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Abstract

Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the
Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of
OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices
and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth
protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk
Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure
information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a
promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emula-
tion. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin,
intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally,
microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as
they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and
challenges to overcome, to advance non-animal, human-relevant safety studies.
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Introduction

Organ-on-chip (OoC) technologies attract increasing interest
as human, physiologically relevant in vitro testing systems
to be incorporated in a Next-Generation Risk Assessment
(NGRA) of chemicals. OoC are small scale devices designed
for dynamic human cell culture that can simulate different
microenvironments and functions in such a way that the cells
can behave as naturally as possible (i.e., more in vivo-like)
(Mummery et al. 2020). The “natural” microenvironment
and functions are introduced to the cells in the OoCs, using
microfluidic flow, 3D tissue reconstruction and the use of
multiple cell types and cell sources. OoC hardware devices
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vary on the materials used (e.g., rubber, plastic, silicone,
glass), layout (open or closed culture compartments), per-
fusion (active or passive) and can provide different support
for cell culturing on chip (e.g., stretch, peristaltic, contrac-
tion dynamics etc.). In the last decade, numerous published
microfluidic chip approaches have accelerated the innovation
and commercial large-scale production of these devices (see
“Commercially manufactured OoC devices”). This resulted
in an increasing infrastructural development for biomedi-
cal laboratories without the need of in-house microfluidic
designing expertise. In parallel, recent publications using
human cells in OoC devices underpin the advances in biol-
ogy by demonstrating that the induced biochemical and
mechanical cues improve functional and structural char-
acteristics of tissue cultures. The combination of both, tis-
sue function with flow dynamics in 3D architecture, may
significantly contribute to the transition of animal-free
approaches for regulatory safety assessment (e.g., develop-
ment of adverse outcome pathways) (Heringa et al. 2020).
In addition, OoC might also accelerate new approach meth-
odology acceptance for NGRA, defined as human-relevant,
exposure-led, hypothesis driven risk assessment approach
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that integrates in silico, in chemico and in vitro approaches
for assessing effects on human health (Berggren et al.
2017; Dent et al. 2018; Thomas et al. 2019). In this tiered
approach, OoC systems have value in the higher tier ab ini-
tio approach for targeted testing, biokinetic refinements, as
well as the estimation of the points of departure, uncertainty,
margin of safety and extrapolation (Berggren et al. 2017).
Yet, there is a clear consensus in the OoC community, (con-
sumer) industry and regulatory bodies on the need for stand-
ardisation to advance the field (Piergiovanni et al. 2021).
The review we focus on data available from OoC man-
ufacturer websites, as well as on the search for current
(2016-2021) tissue-specific studies including different cell
lines and types in skin, intestine and gut models. With the
review, we aim to evaluate the features and robustness of
the currently available manufactured OoC devices and skin,
intestine and liver tissue models that can be used as part of
the NGRA toolbox and at higher tier testing on-chip (see
selection in tables and figures). First, we describe commer-
cially manufactured OoC devices that thus have a (more)
standardized design and critically discuss the applicability of
these devices for toxicological studies. Next, some promis-
ing achievements with microfluidic in vitro tissue culturing
approaches are highlighted. For this analysis, we focussed
on two important biological barriers, the skin and gastroin-
testinal epithelium, as these are of particular relevance for
safety assessment that cannot use laboratory animal-derived
data. In addition, liver models were reviewed as they rep-
resent the most metabolically active tissue, which is a key
characteristic if systemic toxicology is considered. Finally,
fluidically linked tissue combinations such as skin—liver and
intestine—liver in OoC devices are reviewed as they form
an innovative aspect for advancing and integrating kinetics
studies, which are needed to increase the physiological rel-
evance of in vitro models. We conclude this review by listing
additional research and standardization that are required to
qualify OoC as fit-for-purpose systems in a NGRA toolbox.

Commercially manufactured OoC devices

Due to the broad need for human-relevant in vitro approaches
for different research applications, the development of novel
devices is constantly stimulated. A decade after the first suc-
cessfully lab-fabricated OoC, a wide variety of commer-
cially manufactured hardware became available to emulate
a more natural microenvironment for in vitro studies (Mum-
mery et al. 2020). The hardware design of an OoC is dic-
tated by the microenvironment required for optimum cellular
functions, the monitoring parameters and the research appli-
cation. The design of the hardware in turn determines the
material selection (e.g., rubber, plastic, silicone and glass)
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with its associated fabrication technique (e.g., Lithography,
3D printing) and the options for stimulating and sensing
(e.g., mechanical, optical), as well as the interfacing layout
(e.g., open- or closed culture compartment accessibility,
liquid perfusion) (Kurth et al. 2020). Based on the mate-
rial selection and interfacing, we will discuss commercially
manufactured devices, as shown in Fig. 1.

Materials used for OoC devices

Not all materials are suitable for an OoC fabrication as they
must support the growth of functional cells and allow the
study of the biological model in this simplified microen-
vironment (Kurth et al. 2020). The material selection must
consider the creation of appropriate culture chambers and
with fluidic connection, induced forces and stiffness to recre-
ate biological functions, as well as potentially adding elec-
trical stimuli and actuation to control and observe the cre-
ated biological tissue model. The culture chambers are the
advanced compartments that are often separated by porous
membranes to host the cultured tissue, partially with the help
of a biological scaffold. In these culture compartments the
cell tissue is provided with the necessary nutrients, waste
products are removed and a (bio)chemical environments
(e.g., gradients) can be simulated (e.g., oxygen, carbon
dioxide, acidity etc.) (Mummery et al. 2020). It is rare that
a single material can be used to fabricate an entire complex
0oC device, including the culture compartment and fluidic
connections with mechanics and sensors, as multiple criteria
must be considered in the material selection and integration.
Material criteria include the biocompatibility, sterilization,
physiochemical properties, material function on the device
and eventually the costs. For (novel) material used in OoC,
biocompatibility implies that the material supports appropri-
ate cellular activity without undesired or harmful biological
effects (Zhang et al. 2018; Kurth et al. 2020). As the mate-
rial is in direct or close contact with cells, it is necessary
to avoid contamination, and therefore, it is important that
the material must withstand sterilisation techniques. Essen-
tial physiochemical properties are optical transparency for
observation, gas permeability for cells requiring oxygen,
lowest possible absorption of molecules, chemical and ther-
mal resistance, as well as stiffness. As mentioned earlier in
this section, these requirements largely depend on the chip
design and research application. Currently, common mate-
rials used for creating OoC devices are silicone substrates
and polymers (e.g., PDMS), resins and glass partly meet
the required criteria [see Azizipour et al. (2020) and Ding
et al. (2020)]. Further improvements are needed and novel
(hybrid) material may fulfil the various engineering and bio-
logical requirements (Ding et al. 2020; Grant et al. 2021).
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Fig. 1 Examples of commer-
cially available OoC devices for
different research applications A
OrganoPlate® 3-lanelMimetas
(2020) B Organs-on-Chips
TechnologylEmulate (2020) C
PhysioMimix™|CN BIO Inno-
vations (2020) D HUMIMIC
Chip2ITissUse GmbH (2022) E
Akura™ Flow: Transforming
Drug Discovery and Develop-
ment with Body-on-a-Chip
TechnologylInSphero (2020)

F Organ-on-a-chip/Micronit
(2020) G The QV900IIdeal

for high-content experiments
and industrial uselKirkstall

Ltd (2020) H Products-Bi/ond
(2020) I The ParVivo™ Organ-
on-Chip TechnologylNortis Bio
(2020) J HUDMOP®IIONTOX
(2022). All pictures taken from
the websites of manufacturers
(see references)

Open and closed tissue culture
compartments

All device manufacturers strive for different layouts to target
different research applications. This leads to at least two
major design differences in layout for the tissue culture com-
partments access: an open or closed access. As to be seen in
the devices C, D, E, F, G, H, J, as depicted in Fig. 1, the open
culture compartment offers a direct access for seeding, sam-
pling, dosing and analysis. This layout partially facilitates
air-liquid interfacing for skin and gut, the seeding of bigger
cell aggregates such as liver spheroids and the layering of
dermal and intestinal cell sheets on an insertable membrane
as reviewed by Berthier et al. (2019). The closed layouts
(see Fig. 1A, B, I) can mimic better a closed 3D organ archi-
tectures and mechanical forces, such as flow and stretch for
intestinal, liver and vascular tissues. However, this closed
layout complicates the extraction of cell samples for analysis
(Bhatia and Ingber 2014). The open or closed tissue culture
compartment access also impacts the requirement for tubing
and pumps for fluidic perfusion.

