
RESEARCH ARTICLE

Real-time extended psychophysiological

analysis of financial risk processing

Manish SinghID
1,3,5, Qingyang XuID

1,2, Sarah J. Wang1, Tinah Hong1, Mohammad

M. Ghassemi6,7, Andrew W. Lo1,2,3,4,5*

1 MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America,

2 Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United

States of America, 3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, Massachusetts, United States of America, 4 MIT Sloan School of Management,

Cambridge, Massachusetts, United States of America, 5 Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America,

6 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United

States of America, 7 Ghamut Corporation, East Lansing, MI, United States of America

* alo-admin@mit.edu

Abstract

We study the relationships between the real-time psychophysiological activity of profes-

sional traders, their financial transactions, and market fluctuations. We collected multiple

physiological signals such as heart rate, blood volume pulse, and electrodermal activity of

55 traders at a leading global financial institution during their normal working hours over a

five-day period. Using their physiological measurements, we implemented a novel metric of

trader’s “psychophysiological activation” to capture affect such as excitement, stress and

irritation. We find statistically significant relations between traders’ psychophysiological acti-

vation levels and such as their financial transactions, market fluctuations, the type of finan-

cial products they traded, and their trading experience. We conducted post-measurement

interviews with traders who participated in this study to obtain additional insights in the key

factors driving their psychophysiological activation during financial risk processing. Our

work illustrates that psychophysiological activation plays a prominent role in financial risk

processing for professional traders.

Introduction

Several experimental studies in the field of behavioral economics have documented that emo-

tional states (for example, fear, excitement, and stress) may influence the decision making of

an agent [1–3]. In financial markets, sudden fluctuations in prices, changes in investor hold-

ings, or other factors unknown to the agent may impact decisions. To better understand the

biological and psychological mechanism of financial decision making under uncertainty, the

emerging field of neurofinance has incorporated insights from psychology and neuroscience

into theories of finance [4].

In previous studies, researchers characterized the psychophysiological (PP) activities of

traders using functional magnetic resonance imaging (fMRI), hormonal level measurement,
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and physiological signals like heart rate, blood pressure, and skin temperature (reviewed in

Section Literature Review). However, these techniques share the common limitation that, due

to the equipment used to measure the physiological signals, the experiments are either con-

ducted in laboratory settings rather than in the field, or the data collection procedure interferes

with the day-to-day activities of traders. While controlled experimentation yields cleaner infer-

ences, their findings lack the direct applicability to real financial settings which in situ experi-

ments provide.

In this work, we conducted an in situ experiment and collected the physiological signals of

55 professional financial traders at a global financial institution during the entire trading day

over a five-day period for each trader. Using an Empatica E4 wristband, we capture a variety of

real-time physiological signals, such as heart rate, blood volume pulse, inter-beat interval, elec-

trodermal activity, skin temperature, and three-dimensional accelerations of wrist motion,

without interfering with the traders’ daily routines on their trading desks. This non-invasive

experimental design offers the most realistic setting to date for analyzing the traders’ real-time

PP activities during financial decision making.

The primary focus of our analysis was to measure the relation (if any) between a trader’s PP

state and their financial decisions or market events, both contemporaneously and temporally.

Since a trader’s PP state is not directly observed and must be inferred from the physiological

signals, we measure each trader’s “psychophysiological (PP) activation”, defined as the collec-

tive deviation of physiological signals from their baseline values. Higher levels of PP activation

indicates emotions such as excitement, stress, agitation, arousal, and irritation which elevate

the physiological activities from the normal state. By analyzing the changes in the trader’s PP

activation levels, we identify the circumstances in which such changes coincided with, or were

caused by, financial transactions or market events. The key challenge was to accurately mea-

sure the levels of PP activation, and a major contribution of our study is the novel application

of the Mahalanobis distance [5] on features extracted from physiological signals as a quantita-

tive metric of PP activation.

There are two underlying assumptions of our analysis. First, financial decision making and

risk processing under uncertainty trigger PP activation in professional traders. Second, the lev-

els of the trader’s PP activation can be explained by multiple factors such as market fluctua-

tions, the types of financial products traded, as well as the trading experience of each trader.

