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A B S T R A C T   

Background: Semantic segmentation is crucial in medical image diagnosis. Traditional deep 
convolutional neural networks excel in image classification and object detection but fall short in 
segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions 
and invasive cancer poses a primary challenge in segmentation model development. 
Methods: Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 
339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive 
cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for 
learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance 
of the model in the prediction of cervical high-level lesions and cancer. 
Results: Experiments showed that our segmentation model had better diagnosis efficiency than 
colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, 
Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively. 
Conclution: The DeepLabv3+ model had good performance in the segmentation of cervical lesions 
in colposcopic post-acetic-acid images and can better assist colposcopists in improving the 
diagnosis.  
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1. Introduction 

Cervical cancer, the most common gynecological malignant tumor, exhibits a well-defined and gradual precancerous progression 
from human papillomavirus (HPV) infection status, low-grade squamous intraepithelial lesion (LSIL) to high-grade squamous intra
epithelial lesion (HSIL) [1]. Through decades of progression and early cervical cancer screening, it has become known as one of the 
most preventable and treatable cancers [2]. The final critical step in the screening is the colposcopic biopsy, which involves optical 
imaging to magnify the lesions and tests such as acetic-acid and iodine staining to highlight them. Biopsy, being the gold standard, 
confirms suspicious HSIL or microscopic invasive cancer and determines subsequent therapeutic options [3]. However, the accuracy of 
colposcopic diagnosis relies on colposcopists’ subjective assessment and requires years of practical experience. Identifying minor or 
multifocal lesions can be challenging, especially in remote areas where experienced colposcopists are scarce [4]. Consequently, 
numerous researchers are attempting to use artificial intelligence (AI) to analyze typical colposcopic pictures of different cervical 
disorders to achieve automated diagnoses. 

In recent years, the significant advancements in Deep Convolutional Neural Network (DCNN) have propelled artificial intelligence 
colposcopy diagnosis [4]. Popular DCNNs such as Visual Geometry Group Net (VGGNet) [5], Residual Network (ResNet) [6], 
InceptionNet [7] have initially been tested for image classification and object detection purposes [8], for example, distinguishing LSIL 
and HSIL or predicting real-time binary results of cervical images as normal or abnormal [9,10]. However, these models lack the ability 
to predict specific biopsy areas due to a lack of detailed spatial information [4]. Semantic segmentation models are the improved 
version of previous DCNNs with fully connected layers replaced by convolution layers [10]. They assign semantic labels to each pixel in 
an image, capturing contextual information at multiple scales and accurately predicting the biopsy sites [11]. Several challenges exist 
in colposcopic images segmentation: low contrast, nonuniformity, and unique characteristics in colposcopic images; complex and 
variable shapes of the cervix, sometimes obscured by blood and leucorrhea; and inconspicuous early cervical lesions [12]. Therefore, 
researchers have proposed various modified models to get more thorough segmentation results. 

The model adopted in this paper, DeepLabv3+, is the fourth generation of the DeepLab series proposed by Google [13–15]. 
DeepLabv3+ incorporates a streamlined and efficient Decoder module to achieve precise boundaries and faster computation [16]. 
Additionally, it replaces the original ResNet-101 backbone with Xception, resulting in a reduction of parameters by one-third [17]. 
Given these performance enhancements, it can significantly aid colposcopists in accurately delineating biopsy regions through se
mantic segmentation of colposcopic images, thereby enhancing the detection rate of HSIL and invasive cancer. 

2. Results 

2.1. Evaluation value 

The pretrained model using only saline images yielded unsatisfactory results. The low specificity (56.60 %) and mean intersection 
over union (mIoU) (52.22 %) indicated limited overlap between the ground truth and the predicted segmentation. To avoid generating 
excessive errors in distinguishing between lesions and normal metaplastic squamous epithelium, we exclusively utilized post-acetic 
acid images to feed the model in the formal training and validation, given its higher specificity (90.10 %) and mIoU (80.27 %). 
Table 1 presents the distribution of Accuracy, Precision, Specificity, and mIoU for both saline images and post-acetic-acid images in the 
DeepLabv3+ model. The specific calculation methods for Accuracy, Precision, Specificity, and mIoU are provided in the numbered 
equations (1)–(4) in the ’Evaluation criteria’ section of the Materials and Methods. 