Fluidic perfusion of the devices

Fluidic perfusion ensures the continuous supply of nutri-
ents and removal of waste products from the cell culture. In
addition, perfusion delivers mechanical stimuli by generat-
ing laminar, pulsative and interstitial shear stress along the
microfluidic channel thus recreating living cell environments
with biochemical gradients and cell signaling (Rothbauer
et al. 2018). Perfusion methods are either passive or active
through direct integration or plugged-in system to actuate
the fluidic flow as reviewed by Kurth et al. (2020). The sim-
plest and least-expensive method is gravity-driven which
uses mostly a rocking platform to induce the passive flow
(see Fig. 1A, E). The induced bidirectional flow results from
the difference in liquid height between the fluid inlet and
outlet within an closed culture compartments (Kaarj and
Yoon 2019). Mechanical active perfusion through directly
integrated or plugged-in pneumatic and peristaltic pumps
offer a simple solution to deliver culture medium from
source to waste or to recirculate the culture medium. A num-
ber of cell tissues can be perfused in parallel, depending
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either on the amount of tubing which can be coiled around
the peristaltic pump or the microvalve amount connected to
the pressure controlled pneumatic pump (also on-chip) (see
Fig. 1B-D, F-J). Both, passive and active perfusion inherent
limitations in their fluid handling as reviewed by Soenksen
et al. (2018). For example, mechanical pumps (also directly
on-chip) connected to open wells or channels usually do not
deliver robust steady-state flows for long periods of time as
they rely on pulsative flows (e.g., directly integrated or plug-
in pumps), extra tubing and are more susceptible to con-
tamination and air-bubbles (Miki et al. 2015; Soenksen et al.
2018). Furthermore, devices relying on active perfusion are
equipped with extra instruments (e.g., pressure controls, sen-
sors) and use either connective tubing or stiff monolithic
design material that might impact the cell culture. However,
media flow actuation with tubing or a monolithic design
are so far the only approaches to interconnect individual
culture chips. The tunable flow enables the control and cir-
culation of media with secreted molecules by perfusing the
entire system with common medium which paves the way
to engineer complex human physiology on chip (Renggli
and Frey 2020). Passive perfusion through gravity does not
use extra tubing and instruments but is transient in nature
and prone to performance variation (e.g., fabrication error,
use-induced stress, trapped air bubbles). In addition, closed
passive perfused systems can affect the chemical distribution
rates as the combination of high plastic exposure with lower
fluidic exchange and a lack of headspace may accumulate
chemicals, especially after repeated exposure (Kramer et al.
2015; Proenga et al. 2021). Future experiments for both,
active and passive perfused systems, should address the
potentially affected chemical biokinetics to provide clarity
on diffusion rates.

Engineering human tissue functionality
on chip

In the last years, the work is progressing on new approach
methodologies for human relevant biokinetic predictions that
move away from animal experimentation towards in silico
and novel cell culture technologies (Punt et al. 2020). The
use of animal data in human risk assessment raises concerns
as animal tissue physiology does not always recapitulate
human tissue physiology. In contrast, some static in vitro
models with human cells may not represent the sensitive cel-
lular microenvironment required for physiologically relevant
simulations. OoC technology in combination with advance
human cell models potentially offers a promising alternative
to improve in vitro experiments by introducing biological
functions, such as microfluidic shear stress and a 3D micro-
environment. Despite the great promises of OoC, examples
of successful application of OoC for NGRA are scarce due
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to cost, throughput, general OoC availability and cell culture
challenges (Rusyn and Roth 2021; Low et al. 2021).

Next, we will discuss the engineering of a controlled 3D
environment and three key human organ tissue systems in
the culture compartments. We will elaborate on skin, intes-
tine and liver models that are equivalent to at least the small-
est functional unit of each organ (Ronaldson-Bouchard and
Vunjak-Novakovic 2018; Jensen and Teng 2020). There are
two critical factors which need to be addressed while engi-
neering a tissue with organ-specific function on chip for a
NGRA: (1) the establishment of a 3D architecture in the
culture compartments and (2) the choice of cell line. In this
section we discuss the significance of the above two factors
and how they affect the functional capacity of the recreated
tissue.

Single cells type monolayers might underrepresent the
functional complexity as exhibited in the in vivo environ-
ment; however, a shift can be observed to improve the
culture environment through the implementation of new
approach methodologies (Punt et al. 2020). One new in vitro
approach includes 3D cell culturing to recreate an anatomi-
cal architecture of a tissue of interest. Several studies have
shown that upon recreating a 3D architecture, the cultured
cells have improved characteristics in morphology, viabil-
ity, differentiation, metabolic capacity as well as transporter
and gene expression levels (Duval et al. 2017; Curto et al.
2017; Theobald et al. 2018; Lembong et al. 2018; Lee and
Jun 2019; Jensen and Teng 2020). Two directions can be
observed in recreating 3D architectures in OoCs. First, scaf-
fold free techniques such as hanging drops, magnetic levi-
tation and spheroid microplates with ultra-low attachment
coating enable the cells to freely grow prior to seeding in
OoCs. This technique is especially applicable for open acces-
sible culture compartments as this layout allows direct seed-
ing of bigger aggregates as demonstrated for liver spheroids
(Lasli et al. 2019; Jang et al. 2019a; Kostrzewski et al. 2020;
Tao et al. 2021). Second, scaffold-based techniques which
use hard material-based polymers or hydrogel supports that
mimic the extra cellular matrix (ECM) and enables the cells
to properly attach and differentiate (Jensen and Teng 2020).
The ECM biomaterial can be tumour cell-derived (e.g., col-
lagen, Matrigel), purified protein, polysaccharide (e.g., col-
lagens, alginate, bacterial cellulose) or produced syntheti-
cally (e.g., polyethylene glycol). Notably, all biomaterial will
impact the intracellular signalling as well as the chemical
distribution in the cell system (Gjorevski and Lutolf 2017;
Hinman et al. 2020). Especially OoC have very particular
chemical distribution processes that need to be addressed for
better translatability, as reviewed by Proenca et al. (2021).
The review concludes that chemical distribution simulations
are important for the validation, as part of chemical hazard
identification (Proenca et al. 2021). Furthermore, scaffold-
free and scaffolded techniques exploit the self-assembling
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capacity of cells. Different organ systems require specific
3D scaffolds, and cell types to allow for targeted functional
tissue applications on chip and, therefore, require unique
microfabrication techniques (Duval et al. 2017). Recent
advanced in microfabrication techniques such as 3D printing
offer a higher potential to recreate a controlled and reproduc-
ible 3D architecture (Zhao et al. 2019).

Creating the best biology on chip

Selecting the cell source is a critical aspect to consider for
the engineering of a functional, scalable and reproducible
organ tissue equivalent (Renggli and Frey 2020). The type
of human cells to use largely depends on the emulation of
the desired physiological function along with the cell type
availability, cultivability, time line of the study, budget
and availability of established protocols. Immortalized
cell lines, primary cell cultures and derivatives of adult or
induced pluripotent stem cells are classes of cells that can
be utilized for tissue recreation. Advantages and limitations
vary depending on the target organ and importantly on the
research question.

Cell lines are widely used in toxicological proof-of-con-
cept studies, because they are robust, easy to culture, well-
characterized, affordable and highly proliferative. However,
cancerous cell lines often exhibit significant genotypical and
phenotypical abnormalities such as lack of metabolic capac-
ity in terms of CYP450 gene expression and other metabolic
enzymes, as well as lack of expression of protein transport-
ers, potentially limiting their ability to reproduce physiologi-
cal cell behaviour (Gillet et al. 2013).

