 were mixed with 100 mL ,0.2 nM

GPCR-NLPs. The reactions were allowed to mix in binding buffer

(50 mM Tris-HCl pH 7.4, 3 mM MgCl2 containing protease

inhibitor with 0.04 mg/ml BSA and 100 mM NaCl) for 1 hour at

room temperature. Several replicates (3 replicates for NK1R and 2

replicates for ADRB2 and DRD1) were then blotted on the filter

paper. The same procedure was used to determine non-specific

binding when 100 mL of the 10 mM non-labeled ligands were also

included. For the control, 100 mL of 100 nM fluorescence labeled

ligands alone were added onto the filter paper. Then the filter

paper was rinsed 5 times with 100 mL ice-cold rinsing buffer

(25 mM Tris pH 7.5, 3 mM MgCl2, 1 mM EDTA) each time and

dried in a 37uC incubator. Signals were measured using a

fluorescence imaging system GE Typhoon 9410. The NK1R

lignad (FAM-SP) was excited at 488 nm and signals were collected

using a 520/40 nm bandpass filter. Fluorescent-labeled ligands for

ADRB2 and DRD1 were excited at 633 nm and signals were

collected using a 670/30 nm bandpass filter.

To obtain the binding curve of NK1R interacting with FAM-

SP, the same procedure was used for FAM-SP at a series of

concentrations (0.1, 0.4, 1.6, 6.4, 25.6, 102.4, and 1638.4 nM). To

test non-specific binding, 100 mL of 10 mM non-labeled SP was

included with FAM-SP. For the control, FAM-SP alone at the

same series of concentrations was added onto the filter paper. The

experiment was run in replicate 3 times.

FCS Characterization of NK1R-NLP Complexes and
Binding Assay of FAM Labeled SP Interacting with NK1R-
NLP Complexes

Lipid vesicles formed by DMPC were labeled by addition of a

small fraction of fluorescently labeled DHPE (Texas Red dye 0.5%

volume percentage). NK1R was labeled with a GFP fusion built

into its plasmid during translation. In order to confirm the

formation of NK1R-NLPs, the diffusion times of fluorescently

labeled species in a volume of 10 mL were measured by FCS

(MicroTime200, PicoQuant, Berlin, Germany). The samples were

excited by a 470 nm laser (Picoquant pulsed diode laser, 70 ps

pulse width, 20 MHz repetition rate) and the time traces of

fluorescent signals were collected for 10 minutes. The focus of the

confocal FCS system was adjusted to be 5 mm above the cover slip

surface before each measurement, so that the FCS measurements

were performed at a defined distance above the glass surface. The

pinhole size of the fluorescence detection system was set to 100 mm

in diameter. After the pinhole adjustment, the fluorescence light

was divided via a 50/50 beam splitter cube, passed an emission

filter and focused onto 2 SPCM-AQR SPAD detectors (Perkin

Elmer). All measurements were performed using the SymPhoTime

Software (PicoQuant) and the diffusion curves were plotted using

Igor Pro 6.05A.

For the binding assay, FAM-SP was diluted to a concentration

of 1 mM in binding buffer (50 mM Tris-HCl, 3 nM MgCl2,

100 mM NaCl, 0.04 mg/mL BSA, pH 7.5). 80 mL NK1R-NLPs

(non-labeled and without fusion GFP, , 1 mg/mL in protein

concentration) were mixed with 0.5, 4, 8, 12, and 200 mL 1 mM

FAM-SP respectively, and then incubated for 1 hour at room

temperature (,25uC). 10 mL 1 mM FAM-SP was mixed with 20

and 10 mL NK1R-NLPs, respectively, and then incubated for 1

hour at room temperature. After incubation, 10 mL of each

individual mixture was assayed using FCS. The data were

collected using SymPhoTime Software. The diffusion curves were

plotted using Igor Pro 6.05A and analyzed using OriginPro 8.

EPR Spectroscopy Measurements of Spin Labeled SP
Binding to NK1R-NLP Complexes

EPR measurements were carried out in a JEOL TE-100 X-

band spectrometer fitted with a loop-gap resonator that was used

for EPR spectroscopy measurements as described previously. [37]

SP with TOAC spin label was added to either buffer or NLP

preparation to a final concentration of 10 mM and immediately

loaded (,5 ml) into a sealed quartz capillary tube and measured by

EPR spectroscopy. The spectra were obtained by averaging signals

from three 2-minute runs, with a sweep width of 100G. 4 mW

microwave power was used and modulation amplitude was

optimized to the natural line width of the attached spin probe.

All the spectra were recorded at room temperature.
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