We test four hypotheses related to these two assumptions:

• Traders monitor multiple market indices during working hours. Fluctuations in these mar-

ket indices often represent trading signals to the traders and may affect the existing positions

and real-time profit and loss (PnL) of the traders. We test the hypothesis that market fluctua-

tions have causal influence on the PP activation of the traders.

• Traders who participated in our study have different lengths of trading experience ranging

from 10 months to 25 years. As traders gain more trading experience, they may develop skills

to manage their PP activation level when making risky financial decisions. Since we do not

observe these skills, we hypothesize that the ability to manage one’s activation level is posi-

tively correlated with the length of one’s trading experience and test the statistical relation-

ship between the trading experience and activation levels of the traders.

• Traders who participated in our study worked in different business divisions and traded dif-

ferent financial products. Since different financial products have different market volatility,

dollar volume of transactions, and trading frequency, we expect the traders to have different

patterns of PP activation depending on the type of their business division. We test the
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hypothesis that the traders’ PP activation is related to their business divisions or the financial

products they trade.

• As traders engage in risky financial transactions, their PP activation levels may change due

to the financial decision making process before, during, and after the transaction. The PP

activation levels may also depend on other factors such as the number of transactions and

the average dollar volume. We examine the change in traders’ PP activation before and after

making a transaction and identify the period when the traders are the most highly activated.

We test the hypothesis that the traders’ PP activation levels are related to their trading fre-

quency and the average dollar volume of their transactions.

We found statistically significant relationships between the levels of PP activation and

financial market movements, and that different traders monitored different market signals

which, in turn, had causal influence on their PP activation levels. We found that traders with

more trading experience had lower levels of activation. We also found a significant relationship

between a trader’s activation level and the type of financial products being traded. For exam-

ple, traders specializing in G10 rates, equities, commodity and foreign exchange had higher

level of PP activation, while traders in securitized market generally had lower activation. Dif-

ferences in the properties of the financial products lead to differences in traders’ decision mak-

ing process, and hence to their PP activation levels. We also found that traders on average have

the highest activation levels 15 to 25 minutes after making the transaction.

We conducted follow-up interviews with 14 of the 55 traders to review their individual

results, and received useful feedback which helps us interpret their PP activation patterns in

the context of their specific working environments. The interviews yielded additional factors

which influence traders’ PP activation, such as the demand of the workday, social events, and

their managerial responsibilities. We found that busier workdays and social events led to

higher PP activation in some traders.

Literature review

A major challenge in conducting neurofinance field studies is the faithful measurement of the

trader’s real-time neural activities during live trading over extended periods of time [4, 6].

Most previous studies in the literature encountered an important tradeoff between measure-

ment and environment, since measuring traders’ neural activities in real time required a con-

trolled experimental setting. As a result, these studies typically used mock trading and

simulated market events to replace the conditions of live trading. Many studies [7–10] used

fMRI to continuously monitor participants’ neural activity during simulated trading exercises.

Another study [11] designed simulated lottery games to study the effect of elevated cortisol lev-

els on the degree of risk aversion of the participants.

While the controlled experimental setting provides a rigorous framework for data collection

and analysis, several issues prevent one from applying the methodology and conclusions of

these studies to professional traders engaging in real-world trading activities. First, it is difficult

to perform neural activity measurements during live trading seamlessly without interfering in

the normal work routine of the trader. The act of making the measurements may have a lasting

impact on the participant’s mental state, which is difficult to calibrate and remove from the

analysis. In addition, the neural activity profile of a participant (who may not be a professional

trader) during mock trading [8, 11] is likely to be different from professional traders during

live trading, since in the latter situation the traders incur real profit and loss (PnL) to their

companies as a consequence of their decisions. Performing physiological measurements dur-

ing live trading sessions often required non-disruptive measurement schemes at discrete
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points in time during or after trading hours rather than real-time monitoring. Lo et al. [12]

used daily emotional-state surveys, and found that traders who react more intensely to their

monetary gains and losses exhibited significantly worse PnL. Numerous studies [13–17] used

saliva samples to measure traders’ intra-daily cortisol and testosterone levels and studied the

relation between traders’ hormone levels and their trading performance measured by PnL.