2.2. The best epoch 

All networks underwent training for 50 epochs to enhance the model’s ability to generalize. Fig. 1A&B depicted the training and 
validation loss and score curve of DeepLabv3+ as epochs progressed. Around the 30th epoch, the loss function curves for the training 
and verification sets began to converge. The calculation methods of loss and score are shown in (5) and (8). In the 35th epoch, the 
training set achieved a maximum score of 0.842, while the validation set reached its highest score of 0.8 in the 42nd epoch. As a result, 
the model selected as the best one was the 42nd epoch model, with the highest score in the validation set, and it underwent evaluation 

Table 1 
Distribution of Accuracy, Precision, Specificity and mIoU of saline images and post-acetic-acid images in DeepLabv3+.   

epochs Accuracy(%) Precision(%) Specificity(%) mIoU(%) 

Saline Images 41st 90.75 72.71 68.70 60.13 
42nd 91.35 81.87 56.60 52.22 
43rd 91.14 76.02 58.9 53.99 
44th 91.24 76.37 60.00 54.96 
45th 91.23 75.76 61.00 55.71 

Post-acetic-acid 
Images 

41st 91.40 83.40 90.50 76.86 
42nd 93.29 87.20 90.10 80.27 
43rd 92.58 85.75 89.80 78.78 
44th 92.93 86.35 90.20 79.59 
45th 92.85 86.14 90.30 79.46  
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on the test set, yielding a score of 0.8. 
At the 42nd epoch, the model attained the highest levels of Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and 

mIoU of 80.27 %, respectively, as shown in Table 1. 

2.3. Feature visualization 

The objective of the proposed approach was to generate accurate heat maps for lesion segmentation and distinguish between 
negative and positive cervigrams. Fig. 2 displayed four cervigrams along with the corresponding heat maps generated by DeepLabv3+
and the ground truth for the most severe lesions in these images. The colors in the heat maps represent the probability of the cervical 
skin belonging to the lesion. Red areas indicated a high probability, while blue areas indicated a low probability. The heat maps 
provide clear evidence that the regions identified as the most probable biopsy locations in the ground truth exhibit a high degree of 
alignment with the areas of focus detected by the DeepLabv3+ model. The observed alignment between the ground truth and the 
model’s attention demonstrates the accurate concentration of the DeepLabv3+ model on relevant regions. 

2.4. Comparison with experts 

Table 2 demonstrated that DeepLabv3+ outperformed colposcopy experts with a significantly higher Accuracy of 93.29 % 
compared to the experts’ Accuracy of 78.02 %. Additionally, the model achieved a remarkable Sensitivity of 97.92 % while the experts’ 
Sensitivity was 73.39 %. However, it should be noted that the model occasionally misclassified LSIL or severe inflammation regions as 
HSIL/Cancer, leading to a higher false positive rate. 

3. Discussion 

In clinical experience, HSIL is the dividing point for clinical treatment. The detection rate of HSIL must be greater than 65 % [2] in 
order for colposcopy to meet the quality control requirement. Our artificial intelligence colposcopic diagnostic model achieved an 
accuracy rate of 93.29 %, enabling more precise localization of biopsy sites and benefiting colposcopists in detecting HSIL or invasive 
cancer, especially lesions in overlooked or challenging areas. Also, by effectively discerning non-lesion areas, our machine facilitates 
the reduction of minor yet "troublesome" side effects associated with excessive cervical treatment, including cervical adhesion and 
recurring cervicitis. 

