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Abstract

H2A.Z is a histone H2A variant conserved from yeast to humans, and is found at 63% of promoters in Saccharomyces
cerevisiae. This pattern of localization suggests that H2A.Z is somehow important for gene expression or regulation. H2A.Z
can be acetylated at up to four lysine residues on its amino-terminal tail, and acetylated-H2A.Z is enriched in chromatin
containing promoters of active genes. We investigated whether H2A.Z’s role in GAL1 gene regulation and gene expression
depends on H2A.Z acetylation. Our findings suggested that H2A.Z functioned both in gene regulation and in gene
expression and that only its role in gene regulation depended upon its acetylation. Our findings provided an alternate
explanation for results that were previously interpreted as evidence that H2A.Z plays a role in GAL1 transcriptional memory.
Additionally, our findings provided new insights into the phenotypes of htz1D mutants: in the absence of H2A.Z, the SWR1
complex, which deposits H2A.Z into chromatin, was deleterious to the cell, and many of the phenotypes of cells lacking
H2A.Z were due to the SWR1 complex’s activity rather than to the absence of H2A.Z per se. These results highlight the need
to reevaluate all studies on the phenotypes of cells lacking H2A.Z.
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Introduction

In addition to their role in genome packaging, histones also

play a role in the functional organization of eukaryotic genomes.

Clear causal relationships have been established between some

specific modifications of histones at specific loci and the

subsequent events that occur at these loci. Histones are modified

by enzymes that couple acetyl, methyl, phosphoryl, ubiquitin, or

sumo moieties to specific locations either on histone tails, which

extend outward from the nucleosome core, or at positions in

the core, such as acetylation of H3 lysine 56, near where the

DNA helix enters and leaves the nucleosome [1]. Modified

histone tails serve in some cases as docking sites for protein

complexes. Thus, in principle, a particular collection of

modifications on the nucleosomes of a locus can recruit s

pecific complexes to that locus to achieve a particular outcome

[2–7].

In addition to histone modifications, nucleosomes can also be

specialized by virtue of the presence of histone variants.

Saccharomyces encodes three histone variants: H2A.Z, which is

conserved from yeast to humans; a variant of H2B called H2B2,

conserved among yeasts; and Cse4, an H3 variant, which

functions at the nucleosomes at centromeres [8].

Like Cse4p, H2A.Z is also localized to specific chromosomal

locations with specialized functions. In S. cerevisiae, H2A.Z is

incorporated into nucleosomes near, but not at, centromeres, at

the borders of heterochromatic domains, and near the promoters

of 63% of genes [9–12]. H2A.Z is incorporated into chromatin by

the SWR1 complex (SWR1-Com) a multi-subunit enzyme whose

catalytic subunit, Swr1, is a member of the Swi2/Snf2 family of

chromatin remodeling enzymes [13–15].

H2A.Z’s localization at promoters suggests that it plays an

important role in gene expression. Yet genome-wide micro-array

analyses indicate that H2A.Z affects the steady-state mRNA levels

of only 5% of S. cerevisiae’s genes [16]. Interestingly, most of the

genes downregulated in cells lacking H2A.Z were near the

boundaries of SIR-silenced heterochromatin. This observation

revealed that H2A.Z functions as part of the boundary separating

euchromatin and heterochromatin [16].

H2A.Z is acetylated at up to four positions on its N-terminal tail by

the NuA4 and SAGA histone-acetyltransferase complexes [17–19].

Moreover, H2A.Z’s heterochromatin-boundary function depends on

its acetylation [17]. Promoter-proximal H2A.Z is also acetylated and,

as measured on a cell population, the level of acetylation correlates

with the gene’s expression level [19]. Recent work suggests that

acetylated-H2A.Z promotes transcription of adjacent genes. Specif-
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ically, H2A.Z at the promoters of the oleate-responsive genes CTA1,

POX1, POT1, and FOX2 is acetylated on Lys14. Cells with a mutant

form of H2A.Z that cannot be acetylated at this position are defective

in induction of these genes [20].

H2A.Z’s contribution to gene-induction was first explored in

the context of the GAL1, GAL7, and GAL10 genes [21,22], which

are induced in medium containing galactose, repressed in

medium containing glucose, and expressed at a basal uninduced

level by cells grown in medium with nonfermentable carbon

sources [23–26]. Because the galactose regulon is one of only a

handful of thoroughly studied regulated genes in yeast, it has

provided many fresh insights into gene regulation. Hence results

on, and claims about, this regulon take on special importance in

the field.

Induction of GAL1, GAL7, and GAL10 occurs more rapidly

when S. cerevisiae cells are grown in a nonrepressing, noninducing

carbon source (such as raffinose) and then shifted to inducing

conditions (galactose) than when cells are grown in repressing

conditions (glucose) and then transferred into inducing conditions

[23–26]. The one exception to this pattern involves a phenomenon

known as transcriptional memory. S. cerevisiae cells grown in

inducing conditions prior to short-term growth in repressing

conditions are able to reinduce GAL- gene expression upon

induction as rapidly as cells grown continuously in nonrepressing

conditions [27–29]. This ‘‘memory’’ of recent inducing conditions

is reported to be H2A.Z dependent [27], although other

explanations have been offered [29].

The role of H2A.Z in galactose induction extends beyond its

role in GAL1 transcriptional memory. Cells that are grown in

nonrepressing conditions prior to galactose induction require

H2A.Z for the rapid induction of GAL1 [21,22]. H2A.Z promotes

the rapid induction of GAL1 by recruiting the Mediator complex to

the GAL1 promoter [30,31].

The work presented in this paper was aimed at testing the

potential role of H2A.Z acetylation in gene induction and

transcriptional memory. We found no evidence for a role for

H2A.Z in GAL1 transcriptional memory, discovered a role for

H2A.Z acetylation in gene induction, and discovered a confound-

ing influence of SWR1-Com on gene regulation in cells lacking

H2A.Z.

Results

Acetylated H2A.Z Was Important for Primary Induction of
GAL1 Transcription but Did Not Play a Specialized Role in
GAL1-transcriptional Memory

Upon galactose induction, cells previously grown long-term in

repressing conditions induce GAL1 expression more slowly than

cells previously grown in noninducing-nonrepressing conditions.

The conclusion that H2A.Z is essential for GAL1 transcriptional

memory was based on the following two observations. First, when

transferred to inducing conditions from long-term growth in

repressing conditions HTZ1 and htz1D cells induce GAL1 slowly

and at a similar rate [27]. Second, when transferred to inducing

conditions from short-term growth in repressing conditions, HTZ1

cells induce GAL1 transcription rapidly, but htz1D cells are

reported to not induce GAL1 any more rapidly than htz1D cells

that had been grown long term in repressing conditions prior to

galactose induction [27]. We reasoned that if H2A.Z acetylation

were required exclusively for transcriptional memory, then cells

carrying an unacetylatable allele of HTZ1, htz1-K3,8,10,14R,

would exhibit defective GAL1 induction following short-term

growth in glucose, but exhibit normal GAL1 induction following

long-term growth in glucose.

To determine first whether H2A.Z-acetylation had any role in

galactose expression, GAL1 mRNA levels were evaluated by

quantitative reverse transcriptase (Q-RT) PCR in HTZ1

(JRY7971), htz1D (JRY9001), and htz1-K3,8,10,14R (JRY7983)

cultures grown in long-term repressing conditions prior to

galactose induction. Cells grown continuously in glucose medium

were transferred to galactose medium and GAL1 induction was

evaluated at 2-h intervals for 14 h. One characteristic shared

between all three strains’ GAL1 induction phenotypes was an

approximately 3-h lag period with little to no GAL1 expression.

Quantitative analysis suggested that neither htz1D nor htz1-

K3,8,10,14R cultures exhibited substantially different lag periods

prior to the onset of GAL1 expression than those exhibited by

HTZ1 cultures (Figure 1A; Table 1, column A). These results

suggested that neither H2A.Z nor its acetylation influenced how

rapidly the cultures exited glucose repression and began GAL1

transcription.

Other than their lag periods the two mutant cultures exhibited

significantly different GAL1 induction phenotypes than those of

HTZ1 cultures. Cultures of the two mutant strains had lower

steady-state GAL1 expression levels than HTZ1 cultures (Figure 1A;

Author Summary

Transcriptional memory is the well-documented phenom-
enon by which cells can ‘‘remember’’ prior transcriptional
states. A paradigmatic example of transcriptional memory is
found in the yeast Saccharomyces. S. cerevisiae remembers
prior transcription of the galactose metabolism gene GAL1.
When a gene is transcribed, the DNA must first be at least
partially relieved of its packaging into chromatin by histone
proteins. Previous research had suggested that S. cerevisiae
used a chromatin modification, the incorporation of the
histone variant H2A.Z into the region surrounding the GAL1
promoter, to remember the previous status of GAL1
transcription. Not all H2A.Z molecules are the same,
however. For example, it has recently been discovered that
H2A.Z can be acetylated on the four lysine residues in its N-
terminal tail region. In an attempt to determine whether
H2A.Z acetylation is required for GAL1 transcriptional
memory, we unexpectedly discovered that, although both
H2A.Z and H2A.Z acetylation are important for strong and
rapid GAL1 induction, neither H2A.Z nor H2A.Z acetylation
plays an important role in GAL1 transcriptional memory. We
propose that the discrepancy between our conclusions and
those in prior publications arise from the prior analysis of
insufficiently short periods of GAL1 induction or from
complications arising from the comparison of the pheno-
types of wild-type yeast strains to those of htz1D mutants
(carrying the null mutation of the gene encoding H2A.Z)
mutants. In the current work we show that the htz1D
mutant’s phenotype does not simply reflect the absence of
H2A.Z in chromatin but instead also reflects the pleiotropic
effects of the Swr1 chromatin remodeling complex that is
responsible for H2A.Z deposition into chromatin. In the
absence of H2A.Z the Swr1 complex itself causes cell
damage. In this paper we show that swr1D htz1D double
mutants have substantially less severe mutant phenotypes
than htz1D mutants. Thus, studies using the swr1D htz1D
mutant offer more detailed insight into the consequences
of the absence of H2A.Z in chromatin than do studies
performed on single htz1D mutants, and our results help to
clarify the role of H2A.Z in the regulation of GAL1 induction
and transcriptional memory.

