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Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be
exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of
fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention.This review
focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and
how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism
may serve between obesity and changes in cancer progression.

1. Introduction

Obesity has long been known to be associated with the
development of type 2 diabetes and cardiovascular disease
[1]. More recently there is a growing acceptance for a link
between obesity and cancer [2]. However, the nature of this
relationship remains to be fully elucidated. On one hand
obesity increases the risk of many types of cancer, including
esophageal, endometrial, thyroid, colon, renal, liver, and
breast [3, 4].The other aspect is that obesity is also associated
with changes in the progression of many cancers. These
include higher grade disease in prostate and breast cancer
[5, 6] and poorer outcomes in endometrial, kidney, pancreas,
esophageal, and thyroid cancers [7–9].

Obesity is defined by increased adiposemass arising from
energy imbalance. The predominant cell type in adipose
tissue is the adipocyte, which is the professional lipid storage
cell. Alongside the adipocyte there are a number of other
cell types in adipose including preadipocytes, endothelial
cells, and immune cells such as resident macrophages. This
collective results in a highly complex organ that is central
to energy homeostasis and its biology is dramatically altered

in obesity. These changes include altered adipocyte biology,
such as increased efflux of fatty acids andmodified adipokine
profile, which is often accompanied by low-grade inflam-
mation and hyperinsulinemia [10]. Whilst these changes are
common, they are not defining characteristics of the entire
obese population. For example, a significant subpopulation
is metabolically healthy, retains insulin sensitivity, and has
normal lipid and inflammation profiles [11]. Likewise, there
are other populations, including the “metabolically obese,
normal weight” [12, 13] and those with familial lipodystro-
phy [14, 15] that have pathogenic metabolic profiles. These
other populations highlight that inflammatory mediators
and increased growth factor availability (e.g., IGF-1, insulin;
see [16]) are not the only mechanisms linking obesity with
cancer. In this review, we will highlight the evidence that
exists on the role that fatty acid metabolism plays in cancer
biology (Table 1), focusing on pathways of fatty acid uptake,
storage, mobilization, and oxidation (Figure 1). This focus
is based upon the potential link that fatty acid metabolism
may play in the obesity/cancer relationship as excessive
lipid accumulation, particularly in abdominal regions, is a
definitive characteristic of obesity.
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Figure 1: Intracellular fatty acid metabolism. A simplified cartoon of fatty acid metabolism pathways. Fatty acids are transported in the
circulation as triacylglycerol (TAG) in lipoproteins and hydrolyzed by lipoprotein lipase (LPL) or they are bound to albumin and are
transported across the plasma membrane. A CoA is ligated to fatty acid (FA), and the fatty acyl-CoA (FA-CoA) can enter the glycerolipid
synthesis pathway for storage or the mitochondria for oxidation. ACS, acyl-CoA synthase; AGPAT, acyl-CoA: acylglycerol-3-phosphate
acyltransferase; ATGL, adipose triglyceride lipase; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; GPAT, glycerol-3-phosphate
acyltransferase; HSL, hormone-sensitive lipase; LPA, lysophosphatidic acid; MAG, monoacylglycerol; MAGL, monoacylglycerol lipase; PA,
phosphatidic acid.

2. Lipoprotein Hydrolysis, Fatty Acid
Transport, and Trafficking

Long-chain fatty acids travel in the circulation either as
free fatty acids that are released from adipocytes bound to

albumin or as triacylglycerol (TAG) contained in very low-
density lipoproteins and chylomicrons. This circulating TAG
is hydrolyzed by lipoprotein lipase (LPL) to free fatty acids
[68] and then taken up into cells (Figure 1). There remains
some controversy as to whether these fatty acids enter the cell
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by passive diffusion or by protein mediated transport. As will
be discussed below, it is clear that the latter process does
contribute to fatty acid uptake.

2.1. Lipoprotein Hydrolysis. Altered expression of LPL has
been reported in many cancers. For example, Narita and
colleagues [17] reported a significant association between
increased hydrolytic activity of LPL due to the LPL polymor-
phism (Ser447stop) and the susceptibility to prostate cancer.
This associationwas even stronger in patients with high grade
tumors or metastasis. Similarly, this pattern was observed
in cervical cancer where LPL is frequently overexpressed
in cervical squamous cell carcinomas and associated with
an increased invasion capacity [18]. LPL activity has been
reported in gastric and rectal cancers, malignant fibrous
histiocytomas, and osteosarcomas,with the high proliferating
outer area of rectal tumors and fibrous histiocytomas having
an enhanced expression of LPL compared with the center
[19]. Interestingly, the increased LPL activity in cancer tissue,
compared with healthy lung tissue, predicts lower overall
survival in non-small-cell lung cancer [20, 21]. The location
of tumor LPL is somewhat controversial as a recent study
observed that increased LPL expression was in a subgroup
of macrophages and not in cancer cells [69]. These studies
mostly report gene expression and therefore future studies
linking functional changes in cancer cell LPL activity driving
FA release from circulating TAG are required, especially as
LPL activity is regulated by a variety of physiological stimuli
(see review [70]).

2.2. Fatty Acid Transport. Several proteins have been iden-
tified to facilitate the uptake of fatty acids into cells. These
include CD36/fatty acid translocase, the fatty acid binding
protein (FABP) family, and the fatty acid transport proteins
(FATP) [71]. Many of these transporters are ubiquitously
expressed, while some display tissue-specific expression [72,
73]. Interestingly, most tissues have coexpression of different
fatty acid transporters [74]. The reason for this remains
unknown. Possibilities may include differences in uptake
capacity and substrate specificity, sensitivity to hormonal
stimuli such as insulin [75], or preferences in partitioning into
downstream pathway, for example, fatty acid esterification
(storage) or oxidation [74].