When comparing colposcopic learning models published in the past two years, it becomes apparent that recent model updates have 
resulted in significant improvements in accuracy (Table 3). Early models such as VGGNet [5], ResNet [6], InceptionNet [7], and 
EfficientNet [18] were traditional DCNN encoders, primarily designed for object classification. The semantic segmentation network 
consists not only of a front-end DCNN encoder but also a back-end decoder [10], and the decoder facilitates the reconstruction of 
high-resolution output, incorporates skip connections, and consequently helps the network gain the ability to capture both local and 
global context [16]. Its superiority over classification models lies in its ability to distinguish between normal and pathological regions 
within an image by learning from each individual pixel. With the advantage of the segmentation model, we were spared from col
lecting images from normal population, significantly reducing the workload without compromising the accuracy of the machine 
learning. 

The published segmentation model achieved accuracy of 87.7–93.04 % and sensitivity of 78.02–95.60 %, surpassing colposcopists’ 

Fig. 1. Training and validation loss and score curve in DeepLabv3+. 
(Fig. 1A. The loss curve of training and validation; Fig. 1B. The score curve of training and validation.). 
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global average accuracy (75.9–81.3 %) and sensitivity (45–85 %) [25,27–31]. Due to differences in the training and experience levels 
of colposcopists, the utilization of the segmentation model can effectively enhance their diagnostic efficiency. Wu’s prospective study 
[32] further highlighted that AI colposcopy consistently maintained stable sensitivity and significantly improved that of young col
poscopists. Our model significantly improved accuracy (93.29 %) and sensitivity (97.92 %) compared to experts, with slightly lower 
specificity. Similarly, Wei’s study [29] reported enhanced sensitivity with a small decrease in specificity compared to experts. These 
phenomena were explained in studies by Yu et al. [28] and Li et al. [19], where they explained that LSILs’ misdiagnosis risk arises from 
losing lesion edges, heavy colors, and subtle texture features. 

Fig. 2. Typical cervigrams and their commensurable heat maps as well as the most serious lesion ground truths.. 
(Cervigrams showed the post-acetic-acid images of typical HSIL/Cancer; Heat maps showed the prediction of lesions by DeepLabv3+; Ground truths 
showed the most serious lesions and most likely biopsy areas. The deeper red color in the heat maps indicated a higher likelihood of being 
recognized as HSIL/Cancer by the machine and was highlighted in red in the Ground truths.) 

Table 2 
Comparison in Sensitivity (equal the values of Recall), Spesiticy and Accuracy of Experts and DeepLabv3+.   

Sensitivity(%) Specificity (%) Accuracy (%) 

Expert1 70.85 95.12 74.62 
Expert2 72.39 95.00 79.69 
Expert3 76.92 93.18 79.76 
Average of experts 73.39 94.43 78.02 
Deeplabv3+ 97.92 90.1 93.29  

Table 3 
Comparison of previously published models based on post-acetic-acid images.  

Preference Number of Subject Algorithm Task Accuracy 
(%) 

2020, Li [19] 2049 CIN2/3 and 510 cancer cases VGG-16 [5] classification 75.31 
2021, Liu [20] 4458 HSIL and 469 cancer cases ResNet50 [6] classification 79.7 
2020, Cho [21] 511 HSIL and 43 cancer cases InceptioNet-v2 [17] classification 63.2 
2022, Fang [22] no specific sample sizes mentioned ShuffleNet [22] classification 81.38 
2023, Chen [23] 612 HSIL, 1101 LSIL , and 4289 normal cases EfficientNet-B018 and GRU-based [23] classification 91.18 
2021, Liu [24] 70 CIN3 cases DeepLab V3+16 with ResNet-101 [6] segmentation 87.7 
2023, Shinohara [25] no specific sample sizes mentioned U-net [26] segmentation 89.4 
2022, Fan [27] 3093 normal, 

2794 LSIL, and 1219 HSIL+ cases 
CMF-CNN(EffificientNet-B3 [18]+ASPP [15]) segmentation 92.70 

2022, Yu [28] 1668 cancer cases R–CNN + CLS-Net(EfficientNet-B3 [18]+ASPP [15]) segmentation 93.04 

LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; CIN, cervical intraepithelial neoplasm. 
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DeepLabv3+ selected Xception as its encoder, which is an improvement over InceptionNet, adopts depthwise separable convo
lution to decouple channel and spatial dimensions, simplifying the definition and modification of the architecture [17]. Downscaling 
parameters with 1x1 convolution reduces dimensionality, accelerates convergence, improves accuracy, while residual connections 
enhance DeepLabv3+’s performance [16]. Our colposcopic diagnosis accuracy using Xception was significantly higher than that 
achieved using ResNet, although both ours and Liu’s [24] models were based on the DeepLabv3+ architecture. U-net [26], another 
segmentation model, also incorporates skip connections analogous to the residual connections in DeepLabv3+. However, DeepLabv3+
surpasses U-net by incorporating an Atrous Spatial Pyramid Pooling (ASPP) module with various atrous rates to capture multi-scale 
information [15]. 

All learning machines struggle with a few common issues. First, lesions in the type 2 and type 3 transformation zones are deeply 
embedded in the cervical canal. Machines cannot aid colposcopists in identifying these lesions unless they actively expose, inspect, and 
sample the inside of the cervical canal. Second, Models trained with data from a single hospital or colposcope may lack stability and 
suitability for complex data inputs [4]. In consequence, AI serves as a supportive tool for colposcopists, enhancing accuracy and ef
ficiency without fostering complacency. 

4. Conclusion 

Colposcopy is crucial in guiding biopsies to the most suspect cervical region. With the help of our segmentation model, colposcopy 
can be more accurate in diagnosing HSIL or microinvasive cervical cancer. 

5. Materials and Methods 

5.1. Dataset 

From November 2018 to September 2022, a total of 1042 women who had positive screening tests were assessed for eligibility at 
the Dongguan Maternal and Child Health Care Hospital’s Cervical Disease Center. We selected cases that had essential information, 
including patient age, type of cervical transformation zone (TZ), clear colposcopic images (unobstructed view of the cervix, without a 
history of hysterectomy or cervical cancer surgery, and without significant bloodstains or leucorrhea), HPV detection results, cervical 
cytology results, biopsy pathology results. Table 4 showed the distribution of basic information for the patients. After excluding cases 
with incomplete data, there were 777 cases and 1554 colposcopic images (including saline images and post-acetic-acid images, Fig. 3 
displayed the representative images). Iodine-stained images were excluded due to their inadequate resolution of epithelium and blood 
vessels. All patients signed informed consents for the use of their colposcopic images for academic research and publication. This 
retrospective study adhered to ethical standards for human trials and received approval from the Ethics Review Committee of 
Dongguan Maternal and Child Health Care Hospital. 

5.2. Case prepared 

Histopathology served as the gold standard for evaluating the diagnostic performance of colposcopy in detecting high-grade 
cervical abnormalities. Following the 2021 edition of The Lower Anogenital Squamous Terminology (LAST) [33], the included his
topathological diagnoses were categorized as LSIL, HSIL and cervical cancer (including microscopic invasive cancer and invasive 
cancer). Among the cases, there were 125 LSIL cases, 339 HSIL cases and 313 cases of cancer. The colposcopic images from eligible 
cases were resized to 512 × 512 pixels. 

Three experienced colposcopists from the Dongguan Maternal and Child Health Care Hospital’s Cervical Disease Center were 
convened to review colposcopic images and mark the target areas. Each colposcopist had more than 5 years of experience in using 
colposcopes for diagnostic assessment of the uterine cervix. Utilizing the LabelMe software (https://github.com/wkentaro/labelme), 

Table 4 
The patients’ Demographics and clinical information.  