H2A.Z-Acetylation and Transcriptional Memory
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Table 1, column C). Quantitative analysis suggested that htz1D
and htz1-K3,8,10,14R cultures required 54.7% and 60.2% more

time, respectively, than HTZ1 cultures to reach half steady-state

GAL1 expression levels (Figure 1A; Table 2, column E; note that

half steady-state levels were used instead of half-maximum levels

because the level of expression during induction typically overshot

the induced steady-state level). These values, however, under-

played the severity of the htz1D and htz1-K3,8,10,14R cultures’

GAL1-transcription rate phenotypes because all three strains spent

the majority of time that was required to reach half-steady-state

levels in the lag period prior to GAL1 activation (Figure 1A;

Table 1, columns A and E; note that half steady-state levels were

used instead of half-maximum levels because the level of

expression during induction typically overshot the induced

steady-state level). To accurately compare the GAL1 transcription

rates of the three strains it was necessary to determine the amount

of time that cultures of these strains required to reach half-steady-

state levels of GAL1 expression from the time of GAL1 activation.

These values were determined for each culture by subtracting its

GAL1 activation time from the time required to reach the half

steady-state level of GAL1 expression. This analysis revealed that

once they had begun expressing GAL1, htz1D and htz1-

K3,8,10,14R cultures required 503% and 625% of the time

required for HTZ1 cultures, respectively, to express GAL1 at half-

steady-state levels (Table 2, column G). Thus, both H2A.Z and its

acetylation contributed to the rate of GAL1 expression in cultures

grown under long-term glucose repression prior to galactose

induction.

Because the expression of GAL1 in htz1D and htz1-K3,8,10,14R

strains was similar, the role of H2A.Z in GAL1 expression was

presumably dependent upon its acetylation. To determine whether

H2A.Z acetylation affected the level of H2A.Z at the GAL1

promoter, chromatin immunoprecipitation experiments were

performed with qPCR to quantitate the level of enrichment. Both

acetylatable and unacetylatable H2A.Z were present at approx-

imately equal levels at GAL1 (Figure 1b). Therefore, acetylation of

H2A.Z was important for GAL1 induction at some point after

H2A.Z’s incorporation at the GAL1 promoter.

To determine whether H2A.Z acetylation had a role in

transcriptional memory, GAL1 mRNA levels were evaluated in

HTZ1 (JRY7971), htz1D (JRY9001), and htz1-K3,8,10,14R

(JRY7983) cultures that were grown short-term in repressing

conditions prior to galactose induction. Cells grown in galactose

medium prior to short-term growth in glucose medium (12 h) were

transferred to galactose medium and GAL1 induction was

evaluated for 14 h in inducing conditions. None of the three

strains exhibited a significant lag in GAL1 expression (Figure 1C;

Table 1, column B). Quantitative analysis of these data suggested

that all three strains, when grown short-term in repressing

conditions, expressed GAL1 in half the time, or less, than when

the same strains were induced following long-term growth in

repressing conditions (Table 3, column D). The combined effect of

near-zero onset times and increased GAL1 transcription rates was

that all three strains reached half steady-state GAL1 expression

levels in 90% less time than was required for the same strains to

reach this level when they were grown long-term in repressing

conditions prior to galactose induction (Table 3, column C). Thus,

all three strains exhibited transcriptional memory with respect to

GAL1 transcription. Importantly, relative to the HTZ1 strain, the

two mutant strains exhibited less severe phenotypes when they

were grown short-term in repressing conditions prior to induction

than when they were grown long term in repressing conditions

prior to induction (Table 2, compare column G with H). Thus,

Figure 1. Acetylated H2A.Z was important for GAL1 induction.
Q-RT PCR of GAL1 mRNA performed on HTZ1 (JRY7971), htz1D
(JRY7754), and htz1-K3,8,10,14R (JRY7983) cultures that were grown
long-term in YP-glucose (2%) prior to being transferred into YP-
galactose (2%). Open circles represent the average of three biological
replicates. Bars represent standard deviations of values from these
replicates. Solid lines represent the best-fit curve for the measured data.
See text for details. (B) ChIP analysis of H2A.Z-FLAG at the GAL1
promoter in cells grown long-term in YP-glucose (2%). (C) Q-RT PCR of
GAL1 mRNA performed on HTZ1 (JRY7971), htz1D (JRY7754), and htz1-
K3,8,10,14R (JRY7983) cultures that were grown for 20 h in YP-galactose
(2%) prior to 12 h of growth in YP-glucose (2%) prior to being
transferred into YP-galactose (2%). Open circles represent the average
of three biological replicates. Bars represent standard deviations of
values from these replicates. Solid lines represent the best-fit curve for
the measured data. See text for details.
doi:10.1371/journal.pbio.1000401.g001

H2A.Z-Acetylation and Transcriptional Memory
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neither H2A.Z nor its acetylation played an important role in

GAL1-transcriptional memory.

Because the results described above differed substantially

from ostensibly equivalent experiments [27], we obtained the

strains used in the previously published experiments, HTZ1

(CRY 1) and htz1D (DBY 50), and attempted to reproduce the

previously published results. Just as described above, both HTZ1

(CRY 1) and htz1D (DBY 50) cultures exhibited a similar lag

period before GAL1 mRNA was detectable (Figure 2A; Table 1,

column A). As before, when grown under long-term repressing

conditions prior to galactose induction, galactose-induced HTZ1

(CRY1) cells had both higher steady-state GAL1 mRNA levels

and faster GAL1 transcription rates than htz1D (DBY 50) cells

(Figure 2A; Table 1, columns D and G). Quantitative analysis

suggested that once both cultures had begun expressing GAL1,

the htz1D (DBY 50) cultures required about 3.56 more time

than HTZ1 (CRY 1) cultures to reach half-steady-state GAL1

expression levels (Table 2, column G). Additionally, as was the

case with the other set of strains, both HTZ1 (CRY 1) and htz1D
(DBY 50) cultures induced GAL1 expression significantly more

rapidly when grown short-term (12 h) in repressing conditions

prior to galactose induction than when the same cultures were

grown long term in repressing conditions prior to galactose

induction (Figure 2B; Table 1, column B). Cultures of both

strains also required significantly less time to accumulate half-

steady state levels of GAL1 mRNA when grown short term

rather than long term in repressing conditions prior to galactose

induction: HTZ1 (CRY 1) and htz1D (DBY 50) cultures required

88% and 69% less time, respectively, under these conditions to

accumulate half-steady levels of GAL1 mRNA transcripts

(Table 3, column C). Thus, as before, both HTZ1 and htz1D
cultures exhibited transcriptional memory of prior GAL1

induction. Therefore, H2A.Z was important for GAL1 induction

regardless of whether cells were induced from short-term or

long-term growth in repressing conditions prior to induction.

Acetylated-H2A.Z Allowed Cells to Activate GAL1
Expression Efficiently

Two factors contribute to the GAL1 expression level in a culture

of cells: the proportion of cells that are expressing GAL1, and the

level of GAL1 expression in the fraction of cells in which it is

expressed. S. cerevisiae regulates GAL1 expression in response to

different growth conditions both by increasing the number of

GAL1-expressing cells and by increasing the level of GAL1

expression. Both parameters respond independently to different

aspects of growth conditions [32].

Table 1. Quantitative analysis of GAL1 transcription phenotypes.

Column A B C D E F G H

Strain

Primary
Induction
GAL1
Transcription
Activation
Time (min)

Secondary
Induction
GAL1
Transcription
Activation
Time (min)

Primary
Induction
GAL1 Steady
State Expression
Level (GAL1/ACT1)

Secondary
Induction
GAL1 Steady
State Expr-
ession Level
(GAL1/ACT1)

Primary
Induction
Time to Half-
Steady-State
GAL1
Expression
Level (min)

Secondary
Induction
Time to Half-
Steady-State
GAL1 Expr-
ession Level
(min)

Primary
Induction
Time from
Activation to
Half- Steady-
State Levels
(min)

Secondary
Induction
Time from
Activation to
Half- Steady-
State Levels
(min)

HTZ1 204.8 0a 0.9 0.9 234.3 14.8 29.5 14.8

htz1D 214.1 0a 0.7 0.6 362.4 38.9 148.3 38.9

htz1-K3,8,10,14R 191.3 0a 0.8 0.7 375.4 29.7 184.2 29.7

HTZ1 (CRY1) 204.4 0a 0.8 1.0 243.7 28.4 39.3 28.4

htz1D (DBY 50) 218.9 0a 0.7 0.7 356.3 110.4 137.4 110.4

aThe data suggested that the time to first induction of GAL1 for all strains in the secondary induction experiments was very close to zero, and could not be distinguished
from it.

doi:10.1371/journal.pbio.1000401.t001

Table 2. GAL1 induction phenotypes relative to HTZ1 phenotypes (percent of HTZ1 values).