In contrast to cell line-based models, primary cell cultures
obtained from fresh tissue are considered a gold standard for
in vitro models, because they resemble the in vivo cells the
most. Primary cultures of certain cell types consist of a het-
erogenous cell population at various stages of differentiation
and maturation (Verma et al. 2020). Once the cells are ter-
minally differentiated, they may attach and remain viable in
culture but will not proliferate anymore and nearly instantly
dedifferentiate. The limited proliferative capacity is termed
as replicative senescence, causing the major disadvantage of
using primary cells in OoC (Cristofalo et al. 2004). Primary
cell lines inherit the donor genotype that enables investiga-
tion of specific features of vulnerable groups but is a limita-
tion for the generic assessment of molecular pathways and
metabolism broader populations (Castell et al. 2006; Ertel
et al. 2000).

The use of stem cell-derived cell culture models is gain-
ing pace in toxicological research and continues to advance

together with microfluidic culturing. Most stem cell-derived
models in OoC are based on induced pluripotent stem cells
(iPSC) as the microfluidic devices can direct differentiation
(Yaging Wang et al. 2018a, b; Ramme et al. 2019; Nau-
movska et al. 2020). The major iPSC-stem cell advantage
is the usual normal karyotype and their derivation from
human material, such as from biopsies, blood draws and
urine. Upon reprogramming the derived human material,
the stem cells may be selectively differentiated into mul-
tiple tissue specific-cell lineages, creating a replenishable
source of cells (Wnorowski et al. 2019). Same as primary
cells, iPSCs inhere the donor genotype which contributes to
experimental variability and affect reproducibility of experi-
ments. The genotypic and phenotypic differences make them
on one hand ideal to study chemical responses for suscep-
tible groups, whereas it might complicate mode of action
studies for broader populations. Nevertheless, stem cells are
in demand for NGRA studies, leading to a rapid develop-
ment of culture protocols to overcome the largely fetal-like
phenotype (Bulutoglu et al. 2020). The major challenge is
the establishment of a robust and reproducible approach to
maintain, differentiate and mature iPSC cell lines in vitro.
Importantly, recent work by the groups of Bulutoglu and
Sakolish raise confidence in lab-to-lab comparable and
primary cell-like performing iPSC-derived hepatocytes in
0Oo0C (Bulutoglu et al. 2020; Sakolish et al. 2021). Notably,
also direct on-chip culturing techniques were performed
using iPSC-derived intestinal organoids. The derived cells
exhibited organ-specific function in a quicker and resource-
efficient manner (Naumovska et al. 2020). Despite current
obstacles, stem cell culturing is expected to synergistically
advance with OoC technology towards more robust human
physiological models (Low et al. 2021).

Advancing skin, intestine and liver tissue
cultures on chip for next-generation risk
assessment

In this section we highlight promising advances for in vitro
tissue culturing approaches that resulted in show case mod-
els. To do so, we focus on two important biological barri-
ers, the skin and the gastrointestinal epithelium as important
barriers for chemicals. In addition, we include liver-on-a-
chip models as liver is the main metabolic active tissue and,
therefore, highly relevant to include in NGRA. Finally, fluid-
ically linked tissue combinations on-chip such as skin—liver
and intestine—liver are reviewed as they form an innovative
aspect for advancing and simulating kinetics for in silico
modelling.

@ Springer



716

Archives of Toxicology (2022) 96:711-741

Human Skin

Equivalent (HSE)

v Keratinocytes
v Fibroblasts

Reconstructed Human

Epidermis (RHE)

v Keratinocytes

Pigmented HSE
v Keratinocytes
v Fibroblasts
v/ Melanocytes

Vascularized HSE Immune competent HSE
v Keratinocytes
v Fibroblasts

v LC// Dermal DC

v Keratinocytes
v Fibroblasts
v Endothelial cells

e Y
e L .. L . S
Medium Medium Medium
Complexity
Application Application Application Application Application
v Skin corrosion and v Permeation v Investigate v Permeation v Permeation
irritation v Skin corrosion and photosensitive effects v Skin corrosion and v Skin corrosion and
v Senstisation irritation v Vitiligo irritation irritation
potential v Skin metabolism pathogenesis v Neutrophil migration v Skin sensitization

v Wound healing

v Skin inflammation
v Immune modulation

Fig.2 Summary of selected 3D in vitro skin tissue models, depicted with increasing biological complexity and their research applicability and
predictability for NGRA using an open access OoC device for air-liquid culturing

Application of skin-on-a-chip
in next-generation risk assessment
of chemicals

The skin is the largest organ of the human body and it is in
direct contact with the outside environment. Thus, a healthy
skin features barrier characteristics and thereby regulates
the body temperature, retains moisture and protects against
microbes and chemicals (Gauglitz and Schauber 2014).
The human skin consists of three tissue layers—epider-
mis, dermis and subcutaneous layer. The stratum corneum
is the epidermal top layer and is composed of dead skin
cells and functions as the primary barrier. The epidermis is
a dense and poorly vascularized region that mainly consists
of keratinocytes (KC) with few pigment-producing dendritic
cells (DC). Major immune cells in the epidermis are Langer-
hans cells (LCs) and dendritic epidermal T-cells (DETC).
Below the epidermis lies the dermis layer which consists
of a highly vascularized fibrotic layer which is low in cell
density but rich in collagen and elastin fibres. Fibroblasts are
the major cell type alongside with scattered immune cells.
Finally, the deepest layer is the subcutaneous layer of fat
that supplies nutrients to the outer layers. The epidermis
and dermis play a major role in absorption, distribution,
metabolism of xenobiotics as well as generate an immune
response against xenobiotics. Therefore, these two layers
are in focus for recreating better human relevant skin—tis-
sue models (Chong et al. 2013). Within the NGRA toolbox
for skin-contact materials, better skin models find value in
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the risk assessment of traditional endpoints, such as irrita-
tion, corrosion, phototoxicity, skin sensitization, as well as
understanding and improving exposure estimations, stress
pathways and metabolism (Gilmour et al. 2020; Baltazar
et al. 2020).

Current skin research relies on the use of ex vivo mimetic
models as gold standard but their use is not always possible
due to ethical concerns, regulatory issues and variability,
because samples are usually obtained from different ana-
tomical sites (Moniz et al. 2020). Hence, engineered human
skin tissues have been widely adopted for assessment of
local toxicity in the skin. Notably, this resulted in harmo-
nised in vitro testing by the newly adopted OECD testing
guidelines which now involve human-based in vitro skin
tissue models for chemical evaluation (Ng and Yeong 2019;
OECD 2021a, b, ¢). To evaluate the safety of chemicals, an
in vitro 3D skin tissue can be either readily purchased or cre-
ated by layering cell sheets. Then, these skin tissue models
can be cultured dynamically in an open-top OoC device to
be consequently lifted for creating an air—liquid interface
(ALI) on the cell layer, as this forms the stratum corneum
layer of the epidermis. In the past decade, various skin tissue
models with different levels of biological complexity have
been developed with immortalized cell lines, primary cells
and stem cells (see Fig. 2) (Kandarova and Hayden 2021).

The simplest in vitro skin model is the Reconstructed
Human Epidermis (RHE, see Fig. 2; Table 1) consisting only
of keratinocytes cultured on a collagen matrix at the air-lig-
uid interface. Commercially manufactured RHE models,
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Episkin®, EpiDerm™, epiCS® and SkinEthic™, were first
assessed as a predictive model for skin corrosion, but soon
they were approved for determination of irritation potential
marked through IL-1o and IL-18 release (Gibbs et al. 2013;
Ng and Yeong 2019). These RHE models are created with
primary human keratinocytes (foreskin or mammary skin
tissue) but other RHE models have also been established
with immortalized human keratinocytes (HaCat) and iPSC-
derived skin cells (Petrova et al. 2016). All of them form a
stratified epithelium after around 14 days of culturing under
optimal conditions at the ALI (Mathes et al. 2014). RHE
models are especially acknowledged for their reproducibility
but they do not meet the requirement for permeation stud-
ies. Schifer-Korting et al. (2006) showed that permeation of
caffeine and testosterone using RHE is overestimated com-
pared to the human epidermis. Therefore, RHE has limitedly
utility for NGRA studies that require barrier function but
may represent a useful tool for corrosion, irritation and skin
sensitization potentials (Zhang et al. 2017a; Song et al. 2018;
Teimouri et al. 2019; Mehling et al. 2019).