Although saliva sampling may faithfully reflect a trader’s PP state during live trading without

causing much disruption to their normal work routine, it is difficult to perform such measure-

ments continuously in time, and the studies cited above collected saliva samples twice or three

times each day. These measurement schemes cannot effectively capture a trader’s real-time PP

responses to transient market events and fluctuations in asset prices and market indices.

Lo and Repin [18] were the first to measure traders’ real-time physiology during live trading

sessions. They also collected financial market data relevant to the traders’ financial decisions

synchronously during the physiology measurements. The time series data allowed them to

identify PP responses to transient market events and periods of high market volatility, though

their study involved relatively few subjects (10 traders) and short periods of measurement

(ranging from 49 to 83 minutes) when the physiological signals were collected from each

trader.

In this study, we extended the line of research of [18] and collected physiological signals of

55 professional traders at a global financial institution. Data collection for each trader lasted

five consecutive workdays over a week, and six to eight hours each day. The larger sample size

and longer measurement periods allowed us to study the PP behavior of traders in a more

unconstrained and natural setting. We used the Empatica E4 wristband to collect high-fre-

quency physiology time series data without disrupting the traders’ normal work routine. We

also collected relevant market data and financial transaction data of individual traders to ana-

lyze their PP responses to market fluctuations and financial transactions.

Another contribution of this study is our novel method for measuring the PP activation

from physiological signals to capture psychological states such as excitement, stress and irrita-

tion. Higher activation is known to trigger psychological, behavioral, and physiological

changes in the brain [19]. These changes influence different biological signals, such as electro-

cardiogram readings, blood volume pulse, electrodermal activity, heart rate variability, and

skin temperature [20]. Since stress is an important cause of PP activation, the rich literature of

stress detection from physiological signals may be applied to measure PP activation. Al-Shargie

et al. [21] measured electroencephalography and functional near-infrared spectroscopy on the

prefrontal cortex for stress assessment. Several studies [22–25] used features extracted from

electrodermal activity to train stress detection machine learning models, while others [23, 26–

28] analyzed heart rate variability for stress detection. In addition, photoplethysmography [29]

and skin temperature [30] are also used for stress detection. Fernandez et al. [31] proposed a

system which uses commercial devices to detect stress and alert in traders in real time, which

is of direct interest to our purpose.

Previous experimental studies generally used artificial methods to elevate the activation lev-

els in the subjects, and measured their biochemical markers or physiological responses syn-

chronously [32]. This “ground truth” information of the activation patterns makes it possible

to train machine learning models for PP activation analysis. However, such “ground truth”

information is not available in our study since we are agnostic of the factors which elevate the

traders’ activation. Instead, we propose a novel metric for PP activation using the Mahalanobis

distance [5] of features extracted from physiological signals, which to the best of our knowl-

edge has not been previously explored. This metric allows us to rigorously test the statistical

relationship between PP activation and various aspects of financial decision making and risk

processing, discussed in the next section.

PLOS ONE Real-time extended psychophysiological analysis of financial risk processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0269752 July 25, 2022 4 / 15

https://doi.org/10.1371/journal.pone.0269752


Materials and methods

To rigorously analyze how financial risk processing affects a trader’s PP state, we collected

both financial transaction records and the real-time physiological signals (Table A in S1

Appendix) of 55 professional day traders at a global financial institution during their normal

trading activities. Before data collection, we collected the demographic information of the trad-

ers such as gender, trading experience, and business division via surveys. To understand the

impact of market fluctuations on the trader’s PP activation, we also acquired 10 intraday finan-

cial market time series (Table B in S1 Appendix) commonly monitored by the traders during

the same period as we measured their physiology. The details of data collection and prepro-

cessing procedures are described in Sections A to F in S1 Appendix.