Column A B C D E F G H

Strain

Primary
Induction
GAL1
Transcription
Activation
Time (min)

Secondary
Induction
GAL1
Transcription
Activation
Time (min)

Primary
Induction
GAL1 Steady
State Expression
Level (GAL1/ACT1)

Secondary
Induction
GAL1 Steady
State Expr-
ession Level
(GAL1/ACT1)

Primary
Induction
Time to Half-
Steady-State
GAL1
Expression
Level (min)

Secondary
Induction
Time to Half-
Steady-State
GAL1
Expression
Level (min)

Primary
Induction
Time from
Activation to
Half- Steady-
State Levels
(min)

Secondary
Induction
Time from
Activation to
Half- Steady-
State Levels
(min)

HTZ1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

htz1D 95.7 100.0 73.2 57.7 154.7 262.5 503.5 262.5

htz1-K3,8,10,14R 107.1 100.0 84.6 78.0 160.2 200.4 625.3 200.4

HTZ1 (CRY1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

htz1D (DBY 50) 107.0 100.0 79.5 73.0 146.2 389.0 349.4 389.0

doi:10.1371/journal.pbio.1000401.t002

H2A.Z-Acetylation and Transcriptional Memory
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To determine whether htz1D and htz1-K3,8,10,14R cultures’

GAL1- expression defects were attributable to decreased propor-

tions of GAL1-expressing cells, or to decreased GAL1 expression

level per cell, flow cytometry was used to monitor galactose

induction of a fusion protein containing the entire GAL1 coding

sequence, with a C-terminal fusion to green fluorescent protein

(GFP), in htz1-K3,8,10,14R, htz1D, and HTZ1 cells (Figures 3 and

S6, S7, S8).

If H2A.Z were to contribute to the probability that a cell enters the

galactose-induced state per unit of time, but not to the expression

level in those induced cells, then htz1D cultures should have a smaller

proportion of GFP-positive cells at each postinduction time point

than HTZ1 cultures, but the GFP-positive cells should have similar

fluorescence intensities to those in HTZ1 cultures. However, if H2A.Z

were important for achieving high expression levels but did not

influence the probability of induction per se, then htz1D and HTZ1

cultures should have similar proportions of GFP-positive cells, but the

GAL1-GFP-expressing cells from htz1D mutant cultures would have

lower GFP fluorescence than GAL1-GFP-expressing cells from HTZ1

cultures. The same logic would apply to the possible roles of H2A.Z

acetylation.

To compare the results of these experiments, a threshold value

of GFP-intensity was used to classify cells as either GFP-positive or

GFP-negative. This threshold was set so that between 1% and 2%

of cells from noninduced HTZ1 cultures were classified as GFP-

positive. On average htz1-K3,8,10,14R cultures had 33% fewer

GFP-positive cells than HTZ1 cultures at all postinduction time

points (Figures 3 and 4A). Additionally, GFP-positive cells from

htz1-K3,8,10,14R cells had, on average, 17% lower mean-GFP

intensity than HTZ1 cultures (Figures 3 and 4B).

The simplest interpretation of these findings was that H2A.Z-

acetylation influenced both the time required to induce GAL1-GFP

expression and the rate at which Gal1-GFP accumulated once

induced. Another possibility was that the differences between

HTZ1 and htz1-K3,8,10,14R cells were due exclusively to

differences in either the time required for induction or to the

rate of Gal1-GFP accumulation. To distinguish between these two

possibilities, the GAL1-induction times and Gal1-GFP accumula-

tion rates were determined for both cultures by fitting a simple

mathematical model of gene expression to the data for each

culture (the model is described in Materials and Methods; Figures 5

and S1, S2, S3, S4). The model simulated the galactose induction

phenotype of a culture by estimating the distribution of activation

times and expression rates of the measured cells. The model’s

parameters were fitted to the observed data for each strain by

optimizing the fit to cell-specific measurements of GAL1-GFP

levels. Each culture’s average induction time and average

accumulation rate are presented in Tables 4 and 5, respectively.

Table 3. Percent change in GAL1 induction phenotypes between primary and secondary inductions.

Column A B C D

Strain
GAL1 Transcription
Activation Time

GAL1 Steady State
Expression Level

Time to Half-Max Steady-State
GAL1 Expression Level

Time from Activation to Half-
Max Steady-State Levels

HTZ1 2100.0 3.3 293.7 249.8

htz1D 2100.0 217.9 289.3 273.8

htz1-K3,8,10,14R 2100.0 23.9 292.1 283.9

HTZ1 (CRY1) 2100.0 15.5 288.4 227.7

htz1D (DBY 50) 2100.0 6.0 269.0 219.7

doi:10.1371/journal.pbio.1000401.t003

Figure 2. H2A.Z was not required for GAL1 transcriptional
memory. (A) Q-RT PCR of GAL1 mRNA performed on RNA from HTZ1
(CRY1) and htz1 (DBY50) grown long term in CSM-Glucose (2%) prior to
being transferred into CSM galactose (2%). Open circles represent the
average of three biological replicates. Bars represent standard
deviations of values from these replicates. Solid lines represent the
best-fit curve for the measured data. See text for details. (B) Q-RT PCR of
GAL1 mRNA performed on RNA from HTZ1 (CRY1) and htz1 (DBY50)
grown in CSM-galactose (2%) for 20 h prior to being grown in CSM-
Glucose (2%) for 12 h prior to being transferred into CSM galactose
(2%). Open circles represent the average of two biological replicates.
Bars represent standard deviations of values from these replicates. Solid
lines represent the best-fit curve for the measured data. See text for
details.
doi:10.1371/journal.pbio.1000401.g002

H2A.Z-Acetylation and Transcriptional Memory
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This analysis revealed that htz1-K3,8,10,14R cells induced

GAL1-GFP expression 31% (+/23.3%) more slowly than did

HTZ1 cells (Table 4), and that induced cells in both HTZ1 and

htz1-K3,8,10,14R cultures accumulated Gal1-GFP at similar rates

(Table 5). Thus, with respect to GAL1 induction, H2A.Z-

acetylation reduced the amount of time required to induce

GAL1, but did not influence the rate at which induced cells

accumulated Gal1-GFPp.

Interestingly, htz1D cells had a more severe defect in GAL1-GFP

expression phenotypes than did cells with unacetylatable H2A.Z

(Figures 3, 4A, and 4B; Tables 4 and 5). On average, htz1D
cultures had 28% fewer GFP-positive cells than htz1-K3,8,10,14R

cultures at the 4-h and 6-h time points. At these same time points,

the average GFP-intensity of GFP-positive cells in htz1D cultures

was 46% lower than that of GFP-positive cells in htz1-K3,8,10,

14R cultures. Moreover, htz1D cells induced GAL1-GFP 18.2% (+/

23.8%) later and accumulated Gal1-GFP 38.1% (+/25.6%)

more slowly than htz1-K3,8,10,14R cells (Tables 4 and 5). These

results were surprising because htz1D and htz1-K3,8,10,14R

cultures had similar GAL1 mRNA induction phenotypes

Figure 3. Acetylated H2A.Z was important for GAL1 gene induction. Flow cytometry analysis was performed using Gal1-GFP on HTZ1
(JRY9002), htz1D (JRY9004), and htz1-K3,8,10,14R (JRY9003) cells grown long-term in YP-glucose (2%) prior to being transferred into YP-galactose
(2%). The histograms in this figure represent the distribution of cells within each culture as a function of their GFP intensity.
doi:10.1371/journal.pbio.1000401.g003
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(Figure 1A). mRNA analysis revealed that the htz1D cultures used

in these experiments accumulated GAL1-GFP transcripts, in

contrasts to the GAL1 transcripts in Figure 1A, more slowly than

either HTZ1 or htz1-K3,8,10,14R culture (Figure 4C). These

results suggested that htz1D cells accumulated Gal1-GFP more

slowly than htz1-K3,8,10,14R cells because they produced GAL1-

GFP mRNA more slowly than htz1-K3,8,10,14R cells.

All of the mRNA measurements performed in this study were

performed on bulk cultures, whereas the flow cytometry

measurements were made on single cells within cultures. To

determine whether the flow cytometry measurements of Gal1-GFP

accumulation in HTZ1, htz1D, and htz1-K3,8,10,14R strains

corresponded well with each strain’s GAL1-GFP mRNA accumu-

lation phenotype, the average GFP intensity of each culture was

determined (Figure 4D). The galactose-induction phenotypes of all

three strains, as measured by average GFP accumulation, were

qualitatively similar to their galactose induction phenotypes as

measured by GAL1-GFP mRNA accumulation. Thus, the flow-

cytometry data in these studies reflected GAL1-GFP mRNA

accumulation.

At face value, the more severe galactose-induction phenotypes

of htz1D than of htz1-K3,8,10,14R cells suggested that H2A.Z’s role

in GAL1 induction was only partially dependent on its acetylation.

However, as described below, the more severe GAL1-expression

defects in htz1D cells resulted from secondary complications that

arose from the action of SWR1-Com in cells lacking H2A.Z.

