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Abstract: The continuous data-flow application in the IoT integrates the functions of fog, edge, and
cloud computing. Its typical paradigm is the E-Health system. Like other IoT applications, the energy
consumption optimization of IoT devices in continuous data-flow applications is a challenging
problem. Since the anomalous nodes in the network will cause the increase of energy consumption,
it is necessary to make continuous data flows bypass these nodes as much as possible. At present,
the existing research work related to the performance of continuous data-flow is often optimized from
system architecture design and deployment. In this paper, a mathematical programming method is
proposed for the first time to optimize the runtime performance of continuous data flow applications.
A lightweight anomaly detection method is proposed to evaluate the reliability of nodes. Then the
node reliability is input into the optimization algorithm to estimate the task latency. The latency-aware
energy consumption optimization for continuous data-flow is modeled as a mixed integer nonlinear
programming problem. A block coordinate descend-based max-flow algorithm is proposed to solve
this problem. Based on the real-life datasets, the numerical simulation is carried out. The simulation
results show that the proposed strategy has better performance than the benchmark strategy.

Keywords: internet of things; fog computing; E-Health monitoring system; anomaly detection;
latency awareness; energy efficient; mixed integer nonlinear programming

1. Introduction

The promising big data applications based on IoT produced so much data [1,2], and thus it is
impractical to transfer all these data to the data center for processing in real time. To address these
challenges, the fog computing and edge computing are proposed in recent years as the distributed
cloud computing solution for IoT applications. Due to the limited computation and communication
capability of IoT end devices, some extensive computing models should be provided for processing
large amount of IoT data. Fog computing is one of promising technologies that provide computation
and communication services to IoT applications [3,4]. The concept of fog computing is similar to
the edge computing [5–9]. Both of them are devoted to provide computation and communication
resources for IoT users in the proximate area of IoT devices. According to the definition of European
Telecommunications Standards Institute (ETSI), Multi-access Edge Computing (MEC) is one of the key
technologies towards 5G and characterized by several merits such as ultra-low latency, high bandwidth,
location awareness, etc. [5]. The edge computing nodes (MEC nodes) are deployed at many locations
with access points, such as at the macro LTE base stations, at a multi-Radio Access Technology cell
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aggregation site, etc. [5]. On the other side, the fog computing nodes are not necessarily deployed
around these access points. To distinguish these two concepts, in this paper, nodes with sufficient
communication and computing resources scattered among IoT devices are referred to as fog nodes.
The nano-server clusters deployed at the access points are referred to as MEC nodes, which usually
have more resources than fog nodes. The collaborative computing of the IoT-end nodes, the fog nodes,
the MEC nodes and the data center are referred to as IoT-Fog-Edge computing in this context.

The studies on collaboration of Fog, MEC, and Cloud computing usually focus on finding an
optimal solution to allocate the IoT tasks to appropriate virtual machines which are hosted on fog,
MEC or cloud nodes. In [10], the authors propose to allocate the workload among local MEC servers,
neighborhood MEC servers or cloud servers to minimize the energy consumption of MEC nodes
subject to delay constraints. Lyapunov drift-plus-penalty-based dynamic queue evaluation is used for
the online allocation algorithm. In [11], an optimal algorithm is put forward to determine that the tasks
should be allocated to clouds near the end devices or to the one far from the end devices for the energy
efficient big data processing. The delay constraints to tasks in near clouds and far cloud are taken into
account. In [12], an optimal algorithm for joint task allocation among mobile devices, the computing
access point and the remote cloud is proposed, where computing access point can be treated as an
MEC node. The studies introduced above are not correlated with the continuous data-flow (CDF)
problem, which is the main concern of our work. The CDF is the data-flow continuously generated by
IoT end nodes and is to travel through the fog nodes and MEC nodes before it reaches the cloud data
center. The optimization to CDF problem is an optimization in multi-stage graph. On the contrary
the optimization problem introduced in above studies is one-stage optimization problem. The typical
CDF application in IoT-Fog-Edge computing is the E-Health Monitoring System [13–16], which will
be elaborated as the Motivation Scenario in section II. Some efforts were devoted to the performance
measurement and optimization of E-Health system [13–16] from the perspective of architecture and
deployment optimization. To the best of our knowledge, there is little work required to optimize
the performance of E-Health monitoring system from the perspective of mathematical modelling
and programming.