2.2.1. CD36/Fatty Acid Translocase. CD36, also known as
fatty acid translocase (FAT), is a multifunctional transmem-
brane glycoprotein which is abundantly expressed in cell
types active in fatty acid metabolism, including adipocytes,
skeletal muscles cells, cardiomyocytes, intestinal enterocytes,
monocytes, and hepatocytes [76]. It was originally isolated
from platelet membranes as a thrombospondin receptor [77]
but has also been shown as a receptor for collagen [78],
oxidized lipoproteins [79], and, of greatest interest to this
review, long-chain fatty acids [80].

CD36 has been implicated in contributing to cancer pro-
gression. Low CD36 gene expression correlates with a higher
metastasis grade in colon and ovarian cancers and with
low recurrence-free survival [22]. Conversely, CD36 mRNA
expression in breast cancer is inversely correlated with the

metastatic potential of five breast cancer cell lines [23], where
its expression is relatively higher in less aggressive cell lines
(T47-D and MCF-7) and almost absent in highly aggressive
lines (ZR-75 andMDA-MB-231). This inconsistency between
cancer types may be explained by the multifunctionality of
CD36. While it functions as a fatty acid transporter, CD36
is also involved in collagen adhesion and, therefore, less
CD36may reduce cell adhesion, providing cancer cells with a
higher metastatic potential. That said, the above studies have
reported gene or protein expression and not the rates of fatty
acid uptake.

Fatty acid transporter abundance is not the only factor
regulating FA uptake. An aspect that is often overlooked is
that FA uptake is increased by insulin stimulation [81, 82].
This is thought to bemediated by translocation ofCD36 to the
plasma membrane which has been observed in hepatocytes
of obese Zucker rats [83], skeletal muscle [84, 85], cardiomy-
ocytes [86, 87], and ovary cells [85]. This is analogous to
the translocation of the insulin sensitive glucose transporter
GLUT4 [88, 89].

So far, no studies have investigated the influence of obe-
sity on fatty acid transporters in cancer cells. It is clear from
studies in other model systems that CD36 expression and
fatty acid uptake are influenced by the microenvironment.
For example, CD36 gene expression and protein levels are
increased in steatotic hepatocytes [90] and liver biopsies of
obese patients, correlating with the circulating free fatty acids
levels [91]. In subcutaneous adipose tissue, CD36 protein
expression is upregulated in both obese patients and type 2
diabetics [92]. Furthermore, CD36 mRNA expression levels
are greatly enhanced in liver and adipose tissue of ob/obmice,
a monogenic model of obesity [93]. Interestingly, incubation
of human skeletal muscle cells with adipocyte conditioned
media increased both fatty acid uptake and CD36 protein
levels [94]. Similar changes in CD36 expression by adipocyte
factors, such as adipokines and fatty acids, have been reported
in vascular smooth muscle cells [95], cardiomyocytes [86,
96], and adipocytes [97, 98]. Collectively this suggests that
changes in adipocyte biology, especially in the context of
obesity, can alter CD36 expression in nonadipose cells such
as cancer cells that may influence the inherent role that CD36
plays in cancer biology.

2.2.2. Fatty Acid Transport Protein. Fatty acid transport
proteins form a highly conserved family of six transporters
named FATP1–6 [99]. FATPs are integral membrane proteins
and are differentially expressed in a wide variety of cells
[100]. These transporters are unique as they can express fatty
acyl-CoA synthetase activity [101] as well as an endoplasmic
reticulum localization signal domain, at least for FATP4
[102]. Alongside CD36, FATPs regulate long-chain fatty acid
and very long-chain fatty acid uptake [103] although the
functional differences between CD36 and FATPs are yet to
be resolved. A recent study in Madin-Darby Canine cells
reported that CD36 is 30-fold more effective in fatty acid
uptake compared with FATP4 or the acyl-CoA synthetase
ACSL1 [104]. However, cooverexpression of CD36with either
FATP4 or ACSL1 results in an enhanced fatty acid uptake rate
greater than expected from the combined individual capacity
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suggesting a synergistic relationship between CD36, FATP4,
and ACSL1 to facilitate fatty acid uptake.

To date, only one study has described a possible role
for FATPs in tumor metabolism. In this study, FATP mRNA
expression is increased in rat hepatomas compared with
normal liver tissue which correlated with fatty acid uptake
rates [24]. Similar to CD36, FATP expression is influenced by
themicroenvironment, especially in obesity. FATP expression
is elevated in adipose tissue of obese patients [105, 106] and
in heart [107], skeletal muscle [108], and adipose tissue [109]
of rodent models of obesity. Overall, FATPs are important
players in lipid uptake andmetabolism.However, their role in
cancer, especially in the context of obesity-sensitive cancers,
is far from understood and further research is needed to
elucidate this role.