Another OoC model for skin with higher complexity
than a RHE is a Human Skin Equivalent model (HSE, also:
Full Thickness, bilayered reconstructed skin model). It con-
sists of an epidermal and dermal compartment (see Fig. 2;
Table 1). Commercially available HSE models, T-Skin™,
Phenion® Full-Thickness Skin Model, EpiDermFT and Lab-
skin, are derived from primary human cells and allow the
investigation of skin metabolism, permeation and wound
healing (van den Broek et al. 2017). Self-assembled models
also exist with the use immortalized HaCaT and NTERT and
iPSC-derived cells (Itoh et al. 2013; Reijnders et al. 2015).
To generate a HSE, fibroblasts are integrated into a collagen
I scaffold to create a dermal compartment. After coating
with adhering collagen fibres, the keratinocytes are seeded
on top to form a multilayer. HSE models are particularly
suitable for xenobiotic metabolism studies, as the 3D matrix
increases the metabolic capacity of the biotransformation
enzymes in keratinocytes (Brinkmann et al. 2013). Addi-
tional to metabolism studies, HSE are also used for skin
permeation studies of topically applied substances due to
the increased barrier function compared to RHE (Alberti
et al. 2017; Sriram et al. 2018; Schimek et al. 2018). The
barrier properties of HSE models can be further improved by
adding a hypodermis (subcutis) to advance the barrier func-
tion, as demonstrated by Schmidt et al. (2020). This thicker
three-layered skin model reduced the permeation, exhibited
suitability as an in vitro test system for irritating substances.
Moreover, the model was proposed to exploit dermal deposi-
tion as a possible new endpoint for chemicals in the lipid-
rich hypodermis as there is a fundamental lack of studies for
investigating the impact and effect on the pharmacokinetics
(Turner and Balu-Iyer 2018; Schmidt et al. 2020). To study
sun-associated adverse effects or vitiligo pathogenesis, HSE

@ Springer

models are complemented with melanocytes (to treat pig-
mentation). Commercially manufactured models, Melano-
Derm™, epiCS®—M and SkinEthic™ RHPE, make use of
primary cells in co-culture with normal melanocytes (Lee
et al. 2019a). A completely iPSC-derived 3D model has been
created but was limited with unexpected low melanocyte
count and viability (Gledhill et al. 2015). All before men-
tioned pigmented HSE have observed limitations, such as
pigmentation flaws (complete absence of pigmentation or
development of progressive pigmented spots), hypopigmen-
tation or scattered pigmented spots which makes them limit-
edly recommendable for phototoxicity studies with UV-light
exposure on-chip (Germain et al. 2018).

The addition of immune cells to reconstructed skin mod-
els allows the study of multicellular immune mechanism
and reactions after cutaneous exposure that can potentially
initiate allergic contact dermatitis (see Fig. 2; Table 1)
(Thélu et al. 2020). The incorporation of the immortal-
ized human acute myeloid leukaemia cell line, MUTZ-3,
to derive phenotypically similar Langerhans cells (LC) is
widely acknowledged to be valuable (Kosten et al. 2015;
Bock et al. 2018). Such coculture models can be created in
the lab or obtained from any commercial manufacturer. A
RHE model can integrate LC progenitors which differen-
tiate into antigen-presenting LC during tissue reconstruc-
tion (SkinEthic RHE 2020). To represent dermal DCs in
immune-competent models, primary peripheral blood mono-
nuclear cells (PBMC) and leukemic monocyte THP-1 cells
are incorporated (Schellenberger et al. 2019). To date, none
of the iPSC-derived skin model incorporates immune cells
although iPSC can effectively differentiate into multiple
functional lymphocyte lineages (Mathes et al. 2014; van den
Broek et al. 2017; Thélu et al. 2020). Overall, all immune
cell containing skin models still require more quantitatively
defined criteria for reproduceable endpoint studies and are
highly complex considering the performance of integrated
more simplistic models (Thomas et al. 2019; Baltazar et al.
2020). Therefore, published literature on the application of
fully immune competent skin-on-chip is scarce.

To physiologically connect skin tissue layers, the inte-
gration of endothelial cells (EC) such as primary derived
human umbilical vein endothelial cells (HUVECSs), human
dermal microvascular EC (HDMEC) or iPSC derived EC
are essential. The introduction of blood vessels in the der-
mis on-chip to simulate the microvasculature demonstrated
an enhanced tissue viability, barrier properties, metabolic
activity and immune capacity (Materne et al. 2015; Mori
et al. 2017). A recent study by Kwak et al. (2020) using a
primary cell derived vascular skin tissue on chip, mimicked
the neutrophil migration after treatment with sodium lauryl
sulphate and, therefore, demonstrated the added value of
perfused vascularized models for immune studies. Overall,
we conclude the vascularisation of skin tissues in OoC not
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only enhances functional results compared to static skin
equivalents but also allows to study diffusion of chemicals
and skin permeability on-chip. Introducing a microvascu-
lature on-chip with good vascular permeability properties
could lead to a promising tool in the NGRA toolbox and a
platform for higher tier testing to replace the use of ex vivo
and animal models (Risuefio et al. 2021).

Application of intestine-on-a-chip
in next-generation risk assessment
of chemicals

The intestinal system accounts for the nutrient absorption
and represents the first barrier of defence to keep harmful
agents out of the body and prevent pathogens from entering
via the diet. The small intestinal epithelium is character-
ized by the mucosa that contains circular folds and a dense
array of villi to increase the available surface for nutrient
uptake from the intestinal lumen. The intestinal mucosa
can be divided into three layers, the muscularis mucosae
(stroma), the highly vascularized lamina propria and a sim-
ple columnar ranged epithelium (Dutton et al. 2019). The
small intestinal epithelium primarily consists of enterocytes
with absorptive microvilli (>70%), along with scattered
mucus—secreting goblet cells (~7%); Paneth cells (5%);
stem cells, tuft cells and enteroendocrine cells (together 2%)
and covered by a firm layer of glycoprotein mucin (Rao and
Wang 2010).

Furthermore, the gut epithelium is characterized by
the tight junctional complex consisting of tight junctions
and adherent junctions that maintain the barrier properties
(Balda and Matter 2008; Sharma et al. 2010). Adding to
the barrier property of the intestine, secreted mucus also
functions as a stable ecological niche for the residing micro-
biome to exert enteric defence and food fermentation and
breakdown, as well as bile acid metabolization (Liévin-Le
Moal and Servin 2006). Moreover, the mucosal epithelium,
especially through the M-cells, forms a functional unit with
the inherent immune system through the lamina propria
which samples luminal material to subsequently present
antigens to the dendritic cells (Mestecky et al. 2015; Johans-
son and Hansson 2016). A protected niche is provided by
crypts which are short tubular invaginations. The base of
the crypts contain the intestinal stem cells neighboured by
Paneth cells which release secretory granules in response to
harmful bacteria, lipopolysaccharides (LPS) and cholinergic
stimulation to induce an immune reaction (Ganz 2000).

Within the framework of NGRA, OoC intestinal models
can be employed as part of the general toolbox to assess gut-
related in vitro endpoints focussed on the effect of chemicals
on the barrier integrity and interaction of chemicals with
the residing microbiome and the local immune system. In

addition, OoC intestinal systems can be utilized to obtain
data at higher tier targeted testing such as metabolism pre-
diction, binding to proteins and DNA and formation of pos-
sible reactive oxygen species. Hence, the development of
robust gut-on-chip models may allow the dynamic coculture
of human intestinal epithelium cells to closely mimic and
tightly control the interaction with microbiota, simulate oral
absorption in interplay with physiological and biochemical
processes and understand toxicity in the gut tissue.