To optimize the energy consumption of IoT devices while subject to the latency constraints,
the anomaly should be discovered because the anomalous nodes would cause abnormal latencies and
job loss or task failure on transmission paths [17,18]. As a result, additional retries and retransmissions
will occur, resulting in increased energy consumption. Anomaly detection is a conventional method
in the wireless sensor networks (WSN) [19–22], which is organized using the ad hoc way. The ad
hoc mechanism makes the whole WSN system vulnerable to the intrusion of malicious nodes, thus
the anomaly detection is carried out for finding the anomaly. The deficiency of anomaly detection
in WSN is that many messages may be generated and exchanged in the networks. On the other
hand, the network topology of fog and MEC computing is relatively stable and the nodes have
more computation resources. Some systematic security and safe mechanism could be adopted in
the IoT fog/edge computing, such as the block chain [4], intrusion detection system (IDS) [23],
trust management scheme [24], and action-oriented programming model [9], etc. Although these
security and safe mechanisms are capable of handling the most of malicious attacks, some anomalies
still exist, such as the anomalies caused by hardware/software errors of fog/MEC nodes, the anomalies
caused by network congestion and jitter, or the attacks which are hard to be defended such as the
Denial of Service (DoS) attack [23]. To carry out the latency awareness for the CDF problem, we put
forward a lightweight anomaly detection strategy. This strategy only makes use of the cumulative
historical latency data of fog/MEC nodes to discovery the anomalous nodes. The results of the anomaly
detection will be fed into the proposed optimization algorithm for latencies evaluation.

Many researchers modeled the energy consumption optimization problem in edge and fog
computing as a mixed integer nonlinear programming problem (MINLP) [25]. This is a kind of
problem for which it is difficult to find the optimal solution. Many researchers use the block coordinate
descent (BCD) method to solve this kind of problem [26,27]. In these research works, the BCD method
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showed good performance and can quickly find the solution of complex problems. In this paper,
we also use the framework of BCD method to transform the original problem into the minimum cost
maximum flow sub-problem and the power control sub-problem. The proposed method is called
BCDM algorithm in this paper.

In this work, we put forward a latency-aware energy-efficient IoT-Fog-Edge Computing(IFEC)
strategy for Continuous Data-Flow (CDF) services. The main contributions of this work are:

• We developed a formal model for energy-efficient CDF optimization. This is a model that is
composed of four level entities in IFEC computing. This model is used to formulate an optimal
problem that minimizes the energy consumption subject to the latency constraints and with the
anomalous fog or MEC nodes existing in systems.

• We proposed a novel lightweight anomalous nodes detection strategy for latency-aware
CDF optimization.

• We designed a block coordinate descend-based max-flow algorithm to solve latency-aware
energy-efficient CDF problem iteratively.

• The performance of proposed model and algorithm was evaluated by simulations based on
real-life datasets.

The remainder of this paper is organized as follows: In Section 2, the motivation scenarios in
E-Health system are elaborated. In Section 3 we present the system model and problem formulation. In
Section 4, we put forward the proposed solutions for the CDF problem. The numerical simulation based
on real-life datasets are presented in Section 5 and we draw conclusions in Section 6. The acronyms
used in this paper are listed in Table 1.

Table 1. Notations.

Symbol Description

U Utility function
I the amount of IoT-End nodes
M the amount of MEC nodes
J the amount of Fog nodes
λ arrival rate of tasks
τ latency constraint
µ service rate of fog and MEC nodes
B bandwidth of wireless channel
H channel gains
σ2 Gaussian white noise

2. Motivation Scenario

Thanks to the rapid progress of wireless communications and wearable devices, the E-Health
Monitoring (EHM) System has become a paradigm of IoT applications [13–16]. A typical EHM
system is composed of an IoT sensing subsystem, networking subsystem, cloud data processing and
storage subsystem. In [13], the EHM system is divided into four parts, which are wearable devices,
Machine-to-Machine (M2M) gateway, Network Service Capability Layer (NSCL), Data processor and
openEHR services. Although the authors did not present the IoT-Fog-Edge computing, it actually
can be treated as an CDF scenario because the proposed model has the same characteristics as CDF.
The M2M gateways continuously collect data from sensors (such as the heart rate, blood pressure,
blood oxygen saturation, etc.) and send the data periodically to data processors in the virtual machines
hosted at a cloud provider. The data flow will go across the M2M gateways, NSCL and reach the
cloud at last. In [14–16], the IoT, fog, edge and cloud integrated architecture for EHM system was
clearly illustrated. The performance, including the latency, availability, and the potential challenges in
EHM systems, were addressed in [13–15] respectively. A common characteristic in the EHM system is
that the data flow starting from the IoT devices will travel across the fog layer and edge layer before
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it reaches the cloud data center. The network latency and availability are mainly influenced by the
devices in networking subsystems such as the fog and MEC nodes. We generalized the system model
of EHM system to the continuous data-flow IoT system. In our model, each IoT device has its specific
domain tasks, such as the EHM tasks. The data flow generated by different IoT devices can go through
same or different network paths. Our aim is to minimize the global energy consumption of multiple
IoT devices while subject to the latency constraints at each IFEC level.

3. System Model

In CDF application scenarios, nodes in the networks could be categorized into following four
levels according to their computation capability:

1. IoT end level: The IoT end devices belongs to this level, such as sensors, RFID, etc. which are
used to collect the raw data in IoT.