Overlapping Contribution of Individual H2A.Z
Acetylation Sites to GAL1 Induction

Acetylation of lys14 on H2A.Z is important for its role in FOX2

and POT1 induction [20]. To determine whether the acetylation

of lys14 or other lysine residues of H2A.Z contributed to GAL1

induction, the GAL1 induction phenotypes of diploid cultures each

with one null allele and individual lys-to-arg mutations as the other

allele (htz1-K3R/htz1D, htz1-K8R/htz1D, htz1-K10R/htz1D, and

htz1-K14R/htz1D) were determined using flow-cytometry. Surpris-

ingly, none of the single acetylation-site mutants exhibited GAL1-

GFP expression defects (Figure 6; example FACS profiles are in

Figures. S6, S7, S8). Thus, H2A.Z’s role in GAL1 induction

depended on its acetylation, but did not depend exclusively on the

Figure 4. htz1D cells’ galactose induction phenotypes are more severe than those of htz1-K3,8,10,14R cells. A threshold level of GFP-
intensity was set so that between 1% and 2% of glucose-grown HTZ1 cultures were classified as GFP-positive cells. (A) The frequency of GFP-positive
cells within HTZ1, htz1D, and htz1-K3,8,10,14R cultures. (B) The average GFP intensity of the GFP-positive populations of HTZ1, htz1D, and htz1-
K3,8,10,14R cultures. (C) Q-RT PCR of GAL1-GFP mRNA performed on HTZ1 (JRY9002), htz1D (JRY9004), and htz1-K3,8,10,14R (JRY9003) cultures that
were grown long-term in YP-glucose (2%) prior to being transferred into YP-galactose (2%). (D) The average GFP intensity of the entire population of
cells, both GFP positive and negative, within HTZ1, htz1D, and htz1-K3,8,10,14R cultures. Bars in all panels represent the standard deviations of values
from three biological replicates.
doi:10.1371/journal.pbio.1000401.g004
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acetylation of any single tail-lysine residue. These results were

surprising given the focus on the acetylation of H2A.Z lys14 in

previous studies in S. cerevisiae [18,19], but they are consistent with

discoveries made in Tetrahymena. In Tetrahymena, acetylation of

H2A.Z’s tail lysines contributes to H2A.Z’s function simply by

decreasing the positive charge of H2A.Z’s tail and thus all sites of

acetylation function equally well in this respect [33].

SWR1-Com Enhanced Many htz1D Mutant Phenotypes
SWR1-Com deposits H2A.Z into chromatin in a two-step

process, removing H2A from nucleosomes and subsequently

replacing it with H2A.Z [13]. We hypothesized that if H2A.Z

were not available, then SWR1-Com might still perform the first

step of this mechanism, disrupting the structure of nucleosomes at

those positions at which H2A.Z would normally reside, and that

this disruption could affect normal promoter function. Thus, the

phenotype of cells lacking H2A.Z might be a composite of two

different defects: the lack of H2A.Z’s function per se, and

SWR1-Com’s nucleosome-disrupting activity in the absence of

H2A.Z. If this hypothesis were correct, then a subset of htz1D’s

phenotypes should be suppressed in cells lacking SWR1-Com

function. Indeed as predicted by this model, strains with the htz1D
mutation in combination with a null mutation in any gene

encoding an important component of the SWR1 complex (SWR1,

SWC2, SWC3, SWC5, and SWC6) exhibited less severe mutant

phenotypes than htz1D single-mutant strains on medium contain-

ing compounds that each cause a different type of stress (Figure 7).

To determine if the htz1D mutant’s galactose-induction was

more defective than that of the unacetylatable H2A.Z mutant for a

similar reason, the GAL1 expression phenotypes of both swr1D
HTZ1 (JRY9005) and swr1D htz1D (JRY9006) double-mutant

cultures were determined using flow cytometry. Prior to induction,

htz1-K3,8,10,14R, swr1D HTZ1, and swr1D htz1D cultures had

similar proportions of GFP-positive cells, and fewer GFP-positive

cells than htz1D cultures (Figures 8 and 9A). Thus, the swr1D
mutation completely suppressed the htz1D mutant’s apparent

glucose-repression defect. At every postinduction time point,

swr1D HTZ1 and swr1D htz1D cultures had similar proportions

of GFP-positive cells to htz1-K3,8,10,14R cultures and significantly

higher proportions of GFP-positive cells than htz1D cultures

(Figures 8 and 9A). The swr1D HTZ1 and swr1D htz1D cells

induced GAL1 expression as rapidly as htz1-K3,8,10,14R cells and

significantly earlier than htz1D cells (Table 4). Thus, the severity of

the htz1D mutant’s delayed GAL1-induction phenotype was

suppressible by the swr1D mutation and therefore likely resulted

from the SWR1 complex’s activity in the absence of H2A.Z.

Furthermore, because htz1-K3,8,10,14R cells and htz1D swr1D cells

needed approximately the same amount of time to induce GAL1,

H2A.Z’s role in promoting rapid GAL1 activation completely

depended on its acetylation.

Interestingly, GAL1-expressing cells from swr1D HTZ1 and

swr1D htz1D cultures had significantly higher average GFP

intensities than those from htz1D cultures but they had significantly

lower average GFP intensities than those in htz1-K3,8,10,14R

cultures (Figures 8 and 9B). Quantitative analysis revealed that

GAL1-expressing cells from both swr1D HTZ1 and swr1D htz1D
cultures accumulated Gal1-GFP 18.8% (+/25.3%) more rapidly

than htz1D cells and 23.8% (+/26.7%) more slowly than

htz1-K3,8,10,14R cells (Table 5). Thus the severity of the htz1D
mutant’s Gal1-GFP-accumulation-rate phenotype was suppress-

ible by the swr1D mutation and therefore likely resulted from the

activity of SWR1-Com in H2A.Z’s absence. Moreover, our finding

that swr1D HTZ1 and swr1D htz1D cells accumulated Gal1-GFP

more slowly than htz1-K3,8,10,14R cells suggested that H2A.Z has

an acetylation-independent role in increasing GAL1-expression

rate.

Discussion

H2A.Z Was Important for GAL1 Induction, but Not for
Transcriptional Memory

In this work, we showed that H2A.Z, through its acetylation,

contributed to induction of the GAL1 gene, a paradigmatic

example of a highly inducible gene of Saccharomyces. Acetylated

H2A.Z contributed to GAL1 induction both by increasing the

fraction of cells that induced at each time point, and by increasing

the level of expression per induced cell. Earlier work established

that GAL1 induction has a property termed transcriptional

memory, reflecting the ability of cells that were recently induced

to be more easily reinduced following short incubations in

repressing conditions than after extended incubations in repressing

conditions [27–29]. Moreover, H2A.Z has been thought to be a

key participant in this transcriptional memory [27]. The

conclusion that H2A.Z is important for GAL1 transcriptional

memory is based on experiments involving the induction of GAL1

as a function of its expression history: when induced from

Table 4. GAL1-activation times.

Strain
Mean Time of
Activation (h)

Percent Difference
From HTZ1

HTZ1 4.2 0.0

htz1D 6.5 54.6

htz1-k3,8,10,14R 5.5 31.2

swr1D HTZ1 5.2 25.2

swr1D htz1D 5.3 27.6

doi:10.1371/journal.pbio.1000401.t004

Table 5. GAL1-expression rates.

Strain
Mean Expression Rate
(GFP Counts/h)

Percent Difference
From HTZ1

HTZ1 2.2 0.0

htz1D 1.3 238.8

htz1-k3,8,10,14R 2.1 22.4

swr1D HTZ1 1.6 224.0

swr1D htz1D 1.6 226.1

doi:10.1371/journal.pbio.1000401.t005

Figure 5. The distribution of GAL1-induction times and Gal-GFPp accumulation rates among cells as modeled as a Gamma
distribution of values. See text for details. (A) shows the Gamma distribution of GAL1-induction times that were used in the best-fit simulation of
HTZ1’s (JRY9002) GAL1-GFP expression phenotype. (B) shows the Gamma distribution of Gal1-GFP accumulation rates that were used in the best-fit
simulation of HTZ1’s (JRY9002) GAL1-GFP expression phenotype. (C) compares the GAL1-GFP induction phenotypes observed for HTZ1 cultures with
the phenotype predicted for HTZ1 based on its best-fit simulation.
doi:10.1371/journal.pbio.1000401.g005
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long-term growth in repressing conditions, both htz1D and HTZ1

cultures were reported to have induced GAL1 at similar rates.

htz1D cultures were reported to have induced GAL1 at a similar

rate regardless of whether they had been grown under repressing

conditions for either short or long periods of time. However,

HTZ1 cultures that were grown in repressing conditions for short

periods of time were reported to induce GAL1 expression much

more rapidly than those grown in repressing conditions for long

periods of time [27].