Single intestinal cell type monolayers grown in a static
environment have shown to be powerful in vitro models, yet
they are limited in the emulation of complex in vivo cell tis-
sue functionality (Costa and Ahluwalia 2019). Therefore, it
is important to design human small intestinal tissue models
with higher physiological relevance. Here, we will discuss
different functional intestinal microtissue models that use
membranes, flat or villi-like 3D ECM or other scaffolds
in open- and closed accessible OoC devices. Figure 3 and
Table 2 describe some of the advanced models that are used
for NGRA. These models mostly contain immortalized cells
or organoids as it has been technically challenging to cul-
ture single primary human intestinal epithelial cells sepa-
rated from supportive cells (Madden et al. 2018). Therefore,
immortalized cell lines and intestinal 3D organoid cultures
derived from either intestinal crypts containing endogenous
intestinal cells or iPSCs are predominantly used in studies.
However, it must be noted that organoids are limited in their
lack of supporting cell and tissue types (e.g., endothelial and
immune cells) and their closed lumen when cultured within
surrounding ECM (Bein et al. 2018).

The simplest in vitro model consists of a columnar
enterocyte epithelium which may be cultured with the sup-
port of a biological 3D scaffold at the air liquid interface
or submerged in the medium. Such a simple model is suit-
able for intestinal absorption and transport studies as dem-
onstrated in multiple published studies using Caco-2 cells
(see Table 2). Caco-2 are considered the gold-standard for
investigation of intestinal absorption and transport because
of their robustness, well-developed microvilli, increased
cytoskeleton expression and tight junctional complexes
compared to primary cells. This results in a barrier model
with a low permeability for chemicals (Artursson and Bor-
chardt 1997; Hilgendorf et al. 2000). In contrast, biopsy-
derived primary human intestinal cells that were separated
from supportive muscle cells may show impaired function
and viability and are, therefore, not suitable for use in in-
vitro intestine models. Stem cell derived models have been
limitedly exploited for chemical absorption and transport
studies (Madden et al. 2018). Transport studies compar-
ing transwells and microfluidic-perfused cultured Caco-2
tissues, have been performed to study 17 lipophilic dioxin
congeners and to compare the transport of the highly perme-
able compounds, such as antipyrine, ketoprofen and digoxin.

@ Springer
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Fig.3 Summary of 3D intestinal tissue models with increasing com-
plexity and their research applicability and predictability for NGRA.
The figure depicts two culture designs: A only one bottom membrane

According to Kulthong et al., the obtained transport val-
ues of the highly permeable chemicals were in line with
the compound Biopharmaceuticals Classification System,
demonstrating the value of dynamically cultured Caco-2
tissues (Kulthong et al. 2018, 2020). The simple columnar-
like epithelium can be expanded by coculturing Caco-2 cells
with mucus secreting HT29-MTX goblet cells. A study by
Santbergen et al. (2020) successfully coupled a dynamic
cultured Caco-2/HT29-MTX model to a chip-based lig-
uid chromatography mass spectrometry for investigation
of oral bioavailability of ergotamine. In a different study,
in attempt to mimic the lamina propria, De Gregorio et al.
(20204, b) integrated first primary myofibroblasts into their
intestinal model with caco-2/HT29-MTX cells cultured on
an air-liquid interface. The in vitro model demonstrated an
in vivo-like transepithelial resistance but has not been tested
for chemical exposure (De Gregorio et al. 2020a, b). Nota-
bly, Caco-2 cells contain tighter tight junctions compared
to in vivo observations and low levels of cytochrome P450
isoforms, especially CYP3A which is responsible for more
than 50% of xenobiotic metabolism in the gut (Kohl 2008).
Therefore, an improved Caco-2-based OoC model is needed
to better emulate the human intestinal functionality. For
instance the addition of mucus secreting HT29-MTX goblet
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(top: applicable for cultures using open-accessible layout OoC or two
channel closed layout OoC) and B three channel closed with perfu-
sion from both sides. (bottom) *only in primary cell cultures

can reduce the permeability and impact cytokine secretion,
diffusion of hydrophilic compounds and facilitates adhesion
modulation of added microbiome and bacterial components
(Hilgendorf et al. 2000; Martinez-Maqueda et al. 2015). The
addition of microbiome can serve as an integrative approach
to demonstrate host—-microbiome interaction in health and
disease, such as through inflammation-inducing cytokines
and endotoxins but also because of interactions in drug phar-
macokinetics and nutrition metabolism (Kim et al. 2016; Jal-
ili-Firoozinezhad et al. 2019; Xiang et al. 2020). However,
as reviewed by Elzinga et al. (2019), potential limitations of
this complex integrated system include low reproducibil-
ity of the (anaerobic) bacterial cultures, potential bacterial
overgrowth and a hampered formation of main epithelial
cells types and crypts in organoids (Kim et al. 2016; Shin
et al. 2020).

A complete epithelium model based either on primary
cells or derived from stem cells (see Fig. 3) could provide a
holistic model to investigate chemical absorption, metabo-
lism and might provide a tool to study the effect of chemi-
cals. Cui et al. (2020) evaluated the commercial Epilntes-
tinal™ bioprinted primary microtissue successfully as an
ADME tool. In a non-commercial and bioprinted model,
Maschmeyer et al. (2015) used an ileum section biopsy to
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recreate a 3D full-thickness complete epithelium micro-
tissue for an integrated system. In the microfluidic cul-
ture, the microtissue was viable and functional for 28 days
and expressed physiologically relevant permeability and
demonstrated in vivo-like drug transporter and CYP3A4
activity (Maschmeyer et al. 2015). Notably, OoC technol-
ogy improves the differentiation of iPSC-derived cells
into complete intestinal epithelium organoids on-chip, as
demonstrated by Naumovska et al. (2020) and Beaurivage
et al. (2020). Both studies presented a 3D model with an
in vivo-like permeability and a higher drug transporter and
CYP3A4 expression as compared to Caco-2 cells. Yet, one
major limitation of primary cell and iPSC-derived tissues
and organoids is the lack of standardized protocols for met-
rics and specification to recreate a reliable and predictable
performance on-chip (Dutton et al. 2019). Another major
limitation of organoids is the overall closed conformation,
leading to a restricted apical-luminal access but also the lack
of inherent immune competence. Several reports have been
published about organoid cocultures with immune cell popu-
lations but it is important to acknowledge the challenge of
adding additional components to an already complex system
(Kim et al. 2020). An alternative is coculturing Caco-2 cells
with HT29-MTX, THP-1 and MUTZ-3 as created by Gijzen
et al. (2020) who measured barrier permeability and inflam-
mation after exposure to TNFa IL-, TPCA-1 in dynamic
condition to study inflammatory response.

The intestinal models mentioned above can also be
expanded by adding vascular cell into the lower membrane
surface to introduce a biological barrier for transport studies,
physiologically connect layers and to support tissue viability
and functionality (Torras et al. 2018). A simple vascular-
ized columnar-like enterocyte epithelium was recreated by
Herland et al. (2020) using Caco-2 and HUVEC (see Fig. 3)
on a fluidically-coupled organ chip. The endothelium-lined
vascular channels in the model allowed for nutrient trans-
port, waste removal and human pharmacokinetic modelling
of caffeine. An advanced vitro tissue model by Seiler et al.
(2020) used patient-derived human small intestinal cells on
a myofibroblast layer with a recreated capillary network. The
created tissue was characterized as a translatable ex vivo
culture system and demonstrated angiogenic properties after
exposure.

Although the studies show great advances in the intes-
tine-on-a-chip field over the past decade, several challenges
remain, such as the reproduction of all intestinal layers,
especially with stem cell-derived cells. Moreover, intes-
tine-on-a-chip lack a stable integration of a microbiome,
and the provision of an intestine-specific environment (e.g.,
peristaltic, anaerobic etc.). These and more challenges must
be overcome to achieve more physiologically relevant and
standardized in vitro intestine models (Lee et al. 2019b).

