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Abstract: Optical modulators were, are, and will continue to be the underpinning devices for optical
transceivers at all levels of the optical networks. Recently, heterogeneously integrated silicon and
lithium niobate (Si/LN) optical modulators have demonstrated attractive overall performance in
terms of optical loss, drive voltage, and modulation bandwidth. However, due to the moderate
Pockels coefficient of lithium niobate, the device length of the Si/LN modulator is still relatively
long for low-drive-voltage operation. Here, we report a folded Si/LN Mach–Zehnder modulator
consisting of meandering optical waveguides and meandering microwave transmission lines, whose
device length is approximately two-fifths of the unfolded counterpart while maintaining the overall
performance. The present devices feature a low half-wave voltage of 1.24 V, support data rates up to
128 gigabits per second, and show a device length of less than 9 mm.

Keywords: integrated photonics; electro-optical modulator; thin-film lithium niobate; optical com-
munication

1. Introduction

By harnessing the mature CMOS foundries, silicon photonics based on silicon-on-
insulator (SOI) platforms promises the low cost and high volume production for photonic
integrated circuits (PICs) [1,2]. This makes it a leading technology for future optical
transceivers in both short-reach and long-haul optical communication links, in which
high-speed, low-drive-voltage, and low-loss modulators are crucial components [3,4].
Conventional silicon optical modulators rely mainly on the free-carrier effect in silicon
p–n junctions. Unfortunately, the free-carrier effect has intrinsic limitations in modulation
bandwidth, optical loss and nonlinear response [5–9]. Indeed, the current performance
metrics of the silicon optical modulator are more or less close to its physical limits, but
future applications require even higher performance due to the insatiable demands of
ever-increasing data capacity.

Tremendous efforts have been made toward heterogeneously integrating materials with
strong electro-optic effects onto the silicon photonics platform, including graphene [10],
electro-optic (EO) polymers [11], indium phosphide (InP) [12], and barium titanate (BTO) [13].
In addition to these materials, lithium niobate (LN), the most successful material for EO
modulation [14–16], has also been integrated with silicon photonic circuits by using die-
to-wafer bonding technique [17–20]. To date, the heterogeneous LN/SOI Mach–Zehnder
modulators (MZMs) have exhibit very appealing overall performance in terms of half-wave
voltage (Vπ), modulation bandwidth, and optical loss. However, the length of the Si/LN
MZM is relatively long for low-drive-voltage operation, due to the moderate modulation
efficiency (VπL). The “holy grail” of the optical modulator research is a fast and low-
loss device with a Vπ of about 1 V, which would make it possible to drive the device
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directly by CMOS electronic circuits and would significantly reduce the cost and power
consumption of optical transceivers. For Si/LN MZM, the modulation efficiency is about
2–3 V·cm. Therefore, the device length needs to be 20 mm or more to obtain a Vπ of about
1 V. Such a slender structure brings inconvenience to integration with other devices to
form sophisticated photonic integrated circuits, and it is difficult to adapt to a compact
transceiver package, such as QSFP-DD (quad small form factor pluggable double density).

Here, we report a folded Si/LN traveling wave MZM, in which the optical arms of
MZM and traveling wave electrode (TWE) each undergo two 180-degree U-turns, thereby
reducing the length of the phase modulation region by nearly 60%. Moreover, by matching
the time delays of the optical and microwave U-turns, a perfect velocity match between the
optical wave and the modulating microwave can be achieved over the entire modulation
section, leading to a large modulation bandwidth. For a folded Si/LN MZM with device
length of less than 9 mm, we measure a Vπ as low as 1.24 V. Such a device can be driven
directly by low-cost and energy-efficient CMOS electronic circuits. In addition, the present
device shows a low on-chip insertion loss of <3 dB and large extinction ratio of >35 dB.
On–off keying (OOK) modulation up to 100 Gbit/s and PAM-4 modulation up to 128
Gbit/s are successfully demonstrated.

2. Materials and Methods

Figure 1a shows the schematics of the present folded Si/LN MZM. The device consists
of an SOI substrate (220 nm silicon, 3 µm buried oxide layer) with a 600 nm thick layer
of X-cut LN membranes on top fabricated based on benzocyclobuten (BCB) adhesive die-
to-wafer bonding technology. The top layer is an array of LN waveguides for pure phase
modulation (through the Pockels effect). The bottom silicon photonic waveguide supports
all the other passive functions, consisting of grating couplers for off-chip coupling, 3 dB
multimode interference (MMI) couplers that split and combine the optical power, as well
as bent and cross waveguides for folding the optical structure. Optical wave couples up
and down between the two layers via vertical adiabatic couplers (VACs), formed by silicon
inverse tapers and overlapping LN waveguides.