2.3. Intracellular Trafficking. Fatty acid binding proteins
(FABPs) are a family of transport proteins with high affinity
for long-chain fatty acids, bile acids, and retinoids [110].
Twelve FABP isoforms have been identified, each with its
own tissue and substrate specificity [111]. Although their
physiological functions are not fully understood, they appear
to facilitate the transport of fatty acids intracellularly and
thereby regulate substrate availability for complex lipid syn-
thesis (esterification) and oxidation [112, 113]. Changes in
FABP expression have been associated with various diseases
including several forms of cancer [113] with FABP5 being
the most well characterized FABP isoform in cancer cell
biology. For example, prostate [32], endometrial [34], liver
[35], pancreatic [36], and breast [32] cancers have increased
FABP5 gene or protein expression. However, the observa-
tions in prostate are controversial as other studies report
reduced expression in multiple prostate cancer lines [26,
38]. Despite this, increased expression of FABP5 in prostate
cancer cells increased fatty acid uptake and peroxisome
proliferator-activated receptor gamma (PPAR𝛾) expression
which enhanced tumor progression [37]. Additionally, over-
expression of FABP5 in the benign breast cancer cell line,
Rama 37, increased metastatic capacity in rats [32]. Inter-
estingly, expression is higher in estrogen and progesterone
negative breast cancer cells, with the highest expression found
in triple-negative breast cancer [33]. Furthermore, patients
with higher FABP5 mRNA levels had lower recurrence-free
and overall survival probabilities [33]. Conversely, invasion
capacity and tumor growth were significantly reduced in
prostate cancer cells with reduced FABP5 expression [39].

FABP7 has emerged as another participant of intracellular
FA metabolism that may contribute to cancer cell biology. Its
gene expression is elevated in triple-negative breast cancer
cells [40], primary melanomas [43], and renal cell carci-
nomas [44, 45]. Interestingly and in contrast to FABP5,
FABP7 positive basal-like breast tumors had a significant
lower recurrence rate and improved survival rate [41]. In
cell culture studies, siRNA knockdown of FABP7 reduced
proliferation and invasion in melanoma cells whilst the con-
traobservation was reported with overexpression enhancing
proliferation and invasion [114]. Furthermore, investigations
of the organelle-specific roles of FABP7 demonstrated that
increased nuclear, but not cytoplasmic, FABP7 is associated

with increased proliferation, pleomorphism, and tumor stage
in breast cancer suggesting that nuclear FABP7 drives a
more aggressive phenotype [42]. However, themechanism by
which FABP7 influences gene expression is yet to be resolved.
FABPs may act as coactivators for transcription factors like
PPARs [115] or simply function as transporters to carry FA
into the nucleus to modulate gene expression [116] via the
many intranuclear targets including sterol regulatory binding
protein, PPARs, and liver X receptors [117].

FABP4 has also been implicated in cancer biology. FABP4
mRNA levels are downregulated in breast cancer cells [25].
Conversely, FABP4 expression is inversely correlated with
tumor progression and invasiveness in bladder cancer [26–
29]. FAPB4 is also susceptible to the extracellular milieu as
there is growing evidence that adipocytes increase FABP4
mRNA and protein expression in cancer cells. An ele-
gant study in ovarian cancer demonstrated that coculture
with adipocytes increases FABP4 protein expression and
promotes migration and invasion of ovarian cancer cells,
while FABP4 deficiency ameliorated the adipocyte-derived
metastatic potential [31]. A similar observation of adipocyte-
induced increase in FABP4 expression has been reported
in PC3 prostate cancer cells [30]. The same study also
reported an increased expression of FABP4 in prostate cancer
bone metastasis from high-fat diet mice and prostate cancer
patients [30]. The fact that bone marrow is adipocyte-rich
[118] suggests a role for adipocytes in enhancing FABP4
expression and thereby playing an important role in can-
cer progression. Overall, FABPs are emerging as important
factors in cancer cell lipid metabolism but more research is
needed to fully elucidate the roles of FABPs in healthy tissue
and tumor cells and how these are altered by obesity.

3. Fatty Acid Activation, Esterification,
and Mobilization

Once FAs are taken up by cells, they are activated by the
addition of coenzyme A (CoA) to the fatty acid molecule
by the actions of long-chain acyl-CoA synthetase (ACSL).
From here, evidence suggests that fatty acyl-CoAs can be
partitioned into the esterification pathway in the endoplasmic
reticulum or the mitochondria for oxidation [119]. Recently,
this notion has been challenged by studies in human skeletal
muscle [120] and isolated hepatocytes frommice lacking adi-
pose triglyceride lipase (ATGL) [121]. These studies suggest
that extracellular FAs enter the esterification pathway to be
stored in lipid droplets prior to mitochondrial oxidation.
Irrespective of the precise pathways, fatty acids have a
multitude of intracellular fates, but at themost basic level FAs
can be either oxidized or stored as complex lipids.

3.1. Fatty Acid Activation. ACSLs are a family of enzymes
that catalyze the addition of a CoA to a free fatty acid and
differ in their preference to the chain length of their fatty
acids substrates (short, medium, long, and very long). ACSL1,
ACSL3, ACSL4, ACSL5, and ACSL6 are members of the
long-chain family that vary in both subcellular localization
and substrate specificity [122]. Along with FABPs, individual
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ACSL isoforms have been proposed to channel fatty acids to
specific metabolic pathways.

Significant evidence suggests an important role forACSLs
in cancer biology including increased expression of ACSLs
in many types of cancer such as colon, liver, lung, brain,
and colorectal cancers and estrogen receptor negative breast
tumors and androgen receptor negative prostate tumors [46,
47, 49, 123–125]. More specifically, ACSL5 gene expression
is consistently elevated in the colon cancer tissue compared
to normal colon tissue [49], so are ACSL4 gene expression
and protein levels in colon adenocarcinoma compared with
adjacent normal tissue [47] and in hepatocellular carcinoma
tissues compared to the adjacent noncancerous liver tissue
[48]. Finally, ACSL3 expression is elevated in the highly
tumorigenic U87 human glioblastoma cell line and cells
derived from tumorigenic primary glioblastoma xenografts
(Mayo 22) compared with the less tumorigenic U373 glioma
cells [46].