@ Springer

Application of liver-on-a-chip
in next-generation risk assessment
of chemicals

The liver is a multifunction organ that coalesces all blood
vessels coming from the intestinal tract into the portal vein.
The portal vein branches in sinusoids that are comprised of
highly permeable sinusoidal endothelial cells (LSECs) sur-
rounded by hepatocytes which are also the main parenchy-
mal cell in the liver (Davenport 2017). A small gap, known
as the space of Disse, separates the LSECs from the hepato-
cytes. The sinusoids are inhabited by non-parenchymal cells
such as the hepatic stellate cells (HSC) that help to main-
tain the ECM) and Kupffer cells which are the liver tissue
specific macrophages. So-called bile canaliculi form small
channels between the adjacent hepatocytes which secrete
the bile. The secreted bile is collected in the bile ducts and
transported to the intestine or gall bladder (Lu and Kacew
2002; Ishida 2020).

The liver is crucial organ to be included as an in vitro
model as it is the major site for biomodifications of xeno-
biotics, i.e., Phase I (i.e., Cytochrome (CYP450)) and 11
(conjugation) metabolism) (Ishibashi et al. 2009). Within
the general NGRA toolbox liver-on-chip adds value for the
identification of liver specific endpoints, as well as to obtain
data at higher tier testing in the ab initio approach applica-
tion (Berggren et al. 2017). Xenobiotics that enter the liver
can undergo biotransformation in which they may become
toxicologically active, inactive, or reactive with endogenous
macromolecules, potentially resulting in toxicity. Common
mechanisms of hepatoxicity include the damage of macro-
molecules, mitochondrial dysfunction and oxidative stress,
the activation of cell death-signalling pathways, modifica-
tion of cell structure or function, and inflammation. All
potentially xenobiotic-induced disturbances may contribute
to several pathological conditions, such as steatosis, chol-
estasis, fibrosis and cirrhosis (McGill et al. 2015). Particu-
lar for the liver, the in vitro assessment of the end-points
is complicated as the in vivo sinusoidal cell environment
and functions are not homogenous along the portal-central
vein axis. Depending on spatial location (zone) along this
axis, an oxygen and metabolic enzyme gradient is created.
Consequently, the present functional gradient in substrate
metabolism, synthesis, storage and excretion affects the
xenobiotic metabolism, resulting in a site-specific hepatic
toxicity, altering gene expression and cell functions (Lu and
Kacew 2002; McGinnity and Grime 2017; Soto-Gutierrez
et al. 2017; Ahn et al. 2019; Ishida 2020).

Predictive liver in vitro models are highly demanded to
evaluate biotransformation and mechanism-based hepatox-
icity. Dynamic culturing holds a great promise to expand
the predictive capacity by facilitating the emulation of



Archives of Toxicology (2022) 96:711-741

727

simple liver tissue
v hepatocytes
(v biliary- like cells)*

simple vascularized
liver tissue
v hepatocytes
(v biliary- like cells)*
v endothelial cells

Apical side
in open top
device

Perfused
basolateral
side in open
L_ top device

— Perfused
apical side in I: i
closed top R e e

device

Perfused
basolateral
side in
closed top
device

Application Application
v Chemical safety and
efficacy efficacy
v Metabolite and v Pharmacokinetic
biomarker identification modelling

v Metabolite and
biomarker identification
v Steatosis model

Fig.4 Summary of 3D liver tissue models with increasing complex-
ity and their application in NGRA. The figure depicts two tissue
approaches, A only a bottom membrane (top; applicable for cultures

liver-specific functions and spatial gradient variation and to
perform targeted testing and biokinetic refinements (Berg-
gren et al. 2017; Kang et al. 2018; Ehrlich et al. 2019; Ahn
et al. 2019). Figure 4 and Table 3 depict liver models with
increasing biological complexity, cultured in different OoC
layouts and containing differently originated cells. Notably,
three liver tissue formats are frequently used in OoC: hydro-
gel scaffolded 3D tissues, pre-cultured spheroids and 2D
monolayers.

Single cell type monolayers cultured on a coated micropo-
rous membrane are still a frequently used tissue format in
OoC. Sandwich- and micropatterned (co)cultures are both
metabolically competent and have proper localisation of
basolateral and canalicular transporters with functional bile
networks (Swift et al. 2010; Beckwitt et al. 2018). Recently,
Duivenvoorde et al. (2021) cultured dynamically a 2D
HepaRG sandwich culture and demonstrated successfully
improved gene expression and biotransformation activity
compared to a static culture. Azizgolshani et al. (2021) came
to a similar result when measuring the CYP expression in
real time with their high-throughput OoC platform using pri-
mary hepatocytes (PHH) in 2D culture. Notably, sandwich

v Fibrosis model

Liver tissue with one vascularized liver tissue Complete liver tissue**

NPC addition with one NPC addition v hepatocytes
v hepatocytes v hepatocytes (v biliary- like cells)*

(v biliary- like cells)*
v endothelial cells

v endothelial cells
v hepatic Stellate cells
v Kupffer cells

(v biliary- like cells)*
here: v hepatic stellate
cells

here: v hepatic stellate
cells

Application Application Application

v Chemical safety and v Chemical safety and v Physiology investigation v Physiology investigation

v Chemical safety and
efficacy
v Fibrosis and steatosis
v Metabolite and
biomarker identification

v Chemical safety and
efficacy
v Multicellular immune
mechanism and
modulation

efficacy

using open-accessible devices) and B three channel closed-accessible
designs with perfusion from both sides. (bottom) *only in HepaRG,
primary cell cultures and iPSC **does not exist (yet) as spheroid

cultures are restricted by their flat histology for physiolog-
ical-relevant coculture with non-parenchymal cells (NPC),
whereas micropatterns may constrain the cell morphology
(i.e., shape) and come partially with extra manufacturing
costs and material concerns (D’Arcangelo and McGuigan
2015; Zhang et al. 2017b).

The recent OoC culture advances enables 3D spheroids
models to remain viable for much longer period of time than
conventional sandwich cultures, allowing for repeated expo-
sure studies (Ramaiahgari and Ferguson 2019). Spheroids
can be easily seeded and cultured in open-accessible OoC
device (see Fig. 4 top) and generated with several techniques
prior seeding, such as hanging drop, spinner flasks, cell cul-
ture on ultra-low attachment surfaces and scaffold-based
micromolding (Ma et al. 2018). Larger aggregates exhibit
limitations in mass transport for nutrients and oxygen dif-
fusion easily causing a necrotic cell death inside the sphe-
roid core due to impaired cell division, as well as heter-
ogenous viability and function. A study in static condition
by Bell et al. (2016) stated a high viability and functional-
ity of self-assembling primary human hepatocytes (PHH)
spheroidal aggregates but also difficulty to maintain a

@ Springer
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Table 3 (continued)

&

Analysis of reproducibility and robustness of a

Example application from the literature

No standard on how to produce cocultures
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Springer

human microfluidic four-cell liver acinus micro-

with NPCs
Function of hepatocytes is highly dependent

functions compared to non-vascular-

ised models
Shear stress improves overall perfor-

physiology system (LAMPS) after exposure to

Terfenadine, Caffeine, lipopolysaccharide, Rosigli-
tazone, Pioglitazone, Troglitazone, Tolcapone,
Trovafloxacin and Mifepristone using a iPSC-

on NPC support choice and the random

distribution can express in morphologic

and functional instability
iPSC-cell types need to be induced, differ-

mance and fetal-phenotype
Fully differentiated and matured stem

derived hepatocytes-HUVEC-HSC-KC coculture

(Sakolish et al. 2021)
Created an immune competent high-throughput liver

cells: comparable to in vivo hepato-

cytes
Symbiotic progress in induction, differ-

entiated and matured separately (solution:

cell line coculture)

model with iPSC-derived hepatocytes-HMECI

entiation and maturation protocols

and THP1 cell tissue and measured CYP capac-
ity using phenacetin (CYP1A1/2), Coumarin
(CYP2A6), Diclofenac (CYP2C9),Terfenadine

(CYP3A4), phenolphthalein (glucoronidation),

and hepatoxins troglitazone and Aflatoxin B1

(Bircsak et al. 2021)

Table includes advantages, possible limitations that are based on the reviewed and referenced literature in the text

aSC adult stem cells, NPC non-parenchymal cells, PHH primary human hepatocytes, HSC hepatic stellate cells, KC Kupffer Cells, HUVEC human umbilical vein endothelial cells, LSEC Liver

sinusoidal endothelial cells, TGF-f tumor growth factor 3, NAFLD non-alcoholic fatty liver disease, TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin

uniform size and cluster of cells in non-adhesive plates (Ma
et al. 2018; Underhill and Khetani 2018). Plate-based and
hydrogel micromolding and bioprinting address the limita-
tion of spheroid size variability by directing the assembly.
The iFlowPlate™ by Lin et al. (2021) currently offers an
approach to produce scalable perfusable vascularized liver
spheroids for OoC without bioprinting.