2. Fog level: The fog nodes with very limited communication and computation capability belong to
this level, such as the IoT gateway.

3. MEC level: The server clusters with limited computation capability belong to this level, which
are deployed at places in proximity to access points of mobile networks, such as at the macro LTE
base stations, at a multi-Radio Access Technology cell aggregation site, etc. [5].

4. Cloud level: There are only data centers at this level.

As previously mentioned, in the continuous data flow service scenarios, the IoT end devices
should send the data to Fog nodes or MEC servers for preprocessing before these data are sent to data
centers. A client software should be installed on end devices to communicate with the Fog nodes
and MEC servers to receive the application services. These applications have domain-specific tasks
that are offloaded to Fog nodes or MEC servers to execute all kinds of complicated computation, e.g.,
intelligent video acceleration, augmented reality (AR), etc. The computation resources are actually
virtual machines that are deployed specifically for users’ applications. The VMs are referred to as
Proxy VMs [28].

Without loss of generality, we assume the data traffic starting at the end devices should go through
the fog nodes to the MEC servers and reach the data center at last. In the case that the end device does
not need to offload data to the MEC server, but directly sends data to the data center by the fog node,
the MEC node can be merely treated as an access point to the core networks. Our aim is to minimize
the energy consumption of end devices while subject to the latency constraint in each level.

The system framework can be formulated as a tuple (UE, FN, EC, DC). UE is a collection with
I IoT end devices. UE = {uei, i = 1, 2, . . . , I}. FN is a collection with J fog nodes, FN = { f nj, j =
1, 2, . . . , J}. EC is a collection with M MEC nodes, EC = {ecm, m = 1, 2, . . . , M}. DC is the data center.
Each uei can be expressed as a triple tube: uei = {λi, Pi, τi}, where λi is the arrival rate of tasks of uei
in a time unit. We assume tasks arrive at uei according to the poisson distribution. The value of arrival
rates of Poisson distribution can be estimated by fitting method [29]. Pi is the wireless transmission
power of uei and τi is the maximum acceptable latency for finishing a task to ensure the quality of
services(QoS). f nj and ecm can be expressed as tubes f nj = {µj, prj} and ecm = {µm, prm} respectively,
where µ is the service rate or processing capability, i.e. the expected number of tasks which can be
processed in a time unit. We assume service time of a fog node or an MEC node follows exponential
distribution with mean 1

µ . pr is the reliability that a task can be executed successfully.

3.1. Anomalous Nodes Discovery and Confidence Evaluation

Latency variation in IoT may be caused by network congestion or jitter. The slight variation would
not change the regularity of the statistic features of network latency. On the contrary, the software
or hardware errors, or attacks from the malicious users, may cause the anomalies of fog nodes and
MEC nodes. Thus, the network performance of these nodes may become unstable and unpredictable.
To guarantee the QoS of data flow services, an optimal solution for CDF problem should bypass these
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anomalous nodes. We put forward a lightweight anomalous nodes discovery strategy. This strategy
is based on the observation that the anomalous nodes will exhibit some anomalous behaviors and
deviate from the statistic regularity of normal nodes.

We give following definition of anomalies according to the definition of Das et al. [30].

Definition 1. In our paper, anomalies are defined as any observations of latencies that are different from the
normal behavior of the latency data.

3.1.1. Chi-Square Test and Similarity Measurement

χ2 test is a test of the goodness-of-fit [31]. It is used to test the null hypothesis that the observed
data comes from a specific distribution. Given the sample size is large enough, we have following null
Hypothesis 1:

Hypothesis 1 (H1). The latency value of the observed fog or MEC node comes from the normal distribution.

This hypothesis derives from the research on latency characteristics of mobile IoT [13]. If a fog
node or MEC node is disrupted, its statistic feature of latency should be different with the normal
distribution. Let pi(t) be the p-value got from tth round χ2 test against latency sample `i(t) of ith
node. `i(t) = (si(0), si(1), . . . , si(t)) is a sample vector and si(t) is the tth latency sample of node i.
ϕi(t) = (pi(0), pi(1), . . . , pi(t)) is the vector of p-value. The Cosine similarity of latency distribution of
two nodes is defined as follows:

sim(i, j) =
ϕi · ϕj

‖ϕi‖ × ‖ϕj‖
(1)

Let the node j be a normal node which is selected as a guard by the service provider of data
flow services. If the node i is also a normal node, it should show similar behaviors with i from the
perspective of latencies. The similarity can be measured by the cosine function sim(i, j). Those nodes of
which behaviors deviate from the baseline behaviors can be treated as anomalous nodes. The concept
guard node is used in the anomaly detection and monitoring in wireless sensor networks (WSN)
[18,32]. Guard node is a kind of node used for anomaly detection in wireless sensor networks
(WSN). The guard node is between the sending node and the receiving node, which can be used for
normal communication and monitoring. The selection of guard nodes is based on the location and
trustworthiness of the nodes [18,33,34]. Because the continuous data flow network in this paper is
not a WSN-like mobile ad-hoc network, so when selecting guard nodes, we do not need to consider
the location factor, but only need to select according to the trustworthiness of the nodes. Including
the architecture of nodes, security level and other trust related attributes of nodes can be used as a
measurement of trustworthiness. The guard nodes in WSN should be responsible for monitoring and
detecting the anomalies in addition to serving as the baseline. Nevertheless, the guard nodes in our
work merely are treated as the baseline. The issues on monitoring and detecting malicious nodes are
out of scopes of this work.