The meandering arms of the MZM consist of three parallel straight phase modulation
sections interconnected by two optical and microwave U-turns. The straight phase modu-
lation section is composed of a pair of LN waveguides running through the gaps of the
ground–signal–ground (GSG) TWE (Figure 1b), which operates in a single-drive push–pull
configuration. As a result, the applied microwave fields induce a positive phase shift in
one LN waveguide and a negative phase shift in the other, leading to nearly chirp-free
modulation. The optical waves are coupled from one phase modulation section to another,
by passing successively through a pair of VACs, a pair of mutually crossed silicon U-turn
waveguides, and another pair of VACs. Here, the two silicon U-turn waveguides were
deliberately designed to be mutually crossed. This is because the direction of the electric
field is flipped after folding the TWE. To avoid the phase difference in the LN arms being
cancelled out before and after the U-turn, the silicon waveguides need to be crossed to
ensure that phase differences continue to accumulate. All silicon U-turn waveguides are
located at the bottom of Au electrodes, and the interlayers consist of BCB (300 nm) and LN
(600 nm), which can promise a negligible absorption loss of silicon waveguide.
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Figure 1. (a) Schematic of the folded Si/LN MZM. (b) Cross-sectional view of the phase shifter. (c) Scanning electron
microscopy (SEM) image of the cross-section of the phase modulation region. (d) SEM image of the Si U-turn waveguides
and crossing. (e) Microwave time delay as a function of the length of delay line (LD). (f) Optical image of the 12 mm folded
and unfolded MZMs, the actual device lengths including coupling regions (≈200 µm per side) are 5.6 mm and 13.4 mm,
respectively.

We elaborate the design of the U-turns in both optical waveguides and TWE, which
are the most critical part of the device and have to be carefully designed in order to provide
velocity matching and to minimize extra microwave and optical losses. The detailed
designs of the other parts, including a straight LN waveguide, straight TWE, 3dB MMI,
and VACs, can be found in Ref [19]. As shown in Figure 1d, the silicon U-turn optical
waveguides consist of three parts. The first part is a 135-degree Euler bend with a minimum
curvature radius of 28 µm. The second part is a waveguide cross [21] with a low insertion
loss of <0.15 dB and low crosstalk of < −40 dB (Supplementary Materials, Section S1). The
third part is a 45-degree Euler bend with a minimum curvature radius of 15 µm. Due to
the high index contrast of the silicon waveguide, the minimum curvature radius for Euler
bends can be less than 5 µm. The reason we choose moderate radius values here is to
ensure that the middle ground is wide enough to avoid unwanted microwave crosstalk
(Supplementary Materials, Section S2). In this work, the widths of the signal and ground
electrodes are set to 17 µm and 120 µm, while the thickness and gap are set to 800 nm and
7.3 µm, respectively, to achieve good impedance and optical-microwave velocity matches
in the modulation region. The TWE U-turn consists of two microwave delay lines and a
180-degree circular bent TWE, as shown in Figure 1a. The radius of the circular bent TWE is
75.8 µm measured at the center of the S electrode. The simulation results indicate that such
a bent electrode features a low microwave loss and shows a low microwave reflection at the
interface between the bent and straight electrodes (Supplementary Materials, Section S2).
The microwave delay line is another ingredient needed to be carefully designed for large
modulation bandwidth. Due to the large group index of the silicon waveguide (≈4.0), the
optical waves slow down considerably after coupling to the silicon optical U-turn. The
velocity mismatch between optical and microwave waves in their respective U-turns can be
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compensated by choosing a proper length for the microwave delay line. We first calculated
the time delay of the optical wave including silicon optical U-turn, VAC, and the mismatch
in modulation region, with obtained result of ∆τ = 9.15 ps. Figure 1e shows the calculated
time delay for microwave delay lines at different lengths (the details of calculation can
be found in Supplementary Materials, Section S3). The simulation result indicate that the
time delay of optical and microwave U-turns can be matched for a microwave delay line of
LD = 313 µm, corresponding to the actual length of 626 µm.

The fabrication process started with patterning silicon waveguides, including 3 dB
MMI couplers, inverse tapers for VACs, waveguide crossing, Euler bent waveguides, and
grating couplers, using electron beam lithography (EBL) and inductively coupled plasma
reactive ion etching (ICP RIE). Next, an X-cut LNOI (from NANOLN) was bonded on
top of the fabricated silicon circuits by using BCB die-to-wafer bonding technology. After
removing the substrate and the buried oxide layer of the LNOI die, the patterns of LN
waveguides were defined by EBL formed by the dry etching process in an Ar+ plasma.
Finally, the gold TWEs were fabricated by optical lithography, electron beam evaporation,
and the lift-off process.

3. Results and Discussions

To validate the folded MZM design, we fabricated and measured folded devices
with a total modulation length of 12 mm (Figure 1f). For comparison, the non-folded
counterpart was also fabricated on the same wafer. Due to the two U-turns, the length
of the folded device is reduced to approximately two-fifths that of the non-folded device,
which is about 5.6 mm. We first employed the 100 kHz triangular voltage sweep method
to characterize the Vπ for both devices. The Vπ values for the folded and non-folded
devices are 2.16 V and 2.25 V, corresponding to voltage–length products of 2.6 V·cm and
2.7 V·cm, respectively. The slightly lower Vπ value for the folded device is because of the
additional phase modulation in VACs at both ends of the optical U-turn waveguides. The
inset of Figure 2a shows the transmission of the folded device, demonstrating a measured
extinction ratio of >35 dB. Next, we characterized the EO bandwidth (S21 parameter) for
three types of devices: (1) non-folded device, (2) folded device with velocity-matched
microwave delay lines (LD = 313 µm), and (3) folded device without microwave delay
lines (LD = 0), as depicted in Figure 2b. The measured modulation bandwidth of the
folded and non-folded MZM is 50 GHz and 60 GHz (with a reference frequency of 2 GHz),
respectively. The bandwidth of the folded device with velocity-matched microwave delay
lines is slightly smaller than the non-folded device because the TWE in the folded device
possesses extra microwave loss due to the additional U-turns. In contrast, bandwidth of
the folded device without microwave delay lines is significantly smaller than the other
cases. These results show that compensating for the optical wave and microwave time
delay is essential to achieve large bandwidths in folded MZMs.