Our work was originally directed at understanding the importance

of H2A.Z acetylation to the role of H2A.Z in GAL1- transcriptional

memory. To this end, we determined the GAL1- induction

phenotypes of htz1-K3,8,10,14R cultures, which carry an unacetyla-

table allele of H2A.Z. Surprisingly, both htz1D and htz1-K3,8,10,14R

cultures grown in inducing conditions prior to short-term growth in

repressing conditions induced GAL1 expression more rapidly than

those grown long-term in repressing conditions prior to galactose

induction. Thus, both htz1D and htz1-K3,8,10,14R cells exhibited

GAL1 transcriptional memory. Moreover, regardless of whether they

were grown long-term or short-term in repressing conditions prior to

induction, htz1D and htz1-K3,8,10,14R cultures induced GAL1 more

slowly than HTZ1 cultures. These results indicated that H2A.Z was

important for GAL1 induction regardless of a cell’s growth conditions

prior to induction. Thus, the galactose-induction defects that we

observed for htz1D and htz1-K3,8,10,14R strains grown short-term in

repressing conditions prior to galactose induction were reflective of

H2A.Z and acetylated H2A.Z having a general role in GAL1

induction rather than a specific role in GAL1- transcriptional

memory.

If H2A.Z or H2A.Z acetylation had a specific role in

transcriptional memory, then one would expect cells lacking

H2A.Z or containing only an unacetylatable form of H2A.Z to

exhibit more severe phenotypes when reinduced than during the

primary induction. However, quantitative analysis of the GAL1

induction phenotypes of the htz1D and htz1-K3,8,10,14R strains

indicated that the difference between the two mutant strains’ GAL1

induction phenotypes were less severe, with respect to the HTZ1

strain’s GAL1 induction phenotypes, when cultures of these strains

were reinduced rather than induced. Thus, neither H2A.Z nor

acetylated H2A.Z contributed to GAL1-transcriptional memory,

other than in the general processes of GAL1 transcription, at least

under the conditions of these experiments.

To be completely clear, our data did not discount the existence

of what has been referred to as transcriptional memory of GAL1

induction. A better explanation for memory has been provided by

the discovery that the Gal1p protein itself has both galactokinase

activity that is crucial for galactose metabolism, as well as Gal3

activity, which is also encoded by the separate GAL3 gene. Gal3p

activates the GAL4-encoded activator of GAL1 induction. Thus

GAL1-transcriptional memory can be explained by a positive

feedback loop in which GAL1 induction leads to the synthesis of a

protein that is both an enzyme and an autoinducer, as shown by

others [29,34]. Our contribution was limited to discounting a role

for H2A.Z in this memory.

This understanding of GAL1-transcriptional memory suggests a

possible explanation for why previously published experiments

concluded that htz1D cultures lack GAL1- transcriptional memory

[27]. The model presented above posits that a cell’s ability to

reinduce GAL1 expression rapidly following short-term repression

requires the persistence of Gal1p in the cytoplasm. Thus the

amount of time that dividing cells retain the ability to rapidly

reinduce GAL1 expression following repression is a function of

both the stability of Gal1p and its abundance prior to glucose

repression. The abundance of Gal1p in a cell prior to glucose

repression is important because of its dilution with cell division,

and thus at some number of cell divisions, the amount of Gal1p

will not meet the threshold level required for its role in GAL1

reinduction. We observed that htz1D cultures had a nearly 20%

lower steady-state GAL1 expression level than HTZ1 cultures and

that when grown long-term in repressing conditions prior to

galactose induction htz1D cultures did not reach this level of

expression until galactose induction had proceeded for more than

14 h. If the previously published experiments did not allow

galactose induction to occur for a sufficient period of time, then

the htz1D and HTZ1 cultures used in these experiments would not

be directly comparable with respect to Gal1p levels. Thus cells

within htz1D cultures would be less likely than those in HTZ1

cultures to have sufficiently high Gal1p levels to allow for the rapid

reinduction of GAL1.

The discrepancies between the previously published data [27]

and those presented here, concerning the role of H2A.Z in

primary inductions of GAL1, have a straightforward explanation.

The conclusion that H2A.Z was not important for primary

galactose inductions was based upon htz1D cells having induced

GAL1 expression less well than HTZ1 cells after a 2-h induction

following short-term growth in repressing conditions, whereas

Figure 6. Role of H2A.Z acetylation in GAL1 induction. Flow
cytometry analysis was performed using Gal1-GFP on HTZ1/htz1D
(JRY9007), htz1-K3,8,10,14R/htz1D (JRY9008), htz1-K3R/htz1D (JRY9009),
htz1-K8R/htz1D (JRY2010), htz1-K10R/htz1D (JRY2011), and htz1-K14R/
htz1D (JRY2012) cells grown long-term in YP-glucose (2%) prior to
being transferred into YP-galactose (2%). A threshold level of GFP-
intensity was set so that between 1% and 2% of glucose-grown HTZ1
cultures were classified as GFP-positive cells. (A) The frequency of GFP-
positive cells within HTZ1, htz1-K3,8,10,14R, htz1-K3R, htz1-K8R, htz1-
K10R, and htz1-K14R cultures. (B) The average GFP intensity of the GFP-
positive populations of HTZ1, htz1-K3,8,10,14R, htz1-K3R, htz1-K8R, htz1-
K10R, and htz1-K14R cultures. Bars in all panels represent the standard
deviations of values from three biological replicates.
doi:10.1371/journal.pbio.1000401.g006
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HTZ1 and htz1D cells induced GAL1 equally well following long-

term growth in repressing conditions. Our observations were

quantitatively similar. However, the critical point is that the

magnitude of induction at this early time point was negligible in

both htz1D and HTZ1 cultures. At all longer periods of galactose

induction, htz1D cells induced GAL1 expression significantly less

well than HTZ1 cells. We believe the earlier conclusions were

based upon inadequate induction periods in some experiments.

The original work implicating H2A.Z in transcriptional

memory of GAL1 also reached the same conclusion for INO1.

However, the data offered in support of these conclusions are

weaker than those offered in support of H2A.Z’s role in GAL1

induction memory. First, these studies fail to establish that

S. cerevisiae exhibits transcriptional memory of INO1 in the same

way that it exhibits transcriptional memory of GAL1. Unlike GAL1,

cells that are grown short term in repressing conditions prior to

induction induce INO1 more slowly and at lower levels than cells

that had been grown long term in repressing conditions prior to

induction [27]. Thus, transcriptional memory of INO1 functions in

the opposite way of how it functions in GAL1 transcription—

decreasing rather than increasing a cell’s response to inducing

conditions. Second, since INO1-transcriptional memory results in

slower INO1 reinductions, cells lacking INO1-transcriptional

memory should induce INO1 more rapidly than cells that have

INO1- transcriptional memory. These studies show that htz1D cells

both induce and reinduce INO1 more slowly than HTZ1 cells [27].

Therefore, htz1D cells do not seem to lack transcriptional memory

of INO1, rather they seem to exhibit defective INO1 transcription

regardless of whether they had recently induced INO1 expression.

SWR1-Com Was Deleterious in Cells Lacking H2A.Z
Because SWR1-Com catalyzes a two-step reaction removing

H2A from nucleosomes and replacing it with H2A.Z, we

considered the possibility that SWR1-Com’s function, in the

absence of H2A.Z, might leave those nucleosomes normally

destined to receive H2A.Z compromised in some way. Thus the

overall phenotype of htz1D would be a composite of those

consequences due to the lack of H2A.Z, and those due to

uncoupled H2A removal from nucleosomes. Two lines of evidence

supported this hypothesis. First, the severity of htz1D cells’

sensitivities to various agents with different mechanisms and

targets were substantially suppressible by mutations in genes

encoding subunits of SWR1-Com. Second, the difference between

GAL1 induction in htz1D cells and in cells with unacetylatable

H2A.Z was largely suppressed by the swr1D mutation, creating the

less severe phenotype of the unacetylatable H2A.Z mutant. This

model is further supported by the observation that htz1D cells have

chromatin that is in the partially open configuration at the PHO5

promoter under noninducing conditions [21]. We predict that this

partially open configuration is a physical manifestation of the

mischief wrought by the Swr1-Complex in the absence of H2A.Z.

The benomyl-sensitivity phenotype of the swc5D htz1D double

mutant suggests another possible explanation for why SWR1-Com

is dangerous for cells that lack H2A.Z. Unlike the swr1D, swc2D,

swc3D, and swc6D mutations that strongly suppressed the htz1D
mutant’s benomyl sensitivity phenotype, the swc5D mutation only

weakly suppressed this phenotype. In vitro studies have shown that

SWR1-Com complexes lacking Swc2p, Swc6p, Swc4p, Yaf9, or

Arp6 bind nucleosomes less well than complete SWR1-Com

complexes. In contrast, SWR1-Com complexes that lack Swc5p

bind nucleosomes better than complete SWR1-Com complexes

[35]. Since Swc5p is required for SWR1-Com’s function, the

simplest model for why the swc5D mutation does not strongly

suppress the htz1D mutant’s benomyl sensitivity is that mutant

SWR1-Com complexes lacking Swc5 may persist in chromatin,

perhaps removing H2A, but be unable to replace it with H2A.Z.

Figure 7. The htz1D mutant phenotypes were partially suppressible by mutations in genes encoding members of SWR1-Com. The
stress sensitivities of htz1D (MK1027), swr1D (MKY1028), htz1D/swr1D (MKY1029), swc2D (MKY1030), htz1D/swc2D (MKY1031), swc3D (MKY1032),
htz1D/swc3D (MKY1033), swc5D (MKY1034), htz1D/swc5D (MKY1035), swc6D (MKY1036), and htz1D/swc6D (MKY1037) strains were assessed by plating
ten-fold serial dilutions of these double mutant cultures onto solid YP-glucose (2%) medium with the following conditions: 2% formamide, 3 mM
caffeine, 125 mM hydroxyurea, and 10 mg/ml benomyl.
doi:10.1371/journal.pbio.1000401.g007
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H2A.Z Had Two Distinct Roles in GAL1 Expression
Our observation that swr1Dhtz1D cells required more time to

induce GAL1 expression, and expressed GAL1 more slowly once

induced, suggested that H2A.Z had two distinct roles in GAL1

expression—one allowing efficient induction of GAL1, and another

to increase the rate of GAL1 expression. That H2A.Z had a role in

GAL1 induction was not surprising given H2A.Z’s enrichment at

the GAL1-promoter. However, that H2A.Z had a role in

increasing GAL1’s expression rate, as inferred from our model,

was unexpected.