3.1.2. F-Test

In some cases, the behaviors of a node may conform to normal distribution but the node does not
have the same parameters of distributions as the guard node. An F-test is used to test whether two
samples come from the normal distribution with the same variance. In this context, the variance of the
latency vector of a node is compared to the one of the guard node by F-test. If the p-value of the test is
less than 0.05, we reject the null Hypothesis 2.

Hypothesis 2 (H2). The latencies of the observed fog or MEC node and of the guard node come from the normal
distributions with the same variance.
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3.1.3. Put It All Together

According to the results from Sections 3.1.1 and 3.1.2, we can calculate the reliability value.
The real value corresponding to different reliability level depends on the application in practice.
For example, 0.9 can be treated as a high value of reliability for most business applications. However,
applications in finance and banking industry require more than 0.99 reliability. A simple way to
estimate the real value is to calculate it by the value of the guard node j as follows:

pri = IND(b sim(i, j)
0.5

c)( 1
Ft(i, j)

prj)

+ (1− IND(b sim(i, j)
0.5

c))sim(i, j)prj (2)

where bxc is to get the largest integer value less than/equal to x. IND(x) = 1 when x ≥ 1 and
IND(x) = x otherwise. Ft(i, j) is the F-test for node i and j. When the number of latency samples n
approaches +∞, the degree of freedom also approaches +∞, and Ft(i, j) should approach 1 given the
node i is as confident as guard node j. It should be noted that our aim is not to get the accurate value
of reliability of a node. Our aim is to find the anomalous nodes and bypass these nodes in the optimal
solution of the CDF problem given there are alternative normal nodes.

Figure 1 is used to illustrate the execution process of proposed anomaly detection algorithm and
its position in the whole optimization model.
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Similarity
calculation
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Figure 1. Flowchart of the optimization procedure of CDF.

3.2. Tandem Queue Model

We put forward the tandem queue model depicted in Figure 2 for investigating the execution
latency of tasks.
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ri
λi μj

λj μm
λm

IoT End Level Fog Level MEC Level

Figure 2. The tandem queue model of IoT-Fog-Edge Computing.

3.2.1. Latency in IoT End Level

In the IoT end level, tasks arrive at end equipment uei according to the poisson distribution
with arrival rate λi. Without loss of generality, we assume the data size of each task is equal to d.
The transmission latency at this level can be expressed as following equations.

Tcomm
i =

1
ri
d − λi

, i = 1, 2, . . . , I (3)

ri = Blog(1 +
Pi Hi
σ2 ) (4)

where B is the wireless channel bandwidth. Pi is the transmission power. σ2 is the variance of complex
white Gaussian channel noise. Hi is the average channel gain. ri is the average transmission data
rate. ri

d is the number of tasks which can be transmitted in a time unit through the wireless channel.
The transmission queue of each end equipment is an M/M/1 queue. To guarantee the queue stability,
following constraint must be satisfied:

λi <
ri
d

, i = 1, 2, . . . , I (5)

3.2.2. Latency in Fog and MEC Level

Same as the model at the IoT end level, the latency in fog level and MEC level can also be
expressed as the queue model as follows:

T IoT→ f og =
xijd
ri
≤ τ1 (6)

T f og
j =

1
prj

(
1

(µj − λj)

)
≤ τ2 (7)

µj > λj (8)
I

∑
i=1

xij = λj, j = 1, 2, . . . , J (9)

where xij is the number of tasks sent from the uei to the f nj.
xijd
ri

is the transmission duration that the
uei transmits xijd units data to f nj.
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Tmec
m =

1
prm

(
1

µm − λm

)
≤ τ3 (10)

µm > λm (11)
J

∑
j=1

xjm = λm, m = 1, 2, . . . , M (12)

The prj and prm are the evaluated reliability that a task can be executed successfully by a node.
As previously mentioned, we measure the confidence of the nodes in our model and map the confidence
to the reliability. According to the binomial distribution, the expectation of the number of retrying for
one successful execution is 1

pr .