Measuring PP activation

From the physiological signals of the traders, we constructed a synthetic metric to characterize

each trader’s PP activation, defined as the physiological response to emotions like excitement,

stress, and irritation. We chose to measure PP activation since it is ubiquitous in the context of

financial risk processing. Events such as high market volatility, sudden gain or loss in the trad-

er’s portfolio, or receiving instructions from clients to place transactions may induce elevated

activation in traders. Previous studies showed that a high level of activation is associated with

reduced performance [33, 34]. In addition, prolonged periods of high activation have an

adverse impact on health [35, 36]. We extract PP activation from the physiological features in

the following way:

• Heart Rate Variability (HRV): HRV measures the variations in the beat-to-beat intervals.

Inspired by [28], we calculated four features from the raw HRV signal to measure activation:

mHR, the average number of beats per minute; mRRi, the average value of the interbeat

(RR) interval; SDNN, the standard deviation of the RR interval; and RMSSD, the root mean

square sum of the successive interbeat interval difference. All features are calculated as time

series using a 5-minute trailing window, similar to [28].

• Electrodermal Activity (EDA): EDA measures the electrical conductivity of the skin. Ele-

vated activation increases the skin temperature and sweating, which in turn changes the

EDA. We calculated three features from the raw EDA signal to measure activation: mAmp,

the average of the raw skin conductance signal; Slope, the average of the absolute first differ-

ence of the skin conductance signal; and Events, the number of times the EDA signal

increases more than 0.05μS in less than 5 seconds. These features are inspired by [24].

• Blood Volume Pulse (BVP): BVP is measured by a photoplethysmogram (PPG) sensor,

which uses optical technique to measure the blood flow rate and blood volume. Blood pres-

sure is then estimated using BVP readings [37]. Elevated cardiovascular activity due to

higher activation changes the BVP. We calculated three features from the raw BVP signal to

measure activation: the average of the absolute value of the BVP; the minimum value of

BVP, and the maximum value of BVP. These features are inspired by [24].

• Skin Temperature (TEMP): TEMP generally increases during periods of high activation. The

changes in skin temperature depend on the specific body region being measured [30] and

changes in room temperature. We assume that changes in room temperature occur much

more slowly than the sudden onset of events that lead to high activation. We compute the

instantaneous rate of change in TEMP to capture the change in levels of PP activation.
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Once we extracted these features as a column vector yt 2 R
d

at each time t for a trader, we

computed the aggregate measure of PP activation using the Mahalanobis distance dM [5],

dMðytÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyt � mtÞ
T
S� 1

t ðyt � mtÞ

q
ð1Þ

where the column vector mt 2 R
d and matrix St 2 R

d�d are the rolling sample mean and

covariance matrix computed using y1, . . ., yt. The superscript T denotes vector transposition.

We use the rolling mean and covariance to prevent the look-ahead bias of computing PP acti-

vation at time t using signals measured in future time t0 > t. The Mahalanobis distance cap-

tures the trader’s PP activation as the collective deviation of physiological activities yt from

their baseline state μt and adjusts for the covariance between the components of yt, which tend

to be highly correlated if they are extracted from the same underlying physiological signal mea-

sured by the wearable device (shown in Table G of S1 Appendix).

Using the Mahalanobis distance, we computed five different measures of PP activation: the

overall PP activation (using features extracted from all physiological signals), and the individ-

ual HRV, EDA, BVP, and TEMP activation (using features extracted from one physiological

signal) for every trader. In the subsequent analysis, we focus on the overall PP activation since

it captures the collective excitation of all physiological activities simultaneously.

Next, we identify the time periods when each trader is under mild and extreme levels of PP

activation by measuring their deviations from mean. We label the trader as “mildly activated”

at time t if her PP activation dM(yt) satisfies dM(yt)> μ + 1.5σ where μ and σ denote the mean

and standard deviation of her PP activation during the trading day. Details of computing μ
and σ are provided in Section F in S1 Appendix. Similarly, we label the trader as “extremely

activated” at time t if dM(yt)>μ + 3σ. We choose thresholds 1.5 and 3 based on qualitative

assessment of the magnitude of mild and extreme activation. Future extensions of our work

may use data-driven methods to identify periods of mild and extreme activation for each

trader.