A simple iPSC-derived hepatocyte-like (HCL) organoid
for an in-lab assembled OoC was established by Schepers
et al. (2016) which exhibited genotypic CYP450 activ-
ity which could be maintained for 28 days. A big leap
towards a more complex liver model was taken by Leite
et al. (2016) and Maschmeyer et al. (2015) through the
addition of primary human hepatic stellate cells to a pri-
mary human hepatocyte (PHH) culture in the TissUse OoC
device. Maschmeyer tested the hepatic biotransformation by
repeated troglitazone treatment, whereas Leite investigated
chemical-induced HSC activation and fibrosis using Allyl
alcohol and Methotrextate (Maschmeyer et al. 2015; Leite
et al. 2016). In a different study, using a PHH-Kupffer cells
coculture in static condition, Li et al. (2020) investigated
the role of Kupffer cells in inflammation and drug-induced
liver injury (DILI). The immune competent liver spheroid
model demonstrated the importance of Kupffer cells in DILI
by evaluating the signalling pathways after treatment with
lipopolysaccharide and trovafloxacin. In another spheroid
model by Lasli et al (2019), endothelial cells of primary
origin were incorporated to form vascularized liver sphe-
roids. These authors precultured in pyramid-shaped microw-
ells HepG2 with HUVEC:s to size-select the self-assembled
spheroids. After collection and culturing in microfluid con-
dition, the spheroids showed a stable phenotype to model
hepatic steatosis induced with palmitic and oleic acid.
Another biologically complex model was developed by
Ardalani et al. (2019), using iPSC-derived hepatocytes and
endothelial cells with hepatic stellate cells and Cholangio-
cyte primary cells in static condition. The developed vascu-
larized spheroid model showed that coculture with endothe-
lial cells improve hepatic functionality, but the model still
expressed fetal markers and immature functions compared
to primary cells. Eventually, the authors conclude that the
integration of the aggregates in OoC can potentially improve
the liver model (Ardalani et al. 2019).

A final culturing format is the culturing of liver cells in
a 3D scaffold on chip. For this, liver cells are mixed with
scaffolding proteins (ECM) to self-assemble a 3D structure
within a closed OoC culture compartment. As to be seen
on the bottom of Fig. 4, the cell-ECM culture mixture is
separated by protective microporous membrane from the
perfusion channels (Jang et al. 2019a, b). A simple liver tis-
sue was created by Jang et al. (2019a, b), who differentiated
HepaRG progenitor cells without dimethyl sulfoxide directly
on chip. The study demonstrated the major advantage of
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this liver tissue type, the simplicity to study Phase I and II
metabolism, transport and hepatoxicity. However, the limi-
tation of this simplicity is the reduced biology due to the
lack of supporting non parenchymal cells that might impact
effects after chemical exposure. In the liver, endothelial cells
represent the most abundant NPC and form the crucial per-
meable blood—parenchymal barrier. Vascularized liver tissue
models may incorporate primary human endothelial cells
such as LSEC, HUVECS or iPSC-EC into the (upper and)
lower perfusion channel to recreate an in vivo-like perme-
able barrier. A simple vascularized tissue was established
by Herland et al. (2020), containing a PHH-LSEC cocul-
ture that was incorporated into a multi-organ-chip. Within
this system, this rather simple tissue could successfully
mimic the first-pass-metabolism of nicotine and quantita-
tively predicted human pharmacokinetic parameters for in
silico modelling. In pathological conditions, LSECs play
a key role in the initiation and progression of chronic liver
diseases in interplay with HSC and Kupffer cells (Poisson
et al. 2017). HSC mediate the balance of inflammation, the
tissue generation after DILI while also facilitating cell—cell
communication between hepatocytes and endothelial cells,
whereas Kupffer cells play a major role in inflammation
and immune responses (Kasuya et al. 2011). Long et al.
(2016) studied in a PHH-Kupffer cell coculture the regula-
tion of cytochrome P450 3A4 isoform (CYP3A4) activity
by chronic interleukin 6 (IL-6)-mediated inflammation over
2 weeks and the de-suppressed CYP3A4 activity of Toci-
lizumab exposure in presence of IL-6. The most complex
liver tissue model that incorporates all four major liver cell
types at in vivo ratios (here: Fig. 4 as complete liver tis-
sue) was established by Vernetti et al. (2016) and called
Liver Acinus MicroPhysiology System (LAMP). The focus
of that study with the LAMP model was to measure CYP
and UGT activity over 28 days in cells of primary source.
Later, Li et al. (2018) recapitulated clinically relevant tissue

responses for experimental modelling of liver physiology
and (immune) diseases, as well as ADME/TOX using the
same model. At this complexity the tissue might mimic
elaborate (immune) diseases but becomes also more prone
to variabilities, as no validated standards exist to engineer
and scale these complex NPC cocultures for the character-
ization of key events in NGRA. However, Sakolish et al.
(2021) showed that LAMPS can be a robust and reproduc-
ible in vitro liver model in dynamic culture. The improved
model performance was in vivo-comparable when the tissue
was seeded with either primary human hepatocytes or iPSC-
derived hepatocytes.

Functional integration of tissue systems
by fluidic coupling

The next major step in OoC technology is the microflu-
idic functional coupling of individual organ-compartments
to a multi-organ-chip (Sang Hun Lee and Jun 2019; Ver-
netti et al. 2017). Multi-organ-chip have great potential to
improve the NGRA toolbox as the different incorporated
organ tissues will affect the pharmacokinetic and pharmaco-
dynamic properties of circulating chemicals. This novel but
complex approach will facilitate the simulation of absorp-
tion (i.e., skin or intestine), subsequent first-pass metabolism
and/or hepatic bioactivation, transport to the target-organ(s)
(ADME) (see Table 4). Although the manufactured OoC
devices differ in design for their mimicked function (i.e.,
air-liquid culturing), most platforms allow their tissue to be
fluidically linked to enable dynamic tissue—tissue commu-
nication through the secreted soluble factors and extracel-
lular vehicles (Ronaldson-Bouchard and Vunjak-Novakovic
2018; Wu et al. 2020). Depending on the culture set up, the
tissue locations are fluidically connected with passive flow
or active flow via a pump with tubing or a monolithic design

Table 4 Selection of studies using microfluidic coupling to co-organ culture with varying applications. Studies made use of different commer-
cially available devices or self-assembled platforms and are focused on skin, gut and liver co-organ cultures

Integrated tissues Example application

References

Skin-liver
Intestine—liver First-pass metabolism of ethanol
Intestine—liver
Intestine—liver
Intestine-liver—kidney
Intestine-liver—kidney
ity

Intestine-liver—brain—kidney Autologous induced pluripotent—stem cell derivation from same donor

Skin-liver

Integrated skin tissue into two-organ chip for permeation study with possibility to
extended model for in vitro substance testing including liver

Acetaminophen absorption and metabolism

Quantitative in vitro pharmacokinetic study

Quantitative prediction of human pharmacokinetic and toxicity

Establishment of exposure-response relationship for pharmacodynamics and toxic-

Characterization of application scenario-dependent pharmacokinetics and pharma-

Schimek et al. (2018)
Tao et al. (2021)