To further reduce the Vπ, we fabricated folded devices with a total modulation length
of 21 mm, whose actual device length is 8.7 mm. As shown in Figure 2c,d, the measured
Vπ and bandwidth for such a device is 1.24 V and 40 GHz, respectively, which are very
well facilitated for high-speed and low-drive-voltage operation. The RF return losses
(S11 parameter) of the devices are less than—15 dB at up to 67 GHz, indicating that the
microwave U-turns do not introduce significant impedance discontinuities in TWE. The
device also features a low on-chip loss of 2.9 dB.
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Figure 2. (a) Normalized optical transmissions of 12 mm folded and non-folded MZMs as a function of the applied voltage,
showing Vπ of 2.16 V and 2.25 V, respectively. The inset shows the measured normalized transmission on a logarithmic
scale. (b) Measured EO S21 responses of 12 mm non-folded MZM, 12 mm folded MZM, and 12 mm folded MZM without
microwave delay line. (c) Normalized optical transmission of 21 mm folded MZM as a function of the applied voltage,
showing Vπ of 1.24 V. (d) Measured EO S21 and RF S11 response of 21 mm folded MZM.

The high-speed modulation ability of the modulator has also been characterized. First,
we use the 12 mm device to demonstrate high-speed data modulation. Figure 3a,b show
the optical eye diagrams for OOK modulation at 80 Gb s−1 and 100 Gb s−1. The measured
extinction ratios are 7.8 and 5.8 dB, respectively. We also performed the PAM-4 modulation
experiments at 56 Gbaud (112 Gb s−1) and 64 Gbaud (128 Gb s−1); the results are shown in
Figure 3c,d. Figure 3e shows the back to back (B2B) bit-error rate (BER) versus the received
optical power for 112 Gb s−1 and 128 Gb s−1 PAM-4 signal transmission. The details of the
B2B BER measurements can be found in our previous work [20]. In addition to the data
rate difference, the 1.5 dB power penalty between the 56 Gbaud and 64 Gbaud is partly
due to the bandwidth constraint of the oscilloscope. Furthermore, we employ a CMOS
digital-to-analog converter (DAC) circuit to generate 32 Gbps electrical OOK signals with
peak-to-peak voltage of 350 mV, which was used to directly drive the fabricated low-Vπ

modulator with the total modulation length of 21 mm. Figure 3f shows the optical eye
diagram with measured extinction ratio of 2.7 dB. We also performed higher data rate
experiments up to 112 Gb s−1 with an RF amplifier on this device; the results can be found
in the Supplementary Materials, Section S4.
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Figure 3. High-speed transmission experiments. (a,b) Measured optical eye diagrams for OOK
modulation at date rates of 84 Gb s−1 and 100 Gb s−1. (c,d) Measured optical eye diagrams for
PAM-4 modulation at data rates of 56 Gbaud (112 Gb s−1) and 64 Gbaud (128 Gb s−1). (e) Measured
back-to-back BER curves versus the received optical power for 56 Gbaud (112 Gb s−1) and 64 Gbaud
(128 Gb s−1) PAM-4 signal. (f) Measured optical eye diagram for OOK signal at date rate of 32 Gb
s−1 without any RF amplifier.

4. Conclusions

In this paper, we have demonstrated folded MZMs based on a heterogeneous inte-
grated silicon and lithium niobate platform using meandering optical waveguides and
TWEs. The devices show reduced device length while maintaining the overall performance
(half-wave voltage and bandwidth) of the non-folded counterparts. Since both of the optical
waveguides and TWEs undergo two U-turns, the device length is reduced to approximately
two-fifths of the original value. A similar folded thin-film lithium niobate modulator had
been demonstrated based on the poling process [22]. By employing more U-turns, the
length can be future compressed at the cost of increase in width. This architecture provides
great design flexibility especially for building sophisticated Si/LN photonic integration
circuits, because most silicon photonic devices are very compact in footprint. Moreover,
the low-drive-voltage operation demonstrated in the devices could open opportunities not
only for future compact and low power consumption optical transceivers but also for the
direct integration of CMOS integrated circuits with high-speed modulators and optical
switches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12070823/s1. Section S1: Characteristic of Si waveguide crossing, Section S2: Design of
microwave U-turns, Section S3: Design of microwave delay line, Section S4: High-speed experiments
of 21 mm folded MZM.
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