Finally, we use three aggregate metrics to characterize the PP activation patterns of each

trader: activation proportion, activation length, and average activation. Activation proportion

measures the percentage of time when the trader was at a mild or extreme level of activation

during a trading day. Traders with higher activation proportion tended to be more susceptible

to elevated activation. Activation length measures the average duration of the mild or extreme

activation periods of a trader. Traders with longer activation length tended to remain activated

for longer periods of time after the sudden onset of events which triggered activation. Average

activation measures the average value of PP activation over the trading day and reflects both

activation proportion and length. Traders with higher activation proportion or length also

have higher average activation. These aggregate measures allowed us to directly compare the

PP activation patterns across different traders and trading days. The definition and computa-

tion of activation proportion and activation length are described in Section F in S1 Appendix.

Activation level attribution regression

To identify the relationship between individual factors and the PP activation of the traders, we

perform the following regression:

yi;t ¼ aþ b � bisi þ g � geni þ d � amti;t þ y � expi þ z � numTi;t þ Z � voli;t ð2Þ

where yi,t denotes the activation metric of the trader i on day t, bisi the business division (one-

hot encoded), geni the gender (male/female), amti,t the average dollar value of the transactions

by trader i on day t, and numTi,t the number of transactions by the trader on day t. Since
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traders’ activation may also be correlated with market volatility on different days, we also

include voli,t, the vector of volatility of different market indices on day t. The right-hand-side

explanatory variables of the regression were extracted from trader survey, financial market

indices, and traders’ transaction data. We use the average activation as the left-hand-side

dependent variable yi,t since it reflects the other activation metrics (proportion and length).

Granger causality test

We test whether there is Granger causality relation between fluctuations of market indices and

trader’s PP activation. Specifically, let yt and mt denote the minute-level time series of a trader’s

PP activation and a market index on a trading day. Since the activation time series is measured

with 1Hz (higher frequency than market indices), we perform frequency averaging on yt to get

the minute-level activation time series �yt. To account for non-stationarity in the time series,

we perform the Granger causality test on the first difference D�yt ¼ �yt � �yt� 1 and Δmt = mt −
mt−1. For each trader and each market index on a given trading day, we test the null hypothesis

that Δmt does not Granger-cause D�yt. The Granger causality test is performed with the sum of

squared residual (SSR) test with chi-squared distribution using the statsmodels package in the

SciPy library and a lag of 10 minutes. To correct for multiple hypothesis testing across all trad-

ers, we perform the Holm-Bonferroni correction for each market index with significance level

0.05.

Activation around financial transactions

We analyzed the pattern of trader’s PP activation around financial transactions. Specifically,

we computed the evolution of PP activation using a rolling window before and after placing a

trade in the following way:

• We first calculated the z-scores of PP activation zt so that the activation levels may be consis-

tently compared across different time periods and traders.

• Next, for a transaction at time l placed by the trader, we calculated the mean values of zt in

the windows [zl−30min, zl − 25min], [zl − 25min, zl − 20min], . . ., [zl + 20min, zl + 25min], [zl + 25min, zl
+ 30min]. This computed the time series of activation averaged over 5 minute windows in 30

minutes timeframe before and after performing the transaction.

• Finally, for each trader in a trading day, we averaged the rolling window calculation results

across all transactions made by this trader on this day. We computed the evolution of PP

activation around a transaction by averaging the results across all traders and trading days.

Individual trader meetings

The 55 traders who participated in our study had diverse levels of trading experience and

traded a variety of financial products. Since the physiological signals were recorded during

their normal working hours, their PP activation levels may have been affected by idiosyncratic

sources that were exogenous to their trading activities and unknown to us. To investigate these

idiosyncratic sources of PP activation and relate them to our findings, we invited all participat-

ing traders to meet individually with us after we completed the PP activation analysis. Due to

traders’ availability, 14 of 55 traders participated in the individual meetings. During each meet-

ing, we presented the individual findings to the trader and received the feedback from the

trader. We applied the insights from these trader meetings to identify additional sources of PP

activation.
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Ethics statement

The study was approved by the following IRB/ethics committee: MIT Committee on the Use

of Humans as Experimental Subjects (COUHES). The study approval number is 0403000144

and the written consent was obtained prior to the study.