There are two lines of evidence that H2A.Z may be important for

the expression, per se, of actively transcribed genes. First, even though

H2A.Z predominantly localizes to promoters, it is not completely

absent from open reading frames (ORFs). The ACT1 and PRP8

Figure 8. The severity of the htz1D mutant GAL1 expression defect was suppressible by the swr1D mutation. Flow cytometry analysis
was performed using Gal1-GFP on HTZ1 (JRY9002), htz1D (JRY9004), htz1-K3,8,10,14R (JRY9003), swr1D HTZ1 (JRY9005), and swr1D htz1D (JRY9006)
cultures grown long-term in YP-glucose (2%) prior to being transferred into YP-galactose (2%). The histograms represent the distribution of cells
within HTZ1, htz1D, and htz1-K3,8,10,14R cultures as a function of their GFP intensity.
doi:10.1371/journal.pbio.1000401.g008
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ORFs, two loci that have been historically considered nonenriched

for H2A.Z, are slightly enriched for H2A.Z relative to no-tag controls

(Figure S5). Second, the htz1D mutant is sensitive to 6-azauracil, a

toxic compound that slows the growth rate of cells that are defective

in mRNA transcript elongation [36]. Thus, it is possible that H2A.Z

plays a direct role in transcript elongation. Recent reports raise that

possibility further, showing that H2A.Z may aid expression by

suppressing antisense transcripts [37].

In summary, our results established that H2A.Z plays no

significant role in GAL1- transcriptional memory. In contrast

H2A.Z, and its acetylation contributed to both the induction of the

gene and to its expression per se, adding valuable new insights into

one of the best-studied examples of eukaryotic gene regulation. In

addition, we showed that SWR1-Com caused defects in gene

expression and induction in the absence of H2A.Z, presumably

due to nucleosome disruption, that force a reevaluation of all

previously described phenotypes of cells lacking H2A.Z.

Materials and Methods

Strain Construction
All of the strains used in this study are presented in Table 6. All of

these strains were from the W303 background. One-step integration of

knockout cassettes has been previously described [38]. JRY9001 was

constructed by transforming the KanMX cassette into JRY7754. To

generate KWY2512, the DNA sequence encoding GFP was inserted

before the stop codon of the GAL1 open reading by transforming a

HIS3-marked construct encoding the GFP protein. JRY9002,

JRY9003, JRY9004 were segregants from crosses of JRY7972,

JRY7983, and JRY9001 to KWY2512, respectively. JRY9005 and

JRY9006 were segregants from crosses of JRY7752 to JRY9002 and

JRY9004, respectively. JRY9011, JRY9012, JRY9013, JRY9014,

JRY9015, and JRY9016 were segregants from crosses of JRY9000 to

JRY7972, JRY7983, JRY9007, JRY9008, JRY9009, and JRY9010,

respectively. MKY1028/MKY1029, MKY1030/MKY1031,

MKY1032/MKY1033, MKY1034/MKY1035, and MKY1036/

MKY1037 were created by disrupting SWR1, SWC2, SWC3, SWC5,

and SWC6 respectively in MKY1038 using a SpHIS5MX knockout

cassette that was amplified from pFA6a-His3MX6 [38].

Culturing of Yeast
Yeast media were as defined [39]. Seed culture density affected

GAL1 induction phenotypes, so precautions were taken to ensure

that seed cultures of all strains had similar growth histories.

Specifically, seed cultures for all experiments were grown in

YP-Dextrose (D-glucose, 2%) except DBY50 and CRY1, which

were grown in CSM-Dextrose (D-glucose, 2%). 50 ml seed

cultures were inoculated with cells from a single colony and

grown overnight with shaking at 30uC to OD 0.2, and were then

harvested by centrifugation at 2,060g for 1 min. The cells were

then washed with 25 ml of prewarmed 30uC YP-galactose and

resuspended in 50 ml of 30uC YP-galactose, except in experiments

performed with DBY50 and CRY1, in which CSM-Galactose was

used instead of YP-galactose for both washing and resuspending in

order to follow precisely the procedures of others [27]. The

volume of culture removed for each time point was replaced with

the same volume of 30uC YP-galactose.

RNA Analysis and ChIP
Both determination of mRNA levels by quantitative reverse-

transcriptase (Q-RT) PCR and ChIP were performed as described

[17] except that SYBR GreenER (Invitrogen) PCR reagents were

used. H2A.Z-3Flag, and H2A.Z-K3,8,10,14R-3Flag were immu-

noprecipitated using the aFlag M2 resin (Sigma).

Flow Cytometry
Cells were harvested by centrifugation, fixed in a 4%

paraformaldehyde/3.4% sucrose solution for 10 min at room

temperature and then stored overnight at 4uC in a 1.2 M sorbitol

solution with KPO4 buffer at pH 7.5. GFP expression data were

collected for each sample using the FC-500 (Beckman-Coulter)

flow cytometer and analyzed using the Flow-Jo software package.

The GAL1-GFP expression status of individual cells within cultures

on a cell-by-cell basis in each culture was determined by plotting

flow-cytometry measurements as a histogram of GFP fluorescence

(y-axis number of cells; x-axis Log GFP intensity relative to GFP-

negative values). The threshold of GFP intensity was set so that

between 1% and 2% of glucose-grown HTZ1 cultures would be

classified as GFP-positive. Cells that had GFP-intensity greater

than this threshold value were counted as GFP positive (GAL1-GFP

expressing). The level of GAL1 expression in different populations

was calculated by determining the geometric mean GFP intensity.

Quantitative Analysis of mRNA Expression Levels
We developed a simple mathematical model to analyze the

dynamics of GAL1 mRNA expression levels. This model allowed us to

robustly quantify the onset time of GAL1 induction, steady state GAL1

mRNA level, and the time needed to reach half of the steady-state

level. The model is based on three parameters, which we optimized to

Figure 9. swr1D mutants’ GAL1 induction phenotypes resem-
bled those of htz1-K3,8,10,14R cultures. A threshold level of GFP-
intensity was as above. (A) The frequency of GFP positive cells within
HTZ1, htz1D, htz1-K3,8,10,14R, swr1D HTZ1, and swr1D htz1D cultures. (B)
The average GFP intensity of the GFP-positive populations of HTZ1,
htz1D, htz1-K3,8,10,14R, swr1D HTZ1, and swr1D htz1D cultures. Bars in
all panels represent the standard deviations of values from three
biological replicates.
doi:10.1371/journal.pbio.1000401.g009
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maximize the fit of the model to the measured GAL1 mRNA levels.

These include: (1) the time x when induction of GAL1 mRNA begins;

(2) the rate a at which GAL1 mRNA is produced; and (3) the rate d at

which GAL1 mRNA molecules are being degraded.

According to the model, the relative amount of GAL1 mRNA at

time t, M(t), follows the ordinary differential equation (ODE):

L
Lt

M(t)~
0 if tƒx

a{d:M(t) if twx

�

Namely, GAL1 is not being expressed at all until time point x, from

which point it is produced at a fixed rate a, and being degraded at

a fixed ratio d, until it reaches the steady state equilibrium:

M(t)~
a

d

Given the model parameters, and starting from zero M(0) = 0, we

can solve the ordinary differential equation using the Runge-Kutta

method (as implemented in MATLAB 7.6), and estimate the

mRNA level of GAL1 at every time point t.

Table 6. Yeast strains used in this study.