Collectively, the results from these studies suggest that
expression of ACSLs is related to tumorigenesis and tumor
progression. Cell culture loss and gain of function studies
provide insight into the relationship between altered intracel-
lular fatty acid metabolism and cancer cell biology. In terms
of fatty acidmetabolism, bothACSL3 andACSL5 overexpres-
sion in HepG2 cells increase fatty acid oxidation and reduce
TAG levels [126]. Supporting the gene expression observa-
tions, altered ASCL expression in cancer cells is linked with
survival, proliferation, and chemoresistance. For example,
overexpressed ACSL4 in human epithelial cells reduced the
level of arachidonic acid-induced apoptosis [127], whereas
siRNA-mediated ACSL3 knockdown reduced growth rates of
lung cancer cell lines and colony formation [124]. Similarly,
ACSL4 knockdown inhibited growth rates of the human
hepatocellular carcinoma cell line Hep3B [48]. Addition-
ally, pharmacological inhibition of ACS activity by triacsin-
C induced apoptosis in HEK293 cells [127] and glioma
cells, which was completely suppressed by overexpression of
ACSL5 [128].

The impact of ASCL expression and function in can-
cer biology in the obese setting has not been reported.
Interestingly, ACSL activity and Acsl1 gene expression are
upregulated in liver and adipose tissues in genetic obese
models, including ob/obmice and Zucker fatty rat (fa/fa) [93,
129] and high-fat fed rats [130].This suggests that the elevated
expression reported may be exacerbated in obesity and
therefore may accelerate cancer progression. How changes in
ASCL-mediated fatty acid metabolism are linked to altered
cancer progression is yet to be fully elucidated. However, Cao
and colleagues [127] proposed that changes in proapoptotic
arachidonic acid levels may play a role yet other bioactive
lipids such as sphingolipids, including ceramides, or changes
in fatty acyl-CoA availability for mitochondrial oxidation are
potential contributors.

3.2. Fatty Acid Esterification. FAs are the building blocks
for many complex lipids including phospholipids, sphin-
golipids, and glycerolipids. We will focus on the synthesis
of glycerolipids, such as TAG, as this is a major pool that
is susceptible to the obese environment. The storage of fatty

acids as TAG involves several condensation reactions. The
first step involves esterifying a fatty acyl-CoA with glycerol-
3-phosphate to generate lysophosphatidic acid (LPA) by the
enzyme glycerol-3-phosphate acyltransferase (GPAT). LPA is
then condensed into phosphatidic acid (PA) by 1-acylglyc-
erol-3-phosphate-O-acyltransferase (AGPAT). The subse-
quent reaction is catalyzed by lipin, which dephosphorylates
PA to produce diacylglycerol (DAG). The final step involves
the addition of a third fatty acyl-CoA to DAG by diacylglyc-
erol acyltransferase (DGAT) to generate TAG. This process
occurs in the endoplasmic reticulum where TAG is packaged
into lipid droplets [131]. Alongside the endoplasmic reticulum
pathway, there is evidence that DGAT can also catalyze the
conversion of DAG to TAG at the lipid droplet [132–134].

The lipid intermediates of the esterification pathway are
substrates for the generation of other complex lipids, such as
phospholipids in membrane synthesis, and can also act as
lipid signals that modify membrane structures and promote
gene transcription for cell growth, proliferation, and differen-
tiation [135].

To date, gene or protein expression profiling of GPAT in
cancer cells has not been reported. However, it is known that
four isoforms of GPATs are expressed in mammals; GPAT1
andGPAT2 are localized in themitochondria andGPAT3 and
GPAT4 in the endoplasmic reticulum [136]. As rate-limiting
enzymes of fatty acid esterification, GPATs are key regulators
of TAG synthesis [137, 138].

Similarly, little is known about the expression of lipin and
DGAT in cancer patients. Mammals have three lipin pro-
teins and two isoforms of DGAT that regulate phospholipid
synthesis and lipid storage [139, 140]. Consequently, these
proteins modulate the availability of fatty acid substrates for
lipid signaling and metabolism, which may influence cancer
progression [141].

Themost studied enzyme of lipid esterification in relation
to cancer is 1-acylglycerol-3-phosphate-O-acyltransferase
(AGPAT). There are 11 known isoforms of AGPAT, which
differ by tissue expression and enzymatic activity [137].There
is consistent evidence suggesting a role for AGPATs in cancer
cells. For example, AGPAT2 expression is elevated in ovarian
cancer patients with aggressive ovarian cancers and associ-
ated with reduced overall survival [50–52]. Gene expression
of AGPAT11 is also increased in breast and cervical cancers,
as well as colorectal cancer [53]. Interestingly, transcriptional
expression of AGPAT9, which is highly homologous with
AGPAT11, is upregulated in colorectal cancer, but not in
breast and cervical cancers [54].

Obesity is characterized by increased levels of TAG stored
in tissues such as skeletal muscle, liver, and cardiac muscle
[142], which is a consequence of increased esterification rates
[130, 143–145]. Loss and gain of function studies in various
tissues provide an insight into the complex regulation of
the intracellular lipid environment. For example, AGPAT6
knockout mice have reduced TAG content in brown and
white adipose tissue and interestingly altered fatty acid profile
of complex lipids, such asDAGand phospholipids with a shift
towards the polyunsaturatedmore than themonounsaturated
fatty acids [146]. Similarly, adipose tissue TAG levels are
decreased in mice lacking DGAT [147] and both lipin1 and
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lipin3 [148] and protection fromhigh-fat diet induced obesity
and associated metabolic perturbations [139, 149]. Finally,
GPAT-deficient mice have lower levels of liver and plasma
TAG [150]. On the other hand, overexpressions of GPAT1
[151], GPAT4 [152], AGPAT1 [153], lipin1 [154], and DGAT1
[155] all result in increased TAG levels. From this, it is evident
that enzymes involved in esterification significantly influence
intracellular and extracellular lipid homeostasis. How this
translates to pathogenic changes in cancer cells is yet to be
described.