3.3. Problem Formulation

The latency-aware energy-efficient CDF problem can be formulated as following expression:

MP:Minimuze
xij ,Pi

U = ∑I
i=1 ∑J

j=1 Eixij (13)

Subject to :

(3) ∼ (12)

xij ∈ {0, 1, 2, · · · , xmax} (14)

Pi ∈ [Pmin, Pmax] (15)

where Ei = Pi
ri

d. We assume that an IoT node can only be connected to one access point in a
duration. Thus, transmission power should be same for the same IoT node. So is the transmission
rate. The problem MP is a mixed-integer-non-linear programming problem (MINLP), which is an
NP-hard problem [35]. There is one multi-dimension combinatorial decision variable x and one
continuous multi-dimension decision variable P. There is no generic optimal algorithm to solve this
kind of problem in polynomial time complexity. In following section, we put forward two approximate
algorithms, the block coordinate descent based multi-flow algorithm (BCDM) and Best-effort algorithm.

4. Solutions

4.1. Block Coordinate Descent Based Multi-Flow Algorithm

In the conventional block coordinate descent method, the vector of variables is partitioned
into different blocks. The sub-function over each block with all other blocks fixed is assumed to
be differentiable and convex [36,37]. Nevertheless, the original problem MP does not satisfy these
assumptions. Thus, we have to relax the original problem MP. First, we fix the integer variables x to
get the following sub-problem:

SP1:Minimuze
Pi

U(Pi) = ∑I
i=1 ∑J

j=1
Pid
ri

xij (16)

Subject to : (3) ∼ (6)

Pi ∈ [Pmin, Pmax] (17)

where constraints (4)–(6) can be further reduced to following expression:
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Pi ≥
(2

xijd
Bτ1 − 1)σ2

Hi
, j = 1, · · · , J (18)

The objective function of SP1 is not meant to be convex. However, according to the research
in [37], if a function F is differentiable and strictly quasi-convex over each block, its limit point is a
critical point. Thus, we only need to confirm that U(Pi) = ∑I

i=1 ∑J
j=1

Pid
ri

xij is quasi-convex. We have
following proposition:

Proposition 1. Let F(Pi) = Pi
ri

, F is quasi-convex. Where Pi and ri are the transmission power and data
rate respectively.

Proof. At first, we calculate the first order derivative of F.

dF
dPi

=
ln 2

ln (aPi + 1)
− aPi ln 2

(aPi + 1) ln2 (aPi + 1)

=
ln 2

ln (aPi + 1)
(1− g(Pi)) (19)

g(Pi) =
aPi

(aPi + 1) ln (aPi + 1)
(20)

where a = Hi
σ2 . aPi is actually the signal-to-noise ratio (SNR). Let aPi + 1 = x, g(Pi) ⇒ g′(x) = x−1

x ln x .
We have the following result:

∀a > 0, lim
Pi→0

g(Pi) = lim
x→1

g′(x) = lim
x→1

x− 1
x ln x

(21)

= lim
x→1

1
ln x + 1

= 1 (22)

Then we calculate the first order derivative of g(Pi):

dg(Pi)

dPi
=

a (ln (aPi + 1)− aPi)

(aPi + 1)2ln2 (aPi + 1)
(23)

dg(Pi)
dPi

< 0 when Pi > 0, thus g(Pi) is monotonic decreasing. Hence according to (21) and (22),

g(Pi) < 1 will always hold with the Pi > 0. Thus, dF
dPi

> 0 always holds too, which means F(Pi) is
monotonic increasing. Suppose P1 and P2 are two transmission power values, P1 ≥ P2. ∀α ∈ [0, 1],
we can get following result:

F(αP1 + (1− α)P2) ≤ F(αP1 + (1− α)P1)

= F(P1) = max(F(P1), F(P2)) (24)

This result means F(Pi) is quasi-convex.

According to the Proposition 1, the U(Pi) is also quasi-convex because it is a polynomial of F(Pi).
Then we consider the sub-problem in which continuous variables are fixed. The sub-problem can

be expressed as follows:

SP2:Minimuze
xij

U = ∑I
i=1 ∑J

j=1
Pid
ri

xij (25)

Subject to : (7) ∼ (12)

xij ∈ {0, 1, 2, · · · , xmax} (26)
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The SP2 is an integer programming problem, which is not convex or quasi-convex. Hence we
have to transform it to a convex problem.

Constraints (7)∼(12) can be transformed as follows:

0 ≤ xij ≤ τ1
rij

d
(27)

0 ≤ xjm ≤ µj −
1

τ2 prj
(28)

0 ≤ xmt ≤ µm −
1

τ3 prm
(29)

J

∑
j=1

xij = λi (30)

I

∑
i=1

xij =
M

∑
m=1

xjm (31)

J

∑
j=1

xjm = xmt (32)

i = 1, · · · , I; j = 1, · · · , J; m = 1, · · · , M; t = 1

where the index variable t represents the data center. This is a kind of linear relaxation. After the
linear relaxation, the SP2 can be solved by linear programming solver in polynomial time-complexity
steps. Nevertheless, the solution cannot be ensured to be integral. To guarantee the solution is integral,
following transformation should be carried out.