Pathology LSIL(n = 125) HSIL(n = 339) Invasive cancer(n = 313) 

Age(y, mean) 34.68 36.69 40.52 
TZ(%) 
I 44.36 51.20 5.62 
II 21.05 20.00 0.00 
III 34.59 28.80 84.38 
HPV(%) 
positive 76.15 96.88 93.29 
nagative 23.85 3.12 6.71 
TCT(%) 
≥LSIL 80.36 35.91 33.57 
≥HSIL 19.64 64.09 66.43 

LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; Invasive cancer, including microinvasive or 
invasive cervical cancer; TZ, type of cervical transformation zone; HPV, human papillomavirus; TCT, Thinprep cytologic test. 
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they identified and labeled the biopsy sites with the highest probability of being diagnosed as HSIL or cancer, corresponding to the 
colposcopy diagnoses based on histopathological findings. Each labeled site was assigned a unique diagnose to facilitate further 
analysis and comparison. Fig. 4A&B respectively showed schematics of the annotation processes for HSIL and cancer cases. The final 
labels were verified by two chief colposcopists with over 10 years of experience. Subsequently, the labeled data were divided into the 
training set, validation set and test set at ratio = 9:1:1. 

6. Cervical lesion segmentation network 

6.1. Experimental setup 

The network was implemented using Python 3.8 and utilized the following libraries: PyTorch v1.10.1+cu113, torchvision 
v0.11.2+cu113, Matplotlib v3.6.1, NumPy v1.23.4, efficientnet-pytorch, and Cuda v11.3. The training was conducted on a system 
equipped with an NVIDIA GeForce RTX 3060 graphics card and 12-GB memory. All methods were measured on the same platform. The 
global optimizer employed was adaptive moment estimation (ADAM). The initial learning rate was set to 0.0005 and gradually 
reduced to 5e-6 after 50 epochs. The weight decay was set to 0 to avoid potential issues caused by ADAM’s weight decay mechanism. 
The Xception module was pre-trained using VOC2012. All networks underwent training for 50 epochs and a batch size of 8. 

6.2. Evaluation criteria 

The four common criteria, namely, Accuracy, Precision, Specificity and mIoU were employed to evaluate the performance of the 
model [23]: 

Accuracy=
TP + TN

TP + FP + TN + FN
(1)  

Precision=
TP

TP + FP
(2) 

Fig. 3. Representative post-acetic-acid images of LSIL, HSIL and Cancer cases. (LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade 
squamous intraepithelial lesion; Cancer, including microinvasive or invasive cervical cancer. The figure displayed the magnification factor (10×) 
and the duration of the procedure.). 

Fig. 4. Schematic of the annotation. 
(Fig. 4A. The typical JSON file in HSIL case. The green dotted line depicted the HSIL areas; Fig. 4B. The typical JSON file in cancer case. The red 
dotted line depicted the cancer areas.). 
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Fig. 5. Framework of the Deeplabv3+ model.  
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Specificity=
TN

TN + FP
(3)  

mIoU =
1

k + 1
∑k

i=0

TP
TP + FP + FN

(4) 

TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False Negative, respectively. In our study, regions 
within an image that were identified as high grade squamous intraepithelial lesion or cervical cancer were designated as positive, while 
the remaining areas were categorized as negative. 

The loss function of the train set and validation set was Dice Loss [23]. 

Dice Loss= 1 − Dice (5)  

Dice=
2 × TP

FP + FN + 2 × TP
(6)  

Recall=
TP

TP + FN
(7)  

Score=
Dice + Recall

2
(8)  

6.3. Framework of the Deeplabv3+ model 

The DeepLabv3+ model utilized a dilated Fully Convolutional Network (FCN) architecture and employed an encoder-decoder 
structure. It incorporated depthwise separable convolutions and atrous convolutions to extract features at various resolutions. The 
overall framework was shown in Fig. 5. The encoder backbone of the model was Xception, which captured rich contextual features of 
cervical lesions. From the Xception model, the second residual module outputted low-level features with higher resolution but lower 
semantic information. Meanwhile, the Exit Flow of Xception provided high-level features with more semantic information but fewer 
details, which were then fed into the ASPP module to enhance spatial information. In the Decoder, the two types of extracted features 
were concatenated to refine the segmentation. More detailed descriptions of the Xception module, ASPP module, and Decoder are 
provided below. 