3.3. Lipolysis. TAGs, along with cholesterol esters, are stored
in lipid droplets to serve as a readily available source of energy
for ATP generation in the mitochondria, as well as providing
building blocks for phospholipids and other complex lipids.
In terms of metabolic energy capacity, an average nonobese
person stores up to 2,500 kJ of metabolic energy in glycogen,
but >500,000 kJ as TAGs [156]. Whilst most of this TAG is
stored in adipocytes, all cells have the capacity to synthesize
and breakdown TAGs. Interestingly, intracellular lipid stores,
or lipid droplet size and/or number, are elevated in various
malignant cells, such as breast [157], prostate [158], cervical
[159], liver [160], and colon cancer cells [161]. Furthermore,
biochemical assessment of lipid droplets in breast cancer cells
has shown that the TAG content is increased [162]. Not only
that, TAG levels are higher in more aggressive breast cancer
cells and are associated with long-term breast cancer cell
survival [157, 162]. These findings suggest that intracellular
TAG may play a critical, yet unexplored, role in supporting
both substrates for complex lipid synthesis [163] as well as
energy production in cancer cells that collectively promote
cell growth and proliferation. To do this, TAGs need to be
broken down to FAs and glycerol by a process called lipolysis.

ATGL, otherwise known as desnutrin [164], is the pre-
dominant TAG lipase that is thought to be rate-limiting [165].
It catalyzes the conversion of TAG to DAG and releases
a free fatty acid from the sn-2 position [166]. Hormone-
sensitive lipase (HSL) catalyzes the hydrolysis of DAG into
monoacylglycerol (MAG) and a fatty acid [167]. HSL has
broad substrate specificity, including TAG, DAG, MAG, and
cholesterol ester lipid classes, but has the highest affinity for
DAG [168]. MAG is then broken down by monoacylglycerol
lipase (MAGL) resulting in the metabolic end-product, glyc-
erol, and the liberation of the final fatty acid. This process
is highly conserved across species and highly regulated with
most insight arising from studies in adipocytes (see review
[169]).

Adipose neutral lipase expression in various cancer
patients has been reported. Compared to normal individuals
without cancer, HSLmRNA expression is elevated in adipose
tissue of colorectal, pancreatic, esophageal, and stomach
cancer patients [57].This was also observed in ovarian cancer
patients, where adipocyte lipid depots which contain TAG
were reduced, while the lipolytic products, MAG and free
fatty acids, were increased, collectively suggesting elevated
lipolytic activity [170]. Similarly, transcriptional and protein
expression of HSL are increased in the adipose tissue of late-
stage cancer patients exhibiting uncontrolled loss of adipose
and muscle tissue, known as cachexia [55]. Interestingly,

upregulated ATGL activity in adipose tissue was found to be
responsible for this tissue-wasting syndrome [56].

MAGL is currently the most well-documented neutral
lipase and its transcriptional expression is altered in sev-
eral different cancers. For example, high mRNA expression
of MAGL has been reported in ovarian [59], colorectal
[58], breast, and melanoma cancer cells and particularly in
aggressive prostate cancer cell lines [59]. Interestingly, in
vitro studies overexpressing MAGL in nonaggressive ovarian
cancer cells raised free FA levels and increased tumor growth
rate, migration, and invasion [171]. Alternatively, pharmaco-
logical inhibition attenuated MAGL-induced aggressiveness
of prostate cancer cells, even in a high-lipid environment
[59, 171]. Similar observations have been made in colorectal
cancer cells [58].

There are conflicting observations regarding the expres-
sion patterns of lipolytic enzymes in obesity [172]. HSL and
ATGL gene expression are reduced in the adipose tissue of
obese humans [173–175] and insulin resistant high-fat fed
rats [176]. Conversely, a study by de Naeyer and colleagues
[172] has reported that HSL and ATGL mRNA expression
are increased in visceral adipose tissue of morbidly obese
men; however, this pattern did not translate to changes in
protein or lipase activity. This is not surprising considering
that these neutral lipases are predominantly regulated by
posttranslational modifications, translocation, and protein-
protein interactions [135]. Interestingly, lipolytic enzyme
expression, particularly ATGL, appears to bemore associated
with insulin sensitivity rather than obesity [177]. In order to
elucidate the role lipolysis plays in cancer cell biology, future
studies need to assess pathway of lipid metabolism and fatty
acid flux, rather than gene expression, and investigate how
these are altered with obesity.

4. Mitochondrial Fatty Acid Oxidation

4.1. Fatty Acid Entry into the Mitochondria. The other major
fate for extracellular fatty acids is oxidation for the gener-
ation of ATP in the mitochondria. Alongside glucose and
glutamine, fatty acids are a major energy source catabolized
through the 𝛽-oxidation pathway to generate acetyl-CoA for
entry into the TCA cycle as well as FADH

2
and NADH

reducing equivalents for use by the electron transport chain
(ETC).

Changes in cancer cell fatty acid oxidation have been
reported.Theprimary example is observed in prostate cancer.
Rather than being secreted as it is in normal prostate cells,
citrate is catabolized in the TCA cycle resulting in fatty acid
oxidation being the dominant bioenergetic pathway [178].
Interestingly, high-fat feeding of the p48-Kras mouse model
of pancreatic cancer accelerated tumor growth and increased
energy expenditure and whole body fatty acid oxidation
through increased gene expression of CPT1A, ACC, andAOX
enzymes, key regulators of fatty acid oxidation [179].