As depicted in Figure 3, a dummy node S is added to the IFEC model as a source node, which
has some dummy edges to be connected with the IoT end nodes. Each fog node or MEC node are split
into two nodes connected by a dummy edge with a weight, which is the upper bound of processing
capability of the corresponding node. A dummy edge connecting the S with T is added. If some tasks
could not be offloaded to fog nodes, they will be sent to T directly by this dummy edge. This dummy
edge has almost infinite throughput(such as the 5G communication channel) but very high energy
consumption. If a task went through this dummy edge, it means the failure of receiving fog computing
service and it is not a part of solution. Thus, the CDF model can be converted to a Minimum Cost
Maximum Flow model (MCMF). To guarantee that the solution is integral, the parameters should be
integers, which can be achieved by rounding and scaling. For example, if the capacity of a node is 4.2,
it can be rounded to 4. If the energy consumption is 0.3 Joule, it can be scaled up to 300 Millijoule.

After the above linear relaxation and transformation are conducted, the original problem MP was
converted to two convex (or quasi-convex) sub-problems, thus it can be solved by block coordinate
descent algorithm iteratively. The pseudo codes of Block Coordinate Descent-based Multi-flow
algorithm (BCDM) is illustrated in Algorithm 1.

Based on the above analysis, we can get the following conclusions about the effectiveness of
BCDM algorithm:

Since every subproblem of CDF optimization is differentiable, convex and strictly quasi-convex,
the BCDM algorithm can converge to the local optimal solution.

After the linear relaxation of the subproblem SP2, we use the simplex method to solve the linear
programming problem. Because the worst-case time complexity of the simplex method is exponential,
so the worst-case time complexity of the BCDM algorithm is exponential. However, in general, simplex
algorithm is an efficient algorithm, which can get the solution in polynomial time. Therefore, in general,
BCDM algorithm is polynomial time complexity algorithm.
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Figure 3. The Minimum Cost Maximum Flow Model for the CDF problem in IFEC.

Algorithm 1 Block Coordinate Descent based Multi-flow Algorithm

Input: λi, µj, µm, τ1, τ2, τ3, Hi, B, σ, prj, prm;
Output: x, P;

1: Initialize Pi as Pmin

2: while Uold −Unew > ε do
3: solve MCMF problem with Pi fixed to get xij
4: update each Pi iteratively with xij and the other Pj fixed, i 6= j
5: renew U, P if Unew descends
6: end while
7: return x, P

4.2. Best-Effort Algorithm

Since there is no same work currently to solve the CDF problem as proposed in this paper, we use
the Best-effort method as the benchmark, which was used for IP data-flow service in multi-access
wireless networks and can be adapted to the CDF problem easily. The Best-effort algorithm is carried
out on the different level. At each level, the algorithm always tries its best to allocate the tasks to one
node in the next level till it reached its upper capacity, and then turn to another node in the next level.
The Best-effort algorithm is illustrated in Algorithm 2.

Algorithm 2 Best-effort Algorithm

Input: λi, µj, µm, τ1, τ2, τ3, Hi, B, σ, prj, prm;
Output: x, P;

1: for each i in I do
2: for each j in J do
3: allocate as many tasks of uei as possible to f nj till reach its capacity
4: end for
5: calculate Pi for each uei
6: end for
7: while the solution is infeasible do
8: carry out the Best-effort strategy in fog level
9: carry out the Best-effort strategy in MEC level

10: if the solution is infeasible, decrease the xij with largest Pi unless xij becomes 0
11: end while
12: return x, P
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5. Simulations

In this section, two types of simulations are presented. One was conducted for evaluating
the feasibility of proposed latency awareness strategy, the other was conducted for measuring the
performance of proposed BCDM algorithm.

5.1. Anomaly Detection Based Latency Awareness

According to the study by Pereira et al. [13], the E-Health Monitoring (EHM) ecosystem can
be divided into Gate Way (GW), Network Service Capability Layers (NSCL), Data Processor (DP)
and openEHR services. They reported their real-life experiment results on evaluating the latency
performance of service composition of a mobile E-Health application. They argued that end-to-end (E2E)
latency is composed of latencies between neighbor system components and the latencies that compose the E2E
latency follow a normal distribution. Part of the measured latency values are listed in Table 2.

Table 2. Latencies In EHM System.