Results

We present the analysis results of traders’ PP activation and investigate the different sources

that may cause elevations in PP activation levels. We discuss both general patterns of trader’s

PP activation observed across all traders and idiosyncratic characteristics specific to individual

traders.

Variation in trader’s activation levels

We analyzed the variation in PP activation patterns across different traders as reflected by four

activation metrics: average activation, mild activation proportion, extreme activation propor-

tion, and activation length. Fig 1 shows the histograms of these metrics for all traders. A trad-

er’s PP activation metric on each trading day is counted separately in the histogram to account

for inter-day variation and there are a total of 242 trader-day pairs in each histogram. The

summary statistics of each histogram is shown in Table 1.

We observed significant variation in all PP activation metrics across the traders. Several

traders were at mild activation for 17% of working hours on certain days, while others were at

mild activation for less than 8% of the time. Similarly, some traders returned to their normal

activation levels in less than 30 seconds from the onset of elevated activation, while others took

Fig 1. Histograms of four PP activation metrics. The y-axis represents the number of trader-days and the x-axis

represents the activation metric values. We observe considerable variations in PP activation levels across traders.

Average activation is a dimensionless quantity. Mild and extreme activation proportions are measured in percentages

(%). Activation length is measured in seconds (s).

https://doi.org/10.1371/journal.pone.0269752.g001
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as long as 17 minutes. The detailed statistics of PP activation metrics for each trader is summa-

rized in Table E in S1 Appendix. The significant variation in PP activation metrics can partly

be ascribed to the diverse characteristics of the traders in various aspects, which motivates us

to investigate the systematic and idiosyncratic factors which lead to the variation in PP activa-

tion levels.

Factors influencing PP activation

We performed the regression (Eq 2) to identify the relationship between different factors and

the PP activation of traders. The dependent variable of the regression yi,t is the average PP acti-

vation of trader i on day t. The correlations between the covariates of the regression are sum-

marized in Table F in S1 Appendix.

Gender. We do not find statistically significant relationship between the average PP acti-

vation and the gender of a trader (difference between the regression coefficients of male vs.

female: −0.02, p-value: 0.83).

Trading experience. We find that traders with more trading experience have lower aver-

age PP activation (coefficient: −0.02, p-value: 0.01). The possible explanation is two-fold: trad-

ers may become more adept at making risky financial decisions under uncertainty with little

emotional fluctuations or may acquire certain skills over time to actively manage their PP acti-

vation levels during financial risk processing.

Dollar volume, number of transactions, and market volatility. The average dollar vol-

ume and number of transactions have positive regression coefficients 0.02 (p-value: 0.26) and

0.4e − 4 (p-value: 0.47), respectively. While we observed an overall positive correlation between

the dollar volume, number of transactions and the average PP activation of the traders, addi-

tional factors of their trading activities might further influence whether the transaction causes

high or low PP activation and lead to the large p-values. During individual trader interviews,

we found that traders’ PP activation highly depends on type of transaction (via a client’s order

or the trader’s own decision) and the changes in risk exposure as a result of the transaction.

Similarly, the regression coefficients of volatility of different market indices are not statistically

significant. This motivates us to analyze the time series characteristics of market fluctuations

and traders’ PP activation via the Granger causality test discussed later.

Other factors. We also found statistically significant relations between the trader’s aver-

age PP activation and the type of financial products traded. A detailed discussion of these

results is provided in Section H in S1 Appendix. During individual trader meetings, traders

reported additional idiosyncratic factors that influenced their PP activation, including whether

they had a busy schedule, their managerial responsibilities, and even the anticipation of the

social events after work. These idiosyncratic factors were not measured in our experiment and

may contribute to the variation in traders’ PP activation unexplained by the regression.

Table 1. Summary statistics of four PP activation metrics. Average activation is a dimensionless quantity. Mild and

extreme activation proportions are measured in percentages (%). Activation length is measured in seconds (s).