Fewother studies have investigated the effect of obesity on
cancer fatty acid oxidation. Although there is significant con-
troversy as to the effect that obesity has on fatty acid oxidation
in type 2 diabetes, the increased availability of circulating
and intracellular fatty acids is thought to drive an increased
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oxidative capacity. Evidence for this arises from studies in
rodents fed a high-fat diet [124, 180] and obese type II diabetic
patients [181]. Conversely, a number of studies reported a
reduced capacity to oxidize fatty acids in overweight/obese
humans [182, 183]. Considering the high metabolic flexibility
of cancer cells, it is conceivable that cancer cells benefit from
high lipid availability that characterizes obesity through beta-
oxidation either to fulfill increased energy demand or to
prevent the lipotoxic effects of high level of fatty acids.

4.2. Carnitine Palmitoyltransferase 1. Unlike short-chain fatty
acids, which can freely diffuse into mitochondria, long-chain
fatty acids enter themitochondria by the carnitine shuttle sys-
tem. First, carnitine palmitoyltransferase 1 (CPT1) catalyzes
the transfer of the fatty acid moiety from acyl-coenzyme A
(CoA) to a long-chain acyl-carnitine.This is then transported
into the mitochondrial matrix by the carnitine acyl-carnitine
translocase (CACT) [184]. CPT2 then catalyzes the conver-
sion of acyl-carnitine to carnitine and fatty acyl-CoA which
then enters the 𝛽-oxidation pathway. CPT1 is regulated by
a cytosolic pool of malonyl-CoA produced by acetyl-CoA
carboxylase 2 (ACC2) at the mitochondrial membrane [185].

The rate of mitochondrial fatty acid oxidation is regulated
by CPT1, which is an integral membrane protein located on
themitochondrial outermembrane [186]. CPT1 has three iso-
forms with tissue-specific expressions and sensitivity to the
allosteric-inhibitory action of malonyl-CoA: CPT1A (liver),
CPT1B (muscle), and CPT1C (brain) [187, 188]. Changes in
CPT1 expression have been observed in several types of can-
cer including breast, lung, brain, and liver cancers [60, 62, 189,
190]. A study by Linher-Melville and colleagues [60] reported
that CPT1A mRNA levels are significantly elevated in both
MCF-7 and MDA-MB-231 cells compared to 184B5 human
mammary epithelial cells. In another study, CPT1C gene
expression is upregulated in non-small-cell lung carcinoma
tumor tissue comparedwithmatched normal lung tissue [62].
Furthermore, high grade glioblastoma is associated with
increasedmRNA levels of bothCPT1A andCPT1C [61].These
studies clearly show that CPT1 expression levels are related
to not only tumorigenesis but also tumor progression. In
contrast, CPT1 expression has been reported to be higher
in the low metastatic potential, androgen receptor negative
LNCaP prostate cancer cell line compared to the high
metastatic potential, androgen receptor positive PC3 and
DU145 prostate cancer cell lines [59]. Overexpression of
CPT1C in MCF-7 cell line elevated fatty acid oxidation and
ATP production to support resistance to glucose depriva-
tion and siRNA-mediated CPT1C knockdown suppressed
xenograft tumor growth [62]. Further evidence for a role for
CPT1 in cancer biology has been generated from pharma-
cological studies. Inhibition of CPT1 with either genetic or
pharmacological manipulation has been shown to reduce
total ATP levels and the rate of ATP production in PC3
prostate cancer cells [62], Burkitt’s lymphoma cells [191],
and human glioblastoma cells [192] to impair proliferation.
Additionally, etomoxir sensitizes human leukemia cells to
apoptosis [193]. Collectively, these studies suggest a role for
altered CPT1 expression in various cancers but interestingly
CPT1 expression is sensitive to the microenvironment. For

example, CPT1A mRNA expression and fatty acid oxidation
are increased in SKOV3ip1 ovarian cancer cells cocultured
with adipocytes [31]. However, it must be highlighted that
fatty acid oxidation is regulated at a number of levels
including CPT1 gene expression, allosterically by malonyl-
CoA and fatty acid availability.

4.3. Acetyl-CoA Carboxylase. Acetyl-CoA carboxylase is a
biotin-dependent enzyme that catalyzes the conversion of
acetyl-CoA into malonyl-CoA. In mammals, two isoforms
of ACC are expressed: ACC1 (also known as ACC𝛼) and
ACC2 (also known as ACC𝛽) [194]. ACC1 is primarily
expressed in the cytosol of hepatocytes, adipocytes, and other
lipogenic cells, while ACC2 is an enzyme associated with the
outer mitochondrial membrane and is mainly expressed in
cardiomyocytes, skeletal muscles, and hepatocytes [195–198].
Whereas the malonyl-CoA generated by ACC1 is primarily
used for de novo lipogenesis, the malonyl-CoA product
of ACC2 is a potent regulator of fatty acid oxidation by
inhibiting CPT1 [199, 200]. Upstream of ACC2 is AMP-
activated protein kinase (AMPK), which phosphorylates and
inactivates ACC2 to reduce malonyl-CoA levels and thereby
increase fatty acid oxidation.

Upregulation of ACC1 and increased de novo lipogenesis
are observed in several types of cancer including breast [63,
64], prostate [65], lung [66], and liver cancers [67]. Chemical
and genetic inhibition studies have identified a role for ACC1
in cell survival. For example, apoptotic cell death results from
chemical inhibition of ACC1 by TOFA (5-tetradecyloxy-2-
furoic acid) in lung and colon cancer cells [201] and by
soraphen A in prostate cancer cells [202]. In addition, RNA
interference- (RNAi-)mediated knockdown ofACC1 induces
apoptosis in breast [203] and prostate cancer cells [204].