Parameter Name Parameter Value (Unit)

Latency between GW and NSCL 0.9671sec± 0.0186
Latency between NSCL and DP 0.0138sec± 1.802× 10−4

Latency between DP and EHR 0.3130sec± 0.0470

To test the proposed strategy of anomaly detection based reliability evaluation, we generated a
sample sequence of latencies according to the normal distribution and the latency between GW and
NSCL in Table 2. This sample sequence was chosen as the baseline of the anomaly detection. The other
two sample sequences also were generated as the historical data of anomalous nodes. One of the
sequences was the latencies of the malicious node, and generated using the same way as generating
the baseline except that some anomalous data were injected into the sequence. We assumed that the
malicious node would misbehave with 50% probability [38], thus at each sampling point, the malicious
node may generate the normal latency values with 50% probability. In other 50% probability cases,
the sample generation is failure. The sample generation will be retried with adding a waiting duration
to the latency. The maximum number of retries is 4, and the waiting duration is 1, 2, 4, 8 respectively.
The final latency will be set as 1000 s if the maximum retries reached. Another sample sequence is
the latencies of the abnormal node. The abnormal node here refers to the node that has not been
maliciously attacked although it shows abnormal behavior. This sequence was generated according to
the normal distribution but with different distribution parameters. Total 1000 samples were generated
for each sample sequence. The order of the samples in the sequence was treated as the rounds of
consecutive sampling in the real scenario.

The simulation results are shown in Figure 4. The reliability was calculated according to
Equation (1). The reliability of the baseline node is always 1. As shown in the results, the reliability of
the malicious node and abnormal node fluctuated obviously in the first 50 rounds. This is because
the proposed scheme is based on the central limit theorem of probability statistics. The central limit
theorem works only when the number of samples is large enough. After 50 rounds, the reliability
of malicious and abnormal nodes decreased gradually. Finally, the reliability of abnormal nodes
was gradually stable in the interval between 0.1 and 0.2, while that of malicious nodes approach 0.
Experimental results show that our scheme can effectively detect anomalous nodes. It should be noted
that our purpose is not to get the real probability of normal behavior of anomalous nodes, but to
get a reliable estimate value, and use this estimate value to select normal nodes first, and bypass
anomalous nodes.
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Figure 4. The Reliability Evaluation in 1000 Rounds Consecutive Sampling.

5.2. Energy Efficient Optimization for IoT Continuous Data-Flow Services

The effective of the proposed energy efficient optimization algorithm was verified in this section.

5.2.1. Task Arrival Rate Analysis

He et al. [29] studied the traffic arrival mode of the GSM base station and verified that it conforms
to the Poisson distribution. The task arrival rate used in this section was set according to the real
dataset provided by Barlacchi et al. [39]. There are several different datasets in their research, such as
telecommunications, weather, news, social networks, etc. In our simulation, we focused on the Internet
traffic activity data. Their dataset contains data collected from Milan city and province of Trentino.
The areas of Milan and Trentino are divided into grids, which are composed of squares with size of
about 235× 235 m. Each square is assigned a square ID. The data set contains the amount of traffic
reached in unit time (10 min) in each square. We used Poisson parameter estimates to fit the arrival
rate per hour, and got the confidence interval of the hourly arrival rate with 95% confidence in one day.

The arrival rates in 24 h at 4 different squares in Trentino and Milan are illustrated in Figures 5–8.
The curves drawn in these figures are the average of the arrival rate, and the error bars represent the
upper and lower bounds of the confidence interval. As shown in the figures, the arrival rate will vary
greatly in different hours and in different regions. The minimum value of arrival rate is less than 2,
while the maximum value is close to 55. It should be noted that in [39], every time a user started an
Internet connection, a record will be generated. However, it is well known that the amount of data
traffic generated by each connection is different. In addition, during the connection, the user program
may generate multiple tasks, and the size of each task is different too. For example, the data size of
sending an instruction or a heartbeat signal does not exceed 1 KB, while the data size of sending a
face recognition picture may exceed 5 MB. Therefore, for the convenience of analysis, we consider
that each CDF task has the same size and does not exceed the maximum transmission unit (MTU)
of TCP/IP protocol, i.e., 1500 bytes. For the records in [39], suppose 1 MB data was generated for
each user connection. If the arrival rate was 10 within one hour, the data size generated was 10 MB.
That was equivalent to 7000 tasks arriving in an hour in our paper.
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Figure 5. The Arrival Rate in 24 h, Square id 1000, Trentino, 1 November 2013.
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Figure 6. The Arrival Rate in 24 h, Square id 1, Milan, 1 November 2013.
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Figure 7. The Arrival Rate in 24 h, Square id 100, Milan, 1 November 2013.
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5.2.2. Verification of the Proposed Algorithm

Some of the simulation parameters in this section are listed in Table 3. The performance metrics
are total energy consumption and average energy consumption (AE) of IoT end nodes. AE is calculated
as following equation:

AE =
U

∑I
i=1 ∑J

j=1 xij
(33)

Table 3. Simulation Parameters.