6.4. Xception 

Xception is a convolutional neural network architecture that relies entirely on depthwise separable convolutional layers. It consists 
of three main parts: Entry flow, Middle flow, and Exit flow. The network comprises 36 convolutional layers organized into 14 modules, 
with linear residual connections surrounding modules except the first and last ones, forming the foundation for feature extraction. 

In the Entry flow, the first module examined each input channel using two regular 3 × 3 convolutions. Subsequently, in each of the 
following 12 residual modules, three 3 × 3 depthwise convolutions and three 1 × 1 pointwise convolutions, each followed by Batch 
Normalization (BN) and ReLU activation, are applied. This helped prevent gradient vanishing and improved convergence. The Middle 
flow consisted of these residual modules repeated 16 times. Lastly, the Exit flow’s last modules consist of three 3 × 3 depthwise 
separable convolutions followed by BN and ReLU. 

Xception provided two types of output features. The low-level features, originating from the second residual module, were adjusted 
to 48 channels through a 1 × 1 convolution in the Decoder. The high-level features, derived from the Exit flow, were fed into the ASPP 
network. 

6.5. ASPP 

The Atrous Spatial Pyramid Pooling module in the network probed a convolutional feature layer using filters at multiple sampling 
rates and effective fields-of-view. This allowed the module to capture objects and image context at multiple scales. After obtaining the 
high-level images from Xception, the modified ASPP module was applied to capture multi-scale information by adjusting the dilated 
rates of Atrous Convolution. 

The modified ASPP module consisted of cascaded atrous convolutions. Specifically, it comprised four convolutional blocks: one 1 ×
1 convolution and three 3 × 3 dilution convolutions at different atrous rates, along with global average pooling. The unit rates for the 
three dilation convolutional layers were defined as Multi Grid [15] = (r1, r2, r3). The final atrous rate was calculated as the multi
plication of the unit rate and the corresponding rate. With an output stride of 16 and multigrid = (3, 6, 9), the three convolutions had 
atrous rates = 2 (3, 6, 9) = (6, 12, 18). To maintain a certain number of valid filter weights, the last block of ASPP employed global 
average pooling. The resulting image-level features were then fed into a 1 × 1 convolution and bilinearly upsampled to achieve the 
desired spatial dimension. The output features from all blocks at different scales were concatenated and passed through another 1 × 1 
convolution. By avoiding downsampling, ASPP expanded the field of view and extracted rich semantic information while preserving 
feature resolution. 
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6.6. Decoder 

DeepLabV3+ incorporated a Decoder module in its architecture to combine the low-level features extracted from Xception and the 
high-level features obtained from ASPP. Following the concatenation, a 3 × 3 convolution was applied to refine the combined rep
resentation. Subsequently, two simple bilinear upsamplings were performed, increasing the resolution by a factor of 4. Finally, bilinear 
interpolation was used to generate segmentation predictions that matched the original image’s size. This approach ensured that the 
model produced accurate and detailed segmentation results. 

Contribution to the field statement 

Accurate identification of the appropriate biopsy location is essential for the precise diagnosis of high-level cervical lesions and 
cancer. However, in practical settings, the consistency of identifying these locations through colposcopic images varies, especially for 
colposcopists without comprehensive training. To address this issue and improve the effectiveness of cervical cancer screening in 
remote areas, artificial intelligence can play a vital role This work applied an efficient semantic segmentation model to learn the 
distinctive features of colposcopic pictures and predict regions corresponding to high-grade intraepithelial lesion and invasive cancer. 
In comparison to colposcopic experts, the Accuracy and Sensitivity of our machine were significantly higher; in comparison to other 
published models, the DeepLabv3+ model exhibited superior Accuracy and a more advanced structure. 
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