To date, studies have focused on ACC1, yet few studies
have been conducted into the role of ACC2 in cancer devel-
opment or progression. One of these studies demonstrated
that knockdown of ACC2 increased fatty acid oxidation
and inhibited cell death in A549 human lung carcinoma
cells [205]. Similarly, pharmacological inhibition of malonyl-
CoA decarboxylase (MCD), which increased the malonyl-
CoA pool, suppresses human breast cancer cell proliferation
[206]. Therefore, decreasing fatty acid oxidation rates by
the modulation of the malonyl-CoA pool by ACC2 and
MCD suggests a potential role for these enzymes in cancer
metabolism. However, ACC2 functions in other cancer types
remain to be elucidated.

The role of ACC2 in obesity is more established. Skeletal
muscle ACC2 phosphorylation and activity are reduced in
obese patients, as a consequence of reduced AMPK activity
[207, 208]. Additionally, the mRNA levels of ACC2 in
white adipose tissue are lower in Zucker fatty rats than in
lean rats [209]. Interestingly, the AMPK-ACC2-CPT1 axis is
modulated by several adipokines, whose levels are altered
in obesity. These include leptin [210], adiponectin [211], and
CTRP1 [212].Moreover, recent evidence in liver demonstrates
that metformin’s actions to suppress de novo lipogenesis
and increase fatty acid oxidation require AMPK-mediated
phosphorylation of ACC1 and ACC2. Thus, the significant
interest in the clinical use of metformin as the therapeutic in
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many cancers will further contribute to the understanding of
the role that ACC1/2 plays in cancer biology [213].

5. Conclusions

Thecurrent interest in cancermetabolism has the potential to
identify commonperturbations arising fromdiffering genetic
origins that may serve as therapeutic targets. As the current
obesity epidemic continues to grow, there is a need to not
only define cancer metabolism but also investigate how it is
influenced by the obese microenvironment. It is clear that
cancer fatty acid metabolism plays a significant role in cancer
biology and that opportunities exist to further define this role,
especially in the context of obesity-induced changes in cancer
progression.
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[36] P. Sinha, G. Hütter, E. Köttgen, M. Dietel, D. Schadendorf,
and H. Lage, “Increased expression of epidermal fatty acid
binding protein, cofilin, and 14-3-3-sigma (stratifin) detected
by two-dimensional gel electrophoresis, mass spectrometry and
microsequencing of drug-resistant human adenocarcinoma of
the pancreas,” Electrophoresis, vol. 20, no. 14, pp. 2952–2960,
1999.

[37] Z. Bao, M. I. Malki, S. S. Forootan et al., “A novel cutaneous
Fatty Acid-binding protein-related signaling pathway leading
to malignant progression in prostate cancer cells,” Genes and
Cancer, vol. 4, no. 7-8, pp. 297–314, 2013.

[38] R. Das, R. Hammamieh, R. Neill, M. Melhem, and M. Jett,
“Expression pattern of fatty acid-binding proteins in human
normal and cancer prostate cells and tissues,” Clinical Cancer
Research, vol. 7, no. 6, pp. 1706–1715, 2001.

[39] J. Adamson, E. A. Morgan, C. Beesley et al., “High-level
expression of cutaneous fatty acid-binding protein in prostatic
carcinomas and its effect on tumorigenicity,” Oncogene, vol. 22,
no. 18, pp. 2739–2749, 2003.

[40] X. Y. Tang, S. Umemura, H. Tsukamoto, N. Kumaki, Y. Tokuda,
and R. Y. Osamura, “Overexpression of fatty acid binding
protein-7 correlates with basal-like subtype of breast cancer,”
Pathology Research and Practice, vol. 206, no. 2, pp. 98–101, 2010.

[41] H. Zhang, E. A. Rakha, G. R. Ball et al., “The proteins FABP7
andOATP2 are associated with the basal phenotype and patient
outcome in human breast cancer,” Breast Cancer Research and
Treatment, vol. 121, no. 1, pp. 41–51, 2010.

[42] A. T. Alshareeda, E. A. Rakha, C. C. Nolan, I. O. Ellis, and A.
R. Green, “Fatty acid binding protein 7 expression and its sub-
cellular localization in breast cancer,” Breast Cancer Research
and Treatment, vol. 134, no. 2, pp. 519–529, 2012.

[43] Y. Goto, K. Koyanagi, N. Narita et al., “Aberrant fatty acid-
binding protein-7 gene expression in cutaneous malignant
melanoma,” Journal of Investigative Dermatology, vol. 130, no.
1, pp. 221–229, 2010.

[44] C. Tan, T. Takayama, N. Takaoka et al., “Impact of gender
in renal cell carcinoma: the relationship of FABP7 and BRN2
expression with overall survival,” Clinical Medicine Insights:
Oncology, vol. 8, pp. 21–27, 2014.

[45] T. Teratani, T. Domoto, K. Kuriki et al., “Detection of transcript
for brain-type fatty acid-binding protein in tumor and urine of
patients with renal cell carcinoma,” Urology, vol. 69, no. 2, pp.
236–240, 2007.

[46] Z. Pei, P. Sun, P. Huang, B. Lal, J. Laterra, and P. A. Watkins,
“Acyl-CoA synthetase VL3 knockdown inhibits human glioma
cell proliferation and tumorigenicity,” Cancer Research, vol. 69,
no. 24, pp. 9175–9182, 2009.

[47] Y. Cao, K. B. Dave, T. P. Doan, and S. M. Prescott, “Fatty acid
CoA ligase 4 is up-regulated in colon adenocarcinoma,” Cancer
Research, vol. 61, no. 23, pp. 8429–8434, 2001.