Strain Genotype Source

W303-1a MATa ade2-1 leu2-3 112 his3-1 ura3-52 trp1-100 can1-100 R. Rothstein

CRY1 MATa ade2–1 can1–100 his3–11,15 leu2–3,112 trp1–1 ura3–1 [27]

DBY50 MATa htz1D::His5 ade2–1 can1–100 his3–11,15 leu2–3,112 trp1–1 ura3–1 SEC63-13myc::Kan’
INO1:LacO128:URA3 HIS3:LacI-GFP MAT

[27]

KWY2512 MATa GAL1-GFP::HIS3MX This study

JRY7752 MATa swr1D::SpHIS5MX [14]

JRY7754 MATa htz1D::SpHIS5MX [14]

JRY7970 MATa htz1D::URA3MX [17]

JRY7972 MATa HTZ1-3Flag::KanMX [17]

JRY7983 MATa htz1K3,8,10,14R-3Flag::KanMX [17]

JRY9000 MATa htz1D::URA3MX GAL1-GFP::HIS3MX ADE2 This study

JRY9001 MATa htz1D::KanMX This study

JRY9002 MATa HTZ1-3Flag::KanMX GAL1-GFP::HIS3MX ADE2 This study

JRY9003 MATa htz1-K3,8,10,14R-3Flag::KanMX GAL1-GFP::HIS3MX ADE2 This study

JRY9004 MATa htz1D::KanMX GAL1-GFP::HIS3MX ADE2 This study

JRY9005 MATa swr1D::SpHIS5MX HTZ1-3Flag::KanMX GAL1-GFP::HIS3MX ADE2 This study

JRY9006 MATa swr1D::SpHIS5MX htz1::KanMX GAL1-GFP::HIS3MX ADE2 This study

JRY9007 MATa htz1-K3R-3Flag::KanMX [17]

JRY9008 MATa htz1-K8R-3Flag::KanMX [17]

JRY9009 MATa htz1-K10R-3Flag::KanMX [17]

JRY9010 MATa htz1-K14R-3Flag::KanMX [17]

JRY9011 MATa/MATa HTZ1-3Flag::KanMX/htz1D::caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

JRY9012 MATa/MATa htz1-K3,8,10,14R3Flag:: KanMX/htz1D:: caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

JRY9013 MATa/MATa htz1-K3R-3Flag::KanMX/htz1D::caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

JRY9014 MATa/MATa htz1-K8R-3Flag::KanMX/htz1D::caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

JRY9015 MATa/MATa htz1-K10-3FlagR::KanMX/htz1D::caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

JRY9016 MATa/MATa htz1-K14R-3Flag::KanMX/htz1D::caURA3 GAL1-GFP::HIS3MX/GAL1 ADE2/ade2-1 This study

MKY1027 MATa htz1D::KanMX This study

MKY1028 MATa swr1D::SpHIS5MX This study

MKY1029 MATa htz1D::KanMX swr1D::SpHIS5MX This study

MKY1030 MATa swc2D::SpHIS5MX This study

MKY1031 MATa htz1D::KanMX swc2D::SpHIS5MX This study

MKY1032 MATa swc3D::HIS5MX This study

MKY1033 MATa htz1D::KanMX swc3D::SpHIS5MX This study

MKY1034 MATa swc5D::SpHIS5MX This study

MKY1035 MATa htz1D::KanMX swc5D::SpHIS5MX This study

MKY1036 MATa swc6D::SpHIS5MX This study

MKY1037 MATa htz1D::KanMX swc6D::SpHIS5MX This study

MKY1052 MATa/MATa htz1D::KanMX/HTZ1 This study

doi:10.1371/journal.pbio.1000401.t006
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We optimized the three parameters x, a, and d for every culture

to minimize the root-mean-square deviation (RMSD) between the

experimental measurements and the modeled values. The values

that were used in each of the best-fit models are presented in

Table S1. We constrained the parameters x, a, and d to non-

negative values, and used the active-set optimization algorithm

(FMINCON function in MATLAB 7.6). For the memory

experiments, the optimized values of the GAL1 expression onset

times, for all cultures, were very close to zero, and practically

below the time resolution of the model and data. We therefore

simplified the model, and explicitly set x to zero.

Finally, to estimate the half steady-state time point, we used the

optimized parameters for each culture to find the steady state level

a/d, and to solve the ordinary differential equation and identify

when GAL1 levels reach half of the steady state level.

Quantitative Modeling of Flow Cytometry Data
To analyze the flow cytometry data, the time-course measure-

ments of single-cell Gal1-GFPp intensities were transformed into

GAL1-GFP induction times and Gal1-GFP accumulation rates. To

do this, a simplified model of GAL1-induction was developed, and

its six parameters fitted to the measured data for each culture. For

every cell, this model assumes that GAL1 is completely repressed

until its induction time ti, when cellular Gal1-GFPp begins to

accumulate at a fixed rate xi. We therefore model Ei(t), the Gal1-

GPFp content of the ith cell at time t as:

Ei(t)~
ei if tƒti

(t{ti):xizei if twti

�

where:

N The induction time of the ith cell, ti, is sampled from a Gamma

distribution with parameters (kt,ht)

N The Gal1-GFPp accumulation rate of the ith cell, xi, is

independently sampled from a Gamma distribution with

parameters (kx,hx)

The estimated expression is added to a stochastic noise term ei,

drawn from a Normal distribution with parameters (m,s2), to

simulate a basal level of GAL1 expression.

The model was used to simulate a population of 100,000 cells,

whose GAL1-GFP-induction times ti’s and accumulation rates xi’s

were sampled independently from two Gamma distributions: ti ,
Gamma (kt,ht), and xi , Gamma (kx,hx), and their stochastic noise

terms sampled from a Normal distribution: ei , Normal(m,s2).

Given a set of six parameters (kt, ht, kx, hx, m, s2) this model

sampled activation times, accumulation rates, and noise terms for

each of the 100,000 cells in the simulation, and computed the

cellular Gal1-GFPp levels Ei(t) for each of the four times points

that were measured (0, 2, 4, and 6 h following induction), which

allowed for the simulation of flow-cytometry outputs. Activation

times and accumulation rates were sampled from a stochastic

distribution rather than being fixed at specific values to account for

the natural variability among cells because of biological variables

like cell size, position in the cell cycle, cell age, and other factors

that were not treated as variables in the model. Gamma

distributions were used due to their non-negativity property.

The parameters of the model were optimized by minimizing the

root-mean-squared deviation between the measured data (average

of triplicates) and the model predictions, summed over the four

measured time points (0, 2, 4, and 6 h.) To optimize these

parameters, genetic algorithms were used (as implemented in the

GA function in MATLAB 7.6) followed by a derivative-free

optimization using the simplex algorithm (FMINSEARCH

function in MATLAB 7.6). These optimization steps were

repeated with 200 random starting points for each strain, and

the optimal set of parameters were then selected (Tables S2 and

S3). The error in our estimation of each strain’s induction time

and accumulation rate was calculated by determining the range of

values for each parameter that were used in the top 50 best-fit

simulations for each strain.

The models that were determined for each strain’s Gal1-GFP

expression phenotype were used as a proxy to quantitatively

compare the GAL1-activation times and Gal1-GFPp accumulation

rates of HTZ1, htz1-K3,8,10,14R, htz1D, swr1D HTZ1 and swr1D
htz1D cells.

Supporting Information

Figure S1 The distribution of GAL1-induction times and
Gal-GFPp accumulation rates among cells from htz1D
cultures as modeled as a gamma distribution of values.
See text for details. (A) shows the Gamma distribution of GAL1-

induction times that were used in the best-fit simulations of htz1D
GAL1-GFP expression phenotype. (B) shows the Gamma distribu-

tion of Gal1-GFP accumulation rates that were used in the best-fit

simulations of htz1D GAL1-GFP expression phenotype. (C)

compares the GAL1-GFP induction phenotypes that were observed

for htz1D cultures with the phenotype that was predicted for each

culture based on its best-fit simulation.

Found at: doi:10.1371/journal.pbio.1000401.s001 (0.81 MB TIF)

Figure S2 The distribution of GAL1-induction times and
Gal-GFPp accumulation rates among cells from htz1-
K3,8,10,14R cultures as modeled as a gamma distribu-
tion of values. See text for details. (A) shows the Gamma

distribution of GAL1-induction times that were used in the best-fit

simulations of htz1-K3,8,10,14R GAL1-GFP expression phenotype.

(B) shows the Gamma distribution of Gal1-GFP accumulation

rates that were used in the best-fit simulations of htz1-K3,8,10,14R

GAL1-GFP expression phenotype. (C) compares the GAL1-GFP

induction phenotypes that were observed for htz1-K3,8,10,14R

cultures with the phenotype that was predicted for each culture

based on its best-fit simulation.

Found at: doi:10.1371/journal.pbio.1000401.s002 (0.81 MB TIF)

Figure S3 The distribution of GAL1-induction times and
Gal-GFPp accumulation rates among cells from swr1D
HTZ1 cultures as modeled as a gamma distribution of
values. See text for details. (A) shows the Gamma distribution of

GAL1-induction times that were used in the best-fit simulations of

swr1D HTZ1 GAL1-GFP expression phenotype. (B) shows the

Gamma distribution of Gal1-GFP accumulation rates that were

used in the best-fit simulations of swr1D HTZ1 GAL1-GFP

expression phenotype. (C) compares the GAL1-GFP induction

phenotypes that were observed for swr1D HTZ1 cultures with the

phenotype that was predicted for each culture based on its best-fit

simulation.

Found at: doi:10.1371/journal.pbio.1000401.s003 (0.81 MB TIF)

Figure S4 The distribution of GAL1-induction times and
Gal-GFPp accumulation rates among cells from swr1D
htz1D cultures as modeled as a gamma distribution of
values. See text for details. (A) shows the Gamma distribution of

GAL1-induction times that were used in the best-fit simulations of

swr1D htz1D GAL1-GFP expression phenotype. (B) shows the

Gamma distribution of Gal1-GFP accumulation rates that were

used in the best-fit simulations of swr1D htz1D GAL1-GFP

expression phenotype. (C) compares the GAL1-GFP induction
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phenotypes that were observed for swr1D htz1D cultures with the

phenotype that was predicted for each culture based on its best-fit

simulation.

Found at: doi:10.1371/journal.pbio.1000401.s004 (0.80 MB TIF)

Figure S5 H2A.Z localizes to the ORFs of ACT1 and
PRP8. ChIP analysis of H2A.Z-FLAG enrichment at the ACT1

and PRP8 ORFs in HTZ1-Flag (JRY7972) cultures that were

grown long-term in YP-glucose (2%). Bars represent the standard

deviation of three biological replicates.