Metric Min. Max. Mean Std. Dev.

Average Activation 2.76 5.34 3.79 0.37

Mild Activation Proportion (%) 7.42 17.57 11.54 1.99

Extreme Activation Proportion (%) 0.45 6.78 2.71 1.12

Activation Length (s) 26 1031 152 94

https://doi.org/10.1371/journal.pone.0269752.t001
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Market fluctuations have causal impacts on traders’ PP activation

Typically, each trader manages a portfolio of many active positions and monitors a variety of

market indices and events during the trading hours. It is reasonable to expect that increased

volatility in market indices relevant to their portfolio values may cause the traders’ PP activa-

tion levels to become elevated. We tested the null hypothesis that market fluctuations do not

have causal influence on traders’ PP activation via the Granger causality test, with Holm-Bon-

ferroni correction at 5% significance level.

To test whether the observed Granger causality relations between market index and PP acti-

vation are statistically significant, we plot the distribution of p-values for each pair of PP activa-

tion and market index in Figure D in S1 Appendix. Under the null hypothesis H0 that the

market index does not Granger-cause traders’ PP activation, the distribution of p-values of

Granger tests should follow a uniform distribution on [0, 1]. We perform a one-sample Kol-

mogorov–Smirnov test and reject the null hypothesis H0 for six of the eight market indices

(Credit Default Swap Index Investment Grade (IG), Credit Default Swap Index High Yield

(HY), S&P 500 E-mini Futures Price, 10Y US Treasury Futures Price, 5Y US Treasury Futures

Price and Crude Oil Futures Price) at significance level 0.05.

The number of statistically significant Granger causality relations between market fluctua-

tions and traders’ PP activation is shown in Table 2. We observe that the two credit default

swap (CDS) indices were the most common sources of elevated PP activation for the traders.

Since CDS contracts act as insurance against credit defaults, it is reasonable that fluctuations

in CDS indices have systematic impact on multiple financial products and elevate the PP acti-

vation levels among the largest number of traders.

Financial transactions elevate traders’ PP activation

Traders regularly engage in financial transactions which induce considerable risks to their PnL

performance. Real-time financial risk processing during a transaction can be a major source of

high PP activation for the traders. Since transactions are placed at irregular points in time, we

performed an event study to investigate the changes in trader’s PP activation levels before and

after a transaction, as described in Methods and Materials Section.

Fig 2 shows the evolution of the average PP activation levels around a transaction, where

the results are averaged across all traders. The vertical axis represents the average PP activation

and horizontal axis indicates five-minute intervals around the transaction, where the transac-

tion time is defined at t = 0. The left half of the figure corresponds to PP activation levels before

the transaction, and the right half to those after. To account for the variation across traders, we

also plot the 95% confidence band of PP activation.

Table 2. The number of statistically significant Granger causality relations between each market index and trad-

ers’ PP activation, with Holm-Bonferroni correction at 5% significance level.

Market Index Number of significant GC relations

Credit-Default Swap Index IG 22

Credit-Default Swap Index HY 19

USD Index 3

10Y US Treasury Future Price 3

S&P 500 E-mini Future Price 4

5Y US Treasury Future Price 6

Crude Oil Futures Price 4

VIX Futures Price 7

https://doi.org/10.1371/journal.pone.0269752.t002
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We observe that traders tended to have the highest PP activation in the time window of 15

to 25 minutes after the transaction. We also observe a local peak of high PP activation 5 min-

utes prior to the transaction. During individual trader interviews, traders pointed out that

their PP activation levels depended on the risk exposure of the transaction, as well as whether

the transaction was placed via a client’s order or per the trader’s own discretion. In addition,

traders mentioned that it usually takes 15 to 30 minutes after a transaction to confirm whether

the transaction is executed as intended and to observe its effect on the trader’s PnL. This antici-

pation effect partly explains the elevated PP activation levels 15 to 25 minutes after transaction,

shown in Fig 2.

Discussion

Our analysis confirms that affect, as evidenced by the fluctuations of PP activation due to mar-

ket fluctuations or financial transactions, plays a prominent role in the financial risk process-

ing and decision making process for professional traders in their daily trading activities [18].