Parameter Name Parameter Value (Unit)

The Distance from IoT-End Nodes to Access Points 100–500 m
The Default Number of IoT-End Nodes 60
The Default Number of Fog Nodes 20
The Default Number of MEC Nodes 10
Bandwidth of Wireless Channel 1.08× 106 Hz
Default Processing Capacity of MEC Nodes µm 50/sec
Default Processing Capacity of Fog Nodes µj 20/sec
The Data Size of a Task d 3.0× 105 Bit
Latency Constraint τ 0.3 s
Default Task Arrival Rate of Each IoT-Fog Node λ 10/sec
The Reliability of Normal Fog Nodes [0.9, 0.99]
The Reliability of Normal MEC Nodes [0.9, 0.99]
Default Percentage of Malicious Fog Nodes 20%
Default Percentage of Malicious MEC Nodes 10%
Default Reliability of Malicious Fog Nodes 0.2
Default Reliability of Malicious MEC Nodes 0.2
Background Noise σ2 −100 (dBm)

We studied the impact of the number of MEC nodes, the impact of the number of fog nodes and
the impact of percentage of malicious fog nodes in this section. The results are shown in Figures 9–17
respectively. As shown in the results, both BCDM algorithm and Best-effort algorithm showed good
scalability when the simulation parameters changed, especially in the presence of malicious nodes.
This is because the latency-awareness strategy based on anomaly detection proposed in this paper
can effectively bypass the anomalous nodes, thus reducing energy consumption. In all cases, BCDM
algorithm showed better performance than Best-effort algorithm. It should be noted that a line chart
and a bar chart are used to show the number of tasks allocated in Figures 11 and 14. This is because
the number of tasks assigned by BCDM and Best-effort algorithm is the same, and different graphical
methods are used to show them more clearly.

The Number of MEC Nodes
5 6 7 8 9 10 11 12 13 14 15

A
E

×10-3

2

4

6

8

10

12

14

BCDM
Best-Effort

Figure 9. The Impact of the Number of MEC Nodes to Average Energy Consumption.
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Figure 10. The Impact of the Number of MEC Nodes to Total Energy Consumption.
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Figure 11. The Impact of the Number of MEC Nodes to Total Number of Allocated Tasks.
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Figure 12. The Impact of the Number of Fog Nodes to Average Energy Consumption.
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Figure 13. The Impact of the Number of Fog Nodes to Total Energy Consumption.
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Figure 14. The Impact of the Number of Fog Nodes to Total Number of Allocated Tasks.
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Figure 15. The Impact of Percentage of Malicious Fog Nodes to Average Energy Consumption.
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Figure 16. The Impact of Percentage of Malicious Fog Nodes to Total Energy Consumption.
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Figure 17. The Impact of Percentage of Malicious Fog Nodes to Total Number of Allocated Tasks.

The impact of the number of fog nodes and MEC nodes on energy consumption is shown
in Figures 9–14. As depicted in these figures, the impact of the number of fog nodes on energy
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consumption was greater than that of MEC nodes. This is because in our simulation parameter setting,
MEC node has stronger task processing ability, which is also one of the main differences between fog
nodes and MEC nodes. Therefore, in the simulation, the main bottleneck of performance was exhibited
in the fog node layer. From the simulation results, it can be found that the change of MEC node number
had little effect on energy consumption, while the increase of fog node number made the decrease of
energy consumption very obvious. Figures 15–17 show the impact of the percentage of malicious fog
nodes in all fog nodes on energy consumption. Obviously, the increase of the proportion of malicious
fog nodes and the increase of the number of fog nodes have the opposite effect on energy consumption.

6. Conclusions

In this work, we put forward a latency-aware energy-efficient continuous data-flow optimization
strategy. This strategy is designed for continuous data flow applications in IoT-fog-edge computing
scenarios. The most typical application of continuous data-flow is E-health Monitoring System.
We made use of a novel lightweight anomaly detection strategy to get the confidence of the fog and
MEC nodes. We used the confidence as the metric to evaluate the reliability of each nodes and use it to
estimate the latencies in the energy-efficient continuous data-flow problem with latency constraints.
We established a formal model and solved the problem using the block coordinate descend max-flow
(BCDM) algorithm. The real-life datasets were used in the numerical study to verify the performance of
the proposed strategies. Numerical results showed that the proposed strategies have good performance
in all simulations.

In this paper, we only consider the latency property of data flow service. However, some other
network attributes will also have a great impact on the overall performance of the system, such as
frequency of messages, message rates, size, etc. We will combine these attributes with latencies for
measuring the system performance in our future work. Although the main motivation scenario of
the continuous data flow problem in this paper is E-health monitoring system, the continuous data
flow problem can also be extended to more application scenarios, such as mobile social network [40],
intelligent industrial monitoring system [41], etc. We will further consider the location of fog nodes
and MEC nodes in continuous data flow problem [42]. Furthermore, we will conduct more simulations
in an event-driven simulator [43], such as the YAFS [44], in our future work.
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