Found at: doi:10.1371/journal.pbio.1000401.s005 (0.06 MB TIF)

Figure S6 Measurements of Gal1-GFP accumulation by
flow cytometry were reproducible. Flow cytometry analysis

was performed using Gal1-GFP on HTZ1 (JRY9002) cells grown

long-term in YP-glucose (2%) prior to being transferred into YP-

galactose (2%). The histograms in this figure represent the

distribution of cells within each culture as a function of their

GFP intensity. The individual FACS plots of three biological

replicates are shown for HTZ1.

Found at: doi:10.1371/journal.pbio.1000401.s006 (0.62 MB TIF)

Figure S7 Measurements of Gal1-GFP accumulation by
flow cytometry were reproducible. Flow cytometry analysis

was performed using Gal1-GFP on htz1D (JRY9004) cells grown

long-term in YP-glucose (2%) prior to being transferred into YP-

galactose (2%). The histograms in this figure represent the

distribution of cells within each culture as a function of their

GFP intensity. The individual FACS plots of three biological

replicates are shown for htz1D.

Found at: doi:10.1371/journal.pbio.1000401.s007 (0.53 MB TIF)

Figure S8 Measurements of Gal1-GFP accumulation by
flow cytometry were reproducible. Flow cytometry analysis

was performed using Gal1-GFP on htz1-K3,8,10,14R (JRY9003)

cells grown long-term in YP-glucose (2%) prior to being

transferred into YP-galactose (2%). The histograms in this figure

represent the distribution of cells within each culture as a function

of their GFP intensity. The individual FACS plots of three

biological replicates are shown for htz1-K3,8,10,14R.

Found at: doi:10.1371/journal.pbio.1000401.s008 (0.65 MB TIF)

Table S1 Parameters used in mathematical model of
GAL1 mRNA data.

Found at: doi:10.1371/journal.pbio.1000401.s009 (0.07 MB

DOC)

Table S2 Parameters used in mathematical model of
GAL1 activation times.

Found at: doi:10.1371/journal.pbio.1000401.s010 (0.06 MB

DOC)

Table S3 Parameters used in mathematical model of
GAL1 expression rates.

Found at: doi:10.1371/journal.pbio.1000401.s011 (0.06 MB

DOC)

Acknowledgments

We thank the members of the Rine lab, and Leslie Stanton, James Halley,

and Tracey Johnson for constant advice and encouragement throughout

the course of this work. We thank Damian Trujillo for his help and advice

with flow cytometry. We thank the Pentacles from Oakland for musical

inspiration. We thank Erin Green and Karsten Weiss for valuable

discussion during the course of this work, the reviewers for helpful

suggestions, and Jason Brickner for discussion and for providing detailed

protocols.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: JEH MSK.

Performed the experiments: JEH AYW. Analyzed the data: JEH TK AYW

MSK. Contributed reagents/materials/analysis tools: JEH TK. Wrote the

paper: JEH JR.

References

1. Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, et al. (2005)
Characterization of lysine 56 of histone H3 as an acetylation site in

Saccharomyces cerevisiae. J Biol Chem 280: 25949–25952.

2. Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, et al. (2002)
Function and selectivity of bromodomains in anchoring chromatin-modifying

complexes to promoter nucleosomes. Cell 111: 369–379.

3. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of

histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

4. Pray-Grant MG, Daniel JA, Schieltz D, Yates JR, 3rd, Grant PA (2005) Chd1

chromodomain links histone H3 methylation with SAGA- and SLIK-dependent
acetylation. Nature 433: 434–438.

5. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone
H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:

15–30.

6. Strahl BD, Allis CD (2000) The language of covalent histone modifications.
Nature 403: 41–45.

7. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, et al. (2006) Yng1 PHD
finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14

of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785–796.

8. Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a

component of the core centromere of Saccharomyces cerevisiae. Cell 94: 607–613.

9. Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, et al. (2005)

Variant histone H2A.Z is globally localized to the promoters of inactive yeast
genes and regulates nucleosome positioning. PLoS Biol 3: e384. doi:10.1371/

journal.pbio.0030384.

10. Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a
histone H2A variant that poises repressed/basal promoters for activation

through histone loss. Cell 123: 219–231.

11. Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, et al. (2005) Preferential

occupancy of histone variant H2AZ at inactive promoters influences local
histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102:

18385–18390.

12. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, et al. (2005)

Histone variant H2A.Z marks the 59 ends of both active and inactive genes in

euchromatin. Cell 123: 233–248.

13. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, et al. (2004) ATP-driven
exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling

complex. Science 303: 343–348.

14. Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL,
et al. (2004) A protein complex containing the conserved Swi2/Snf2-related

ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:
E131. doi:10.1371/journal.pbio.0020131.

15. Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, et al. (2003) A Snf2
family ATPase complex required for recruitment of the histone H2A variant

Htz1. Mol Cell 12: 1565–1576.

16. Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z

protects euchromatin from the ectopic spread of silent heterochromatin. Cell

112: 725–736.

17. Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries

require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces

cerevisiae. Genes Dev 20: 700–710.

18. Keogh MC, Mennella TA, Sawa C, Berthelet S, Krogan NJ, et al. (2006) The
Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes

Dev 20: 660–665.

19. Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is

associated with genome-wide gene activity in yeast. Genes Dev 20: 711–722.

20. Wan Y, Saleem RA, Ratushny AV, Roda O, Smith JJ, et al. (2009) Role of the

histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and

regulated expression of oleate-responsive genes. Mol Cell Biol 29: 2346–2358.

21. Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulates

transcription and is partially redundant with nucleosome remodeling complexes.
Cell 103: 411–422.

22. Adam M, Robert F, Larochelle M, Gaudreau L (2001) H2A.Z is required for
global chromatin integrity and for recruitment of RNA polymerase II under

specific conditions. Mol Cell Biol 21: 6270–6279.

23. Adams BG (1972) Induction of galactokinase in Saccharomyces cerevisiae:

kinetics of induction and glucose effects. J Bacteriol 111: 308–315.

24. Douglas HC, Hawthorne DC (1964) Enzymatic expression and genetic linkage

of genes controlling galactose utilization in Saccharomyces. Genetics 49:

837–844.

H2A.Z-Acetylation and Transcriptional Memory

PLoS Biology | www.plosbiology.org 16 June 2010 | Volume 8 | Issue 6 | e1000401



25. Hashimoto H, Kikuchi Y, Nogi Y, Fukasawa T (1983) Regulation of expression

of the galactose gene cluster in Saccharomyces cerevisiae. Isolation and
characterization of the regulatory gene GAL4. Mol Gen Genet 191: 31–38.

26. Hopper JE, Rowe LB (1978) Molecular expression and regulation of the

galactose pathway genes in Saccharomyces cerevisiae. Distinct messenger RNAs
specified by the Gal1 and Gal7 genes in the Gal7-Gal10-Gal1 cluster. J Biol Chem

253: 7566–7569.
27. Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, et al. (2007)

H2A.Z-mediated localization of genes at the nuclear periphery confers

epigenetic memory of previous transcriptional state. PLoS Biol 5: e81.
doi:10.1371/journal.pbio.0050081.

28. Kundu S, Horn PJ, Peterson CL (2007) SWI/SNF is required for transcriptional
memory at the yeast GAL gene cluster. Genes Dev 21: 997–1004.

29. Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme
controls transcriptional memory. Curr Biol 17: 2041–2046.

30. Lemieux K, Larochelle M, Gaudreau L (2008) Variant histone H2A.Z, but not

the HMG proteins Nhp6a/b, is essential for the recruitment of Swi/Snf,
Mediator, and SAGA to the yeast GAL1 UAS(G). Biochem Biophys Res

Commun 369: 1103–1107.
31. Gligoris T, Thireos G, Tzamarias D (2007) The Tup1 corepressor directs Htz1

deposition at a specific promoter nucleosome marking the GAL1 gene for rapid

activation. Mol Cell Biol 27: 4198–4205.

32. Biggar SR, Crabtree GR (2001) Cell signaling can direct either binary or graded

transcriptional responses. Embo J 20: 3167–3176.

33. Ren Q, Gorovsky MA (2001) Histone H2A.Z acetylation modulates an essential

charge patch. Mol Cell 7: 1329–1335.

34. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular

memory by reducing stochastic transitions. Nature 435: 228–232.

35. Wu WH, Alami S, Luk E, Wu CH, Sen S, et al. (2005) Swc2 is a widely

conserved H2AZ-binding module essential for ATP-dependent histone

exchange. Nat Struct Mol Biol 12: 1064–1071.

36. Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening

the yeast ‘‘disruptome’’ for mutants affecting resistance to the immunosuppres-

sive drug, mycophenolic acid. J Biol Chem 277: 27036–27044.

37. Zofall M, Fischer T, Zhang K, Zhou M, Cui B, et al. (2009) Histone H2A.Z

cooperates with RNAi and heterochromatin factors to suppress antisense RNAs.

Nature 461: 419–422.

38. Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998)

Additional modules for versatile and economical PCR-based gene deletion and

modification in Saccharomyces cerevisiae. Yeast 14: 953–961.

39. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: a Cold

Spring Harbor Laboratory course manual. New York: Cold Spring Harbor

Laboratory Press. pp 199, 204.

H2A.Z-Acetylation and Transcriptional Memory

PLoS Biology | www.plosbiology.org 17 June 2010 | Volume 8 | Issue 6 | e1000401