Our results provide contextual support for the growing literature of affective science investi-

gating the relations between emotions and decision making [38–40] in the case of professional

traders, whose profession requires them to make rational decisions under large uncertainties

and maximize their payoffs.

Our study also illustrates the feasibility of conducting large field experiments in affective

sciences with non-disruptive physiological measurement and the rich insights one can extract

Fig 2. Evolution of trader’s PP activation around a transaction. The shaded region corresponds to the 95% confidence band. The x-axis is the time

difference (in minutes) between the transaction time, defined as time 0, and measurement time. The y-axis is the average PP activation value. We

observe that traders have the highest PP activation during 15 to 25 minutes after the transaction, as well as a local peak 5 minutes before the transaction.

https://doi.org/10.1371/journal.pone.0269752.g002
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from this data using appropriate statistical techniques. For example, by utilizing the time series

properties of PP activation, we overcome the challenge of performing causal inferences with

observational data and demonstrate the causal relationship between certain market indices

and traders’ PP activation. The novel use of Mahalanobis distance to capture the aggregate PP

activation from individual physiological signals may be widely applied in many other contexts

in this field.

Our analysis has several limitations to be addressed in future works. First, while we

observed the presence of affect in financial risk processing, our analysis does not distinguish

between positive and negative affects or investigate whether affect constitutes a beneficial or

adverse driver of the traders’ financial performance. Previous studies revealed that positive

affect leads to improved decision making [41] while negative affect such as fear and anger dis-

torts the perception of risk [42] and causes myopic decisions [43]. During individual trader

meetings, 12 of the 14 traders pointed out that they typically experienced high levels of activa-

tion when their real-time trading performance (measured by PnL) exhibited losses or fluctua-

tions. Future study may analyze the relation between traders’ PnL performance and their PP

activation under various market conditions using appropriate statistical or machine learning

techniques [44]. Using such findings, one may even quantify the impact of affect on the trad-

er’s PnL and prescribe strategies for traders to actively manage their affect and improve their

trading performance.

In addition, while the field experiment design allows us to faithfully measure the physiologi-

cal and affective state of professional traders in their natural working environment, it also pre-

vents us from observing and controlling all the factors which influence the trader’s affect. As a

result, our analysis does not make the important distinction between integral emotion (the

emotion induced by financial risk processing which is our main interest) and incidental emo-

tion (the emotion carried over from non-trading situations such as performing managerial

tasks or participating in work meetings) [39]. This limits the interpretation of our findings

since previous studies showed that incidental emotions affect risk perception [45] and induce

bias on the financial decisions [46]. Future studies may improve the experimental design by

asking participants to wear the measurement device only during trading activities or report

the time periods when they are mainly occupied with non-trading activities. While this

improves the statistical inference, researchers must also ensure that participants adhere to the

experiment protocols.

Finally, from an evolutionary biology perspective, professional traders must adapt to their

highly competitive, dynamic and uncertain working environment where significant portions

of their compensation depend on their PnL. It is natural to hypothesize that the biological and

psychological mechanisms of financial risk processing are markedly different between profes-

sional traders and the rest of the population [47]. Another interesting extension of our work is

to conduct a similar experiment with a control group of subjects with little or no trading expe-

rience. In this way, one can determine the unique characteristics of professional traders’ cogni-

tive and emotional faculties which enable them to thrive in the highly dynamic and uncertain

working environment.

Conclusion

We conducted a large field experiment and measured the real-time physiological signals of 55

professional traders during their normal trading activities over a five-day period. Using a

novel metric of PP activation based on the Mahalanobis distance, we found large variations in

PP activation across traders. We showed that the PP activation is correlated with and influ-

enced by multiple factors, such as market fluctuations, financial transactions, as well as trader’s
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experience and types of financial products traded. Our analysis confirms the prominent role of

affect in financial risk processing for professional traders. Future studies may analyze the

impact of traders’ affect on their trading performance and the difference in affect between pro-

fessional traders and subjects with no trading experience when making risky decisions under

uncertainty.
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