De Gregorio et al. (2020 b)
Marin et al. (2019)
Tsamandouras et al. (2017)
Herland et al. (2020)
Maass et al. (2017)

Ramme et al. (2019)
Kiihnl et al. (2021)

codynamic properties of permethrin and hyperforin

Skin-heart-liver Evaluation of topical drug delivery

Pires De Mello et al. (2020)

@ Springer
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(Renggli and Frey 2020; Zhang et al. 2020). An alternative
fluid exchange displays transferring fluids with an automated
liquid-handling instrument between reservoirs. Multi-organ-
chip offer undoubtedly a diverse spectrum of applications
in NGRA and are expected to provide novel solutions in the
field of New Approach Methodologies (Punt et al. 2020).
Technical challenges that still need to find a solution include
the development of a device that considers at the same time
different organ flow patterns and functions (i.e., peristalsis,
elongation, local pressure) whilst using an appropriate mate-
rial (e.g., non-binding, biocompatible) but also facilitates
long-term culture (e.g., decrease risk of contamination and
trapped air bubbles) (Renggli and Frey 2020). Besides, cur-
rent biological constraints range from an appropriate and
physiological-relevant tissue scaling and stability, to a com-
mon medium composition for circulation (for coculture con-
nection and feeding), as well as the selection and creation
of assays to evaluate the culture tissues separately (Bovard
and Sandoz 2019; Picollet-D’hahan et al. 2021). However,
current multi-organ-chips can already emulate key aspects
of an in vivo human environment and mimic organ—organ
interaction and ADME processes which was previously only
available through in vivo models. Therefore, more advances
in device manufacturing, fit-for-purpose and validated assays
and protocols is highly expected as multi-organ-chip system
developers and users are gaining scientific experience (Marx
2020).

Challenges and prospects for OoC
technology and NGRA on-chip with skin,
intestine and liver tissues

Organ-on-chip is a rapidly evolving technology that offers
versatile systems to mediate the formation of functional
tissues and organs for different research applications (see
Fig. 1). All reviewed commercially available devices offer
significant technical advantages to culture and investigate
biologically improved organ tissue models. Yet, there are
clear needs and challenges that must still be addressed
from the initial hardware development until the final user
application as also pointed out by the organ-on-chip-in-
development (ORCHID) initiative roadmap (Mastrangeli
et al. 2019; Piergiovanni et al. 2021). Aligning with the
ORCHID initiative, we conclude that the device specifica-
tions must be addressed first. This includes the search for the
ideal (hybrid) materials for devices and scaffolds that can
enable appropriate cell cultures with low chemical adsorp-
tion and absorption and biocompatibility. In addition, novel
(hybrid) materials should be flexible to allow for physical
strain to be included (i.e., stretchable membranes), while
optical transparency should remain present for cell imaging
(i.e., microscopy).

@ Springer

While a diversity of commercially available OoC devices
exist, there is no ideal versatile hardware layout. Some of the
devices have external dimensions that are comparable to rou-
tinely used labware which allows easier integration into rou-
tine lab practices. We recognize that different research ques-
tions, and specific tissues culturing demands (i.e., for skin,
intestinal and liver tissues) require different OoC device
designs. For the barrier skin open-accessible devices might
be desirable for air liquid culturing, while for the intestine
OoC models both open and closed configurations might be
interesting. Open-accessible tissue compartments offer bet-
ter access for pipetting, layering, air—liquid interfacing or
space for bigger cell aggregates, whereas the flow can be
less controlled. In contrast, closed culture compartment can
mimic better mechanical forces such as flow and stretch and
may allow anaerobic intestinal culture.

An important aspect of OoC devices is the current lack
of versatile microfluidic perfusion in the devices. Flow can
be actively induced through directly integrated and plug-in
pumps or passively through gravity-drive. Passive perfusion
enables flow without additional tubing, whereas devices
using pumps allow for a more controlled induction of shear
stress and facilitate fluidic connection to different organ tis-
sues. Nevertheless, there are still technical challenges to face
for the hardware that include a stable fluid connection with-
out bubbles and sterility of tubing. While often addressed
as a concern, chemical sorbing to the materials used have
only limitedly been studied so far. Data and knowledge on
the absorption of chemicals on to the fabrication mate-
rial needed to ascertain the acceptance of OoC models as
NGRA toolbox for the toxicological hazard characterization
of chemicals.

Yet, OoC tissue models have already advanced the biol-
ogy of human in vitro tissue culturing. The combination
of both, 3D architecture and fluidic flow, has shown great
impact on cellular characteristics such as on the morphology,
viability, differentiation, metabolic and enzymatic capacity,
as well as transporter and gene expression levels. These
improvements strengthen the relevance of OoC technology
as the advances have been observed with several cell lines
and cell types. The next step towards creating advanced
3D cultures and incorporation of stem cell derived tissues
on-chip for a future NGRA are promising but also show
the need to standardise advanced organ tissue culturing for
human health effect assessment.

For the skin tissue, models demonstrated that OoC offer
an improved approach to assess the safety and efficacy of
topically applied consumer products to assess endpoints,
such as permeation, irritation and corrosion, phototoxicity,
as well as skin sensitization and inflammation. For the inves-
tigation of these endpoints a range of different skin models
were established and assessed ranging from single cell type
model such as RHE to HSE with additional cell types and
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appendices (see Fig. 2). Specifically for skin-on-chip, the
new adopted OECD guidelines for endpoint testing (OECD
2021a, b, ¢) will gain importance to harmonise the assess-
ment for chemical safety information.

For the dynamically cultured intestinal tissues an
advanced understanding of the permeability, absorption
and transport orally ingested compounds has been shown.
The introduced in vitro intestinal tissues ranged in biologi-
cal complexity, from a simple columnar-like enterocyte epi-
thelium up to a vascularized complete epithelium to target
different NGRA applications (see Fig. 3). Notably, dynamic
culturing of a mucus secreting epithelium with a microbiome
might address the need for a host-microbiome interaction
model in health and disease. Specifically, intestine-on-chip
will further advance studies focussing on oral delivery, toxi-
cokinetic, nutritional metabolism and disease development
as it can simulate better the complex in vitro environment
rather than static monolayers.

For a dynamically cultured liver models, all approaches
improved the study of molecular mechanism impacting effi-
cacy and safety of test chemicals but showed a successful
investigation of improved bioactivation, as well as a better
emulation of physiological and pathological mechanisms.
The long-term maintenance and function was positively
impacted by the coculture with vascular cells in all the three,
liver, skin and intestine, models. In combination with shear
stress, vascular cells introduced a selective biological barrier
that mediates tissue homeostasis by supplying the tissues
with nutrients and oxygen. Especially for applying liver-on-
chip in NGRA, vascularisation is suited to enable long-term
stability of the tissue culture for repeated exposure, as well
as to investigate toxicity mechanisms through biomechanical
factors, extracellular (or diffusible) signalling molecules and
cell—cell interaction (Wang et al. 2018a, b).

Overall, we conclude that dynamic culturing is not only
revolutionising in vitro tissue culturing on-chip but also pro-
vides a novel solution for the NGRA toolbox to characterise
chemicals and their specific modes of action for toxicity,
as well as fill and refine data gaps without generating new
animal data (Punt et al. 2020; Hatherell et al. 2020). For
the NGRA framework, the reviewed and selected studies
demonstrate how OoC provides the opportunity for human-
centric toxicokinetic- and dynamic studies to fill and refine
data gaps, either as a single emulated organ or as complex
fluidically linked multi-organ system. The obtained results
can be used to in integrative PBK models and to perform
quantitative in vitro to in vivo extrapolations for chemical
hazard characterization. However, before the framework
shift and regulatory acceptance, the novel technology must
still address biological questions that come with device
design (e.g., choice of material, layout, perfusion) and tissue
engineering (e.g., organ scaling, blood substitutes, chronic
and systemic toxicity, culture and assay protocols) to qualify

as reliable and validated fit-for-purpose-system. In the long
run, OoC bears the potential to not only outperform tradi-
tional in vitro methods but also to accelerate the transition to
human-based predictive chemical safety assessment.
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