[48] Y.-C. Liang, C.-H. Wu, J.-S. Chu et al., “Involvement of fatty
acid-CoA ligase 4 in hepatocellular carcinoma growth: roles of



12 BioMed Research International

cyclic AMP and p38 mitogen-activated protein kinase,” World
Journal of Gastroenterology, vol. 11, no. 17, pp. 2557–2563, 2005.

[49] C.-S. Yeh, J.-Y.Wang, T.-L. Cheng,C.-H. Juan,C.-H.Wu, and S.-
R. Lin, “Fatty acid metabolism pathway play an important role
in carcinogenesis of human colorectal cancers by Microarray-
Bioinformatics analysis,” Cancer Letters, vol. 233, no. 2, pp. 297–
308, 2006.

[50] C. S. M. Diefenbach, R. A. Soslow, A. Iasonos et al., “Lysophos-
phatidic acid acyltransferase-𝛽 (LPAAT-𝛽) is highly expressed
in advanced ovarian cancer and is associated with aggressive
histology and poor survival,”Cancer, vol. 107, no. 7, pp. 1511–1519,
2006.

[51] S. Niesporek, C. Denkert, W. Weichert et al., “Expression
of lysophosphatidic acid acyltransferase beta (LPAAT-beta)
in ovarian carcinoma: correlation with tumour grading and
prognosis,” British Journal of Cancer, vol. 92, no. 9, pp. 1729–
1736, 2005.

[52] G. M. Springett, L. Bonham, A. Hummer et al., “Lysophospha-
tidic acid acyltransferase-beta is a prognostic marker and ther-
apeutic target in gynecologic malignancies,” Cancer Research,
vol. 65, no. 20, pp. 9415–9425, 2005.

[53] A. K. Agarwal and A. Garg, “Enzymatic activity of the human 1-
acylglycerol-3-phosphate-𝑂-acyltransferase isoform 11: upreg-
ulated in breast and cervical cancers,” Journal of Lipid Research,
vol. 51, no. 8, pp. 2143–2152, 2010.

[54] F. Mansilla, K.-A. Da Costa, S. Wang et al., “Lysophosphatidyl-
choline acyltransferase 1 (LPCAT1) overexpression in human
colorectal cancer,” Journal of Molecular Medicine, vol. 87, no. 1,
pp. 85–97, 2009.

[55] T. Agustsson, M. Rydén, J. Hoffstedt et al., “Mechanism of
increased lipolysis in cancer cachexia,” Cancer Research, vol. 67,
no. 11, pp. 5531–5537, 2007.

[56] S. K. Das, S. Eder, S. Schauer et al., “Adipose triglyceride lipase
contributes to cancer-associated cachexia,” Science, vol. 333, no.
6039, pp. 233–238, 2011.

[57] M. P. Thompson, S. T. Cooper, B. R. Parry, and J. A. Tuckey,
“Increased expression of the mRNA for hormone-sensitive
lipase in adipose tissue of cancer patients,” Biochimica et
Biophysica Acta, vol. 1180, no. 3, pp. 236–242, 1993.

[58] L. Ye, B. Zhang, E. G. Seviour et al., “Monoacylglycerol lipase
(MAGL) knockdown inhibits tumor cells growth in colorectal
cancer,” Cancer Letters, vol. 307, no. 1, pp. 6–17, 2011.

[59] D. K. Nomura, D. P. Lombardi, J. W. Chang et al., “Monoacyl-
glycerol lipase exerts dual control over endocannabinoid and
fatty acid pathways to support prostate cancer,” Chemistry and
Biology, vol. 18, no. 7, pp. 846–856, 2011.

[60] K. Linher-Melville, S. Zantinge, T. Sanli, H. Gerstein, T.
Tsakiridis, and G. Singh, “Establishing a relationship between
prolactin and altered fatty acid 𝛽-oxidation via carnitine palmi-
toyl transferase 1 in breast cancer cells,” BMC Cancer, vol. 11,
article 56, 2011.

[61] A. Cirillo, A. Di Salle, O. Petillo et al., “High grade glioblastoma
is associated with aberrant expression of ZFP57, a protein
involved in gene imprinting, and of CPT1A and CPT1C that
regulate fatty acid metabolism,” Cancer Biology and Therapy,
vol. 15, no. 6, pp. 735–741, 2014.

[62] K. Zaugg, Y. Yao, P. T. Reilly et al., “Carnitine palmitoyl-
transferase 1C promotes cell survival and tumor growth under
conditions of metabolic stress,” Genes & Development, vol. 25,
no. 10, pp. 1041–1051, 2011.

[63] L. Z. Milgraum, L. A. Witters, G. R. Pasternack, and F. P.
Kuhajda, “Enzymes of the fatty acid synthesis pathway are

highly expressed in in situ breast carcinoma,” Clinical Cancer
Research, vol. 3, no. 11, pp. 2115–2120, 1997.

[64] J. T. Moncur, J. P. Park, V. A. Memoli, T. K. Mohandas, and W.
B. Kinlaw, “The “Spot 14” gene resides on the telomeric end of
the 11q13 amplicon and is expressed in lipogenic breast cancers:
implications for control of tumor metabolism,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 95, no. 12, pp. 6989–6994, 1998.

[65] J. V. Swinnen, F. Vanderhoydonc, A. A. Elgamal et al., “Selective
activation of the fatty acid synthesis pathway in human prostate
cancer,” International Journal of Cancer, vol. 88, no. 2, pp. 176–
179, 2000.

[66] E. Conde, A. Suarez-Gauthier, E. Garćıa-Garćıa et al., “Specific
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