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The effects of Reynolds and Womersley numbers on the hemodynamics of two simplified intracranial aneurysms (IAs), that is,
sidewall and bifurcation IAs, and a patient-specific IA are investigated using computational fluid dynamics. For this purpose, we
carried out three numerical experiments for each IA with various Reynolds (Re = 145.45 to 378.79) and Womersley (Wo = 7.4
to 9.96) numbers. Although the dominant flow feature, which is the vortex ring formation, is similar for all test cases here, the
propagation of the vortex ring is controlled by both Re and Wo in both simplified IAs (bifurcation and sidewall) and the patient-
specific IA. The location of the vortex ring in all tested IAs is shown to be proportional to Re/Wo2 which is in agreement with
empirical formulations for the location of a vortex ring in a tank. In sidewall IAs, the oscillatory shear index is shown to increase
with Wo and 1/Re because the vortex reached the distal wall later in the cycle (higher resident time). However, this trend was
not observed in the bifurcation IA because the stresses were dominated by particle trapping structures, which were absent at low
Re = 151.51 in contrast to higher Re = 378.79.

1. Introduction

The rupture of intracranial aneurysms (IAs) is highly asso-
ciated with mortality and morbidity [1]. Hemodynamics has
a significant role in the growth and rupture of IAs [2–
4]. Among the hemodynamic factors, vortical structures
determine the complexity and stability of the flow pattern in
an IA dome, which plays an important role in the rupture
of IAs [3, 5–7]. Computational fluid dynamics (CFD) holds
an important position in the investigation of hemodynamic
factors in aneurysms because of its higher resolution near the
walls relative to experimental methods such as laser Doppler
velocimetry, particle image velocimetry, and magnetic reso-
nance imaging, which is required to compute hemodynamic
factors such as shear stress correctly [8, 9]. Many investi-
gations have been carried out on the hemodynamics of IAs
using experimental methods [10–12] and CFD [7, 13, 14].

Reynolds and Womersley numbers (explained in Sec-
tion 3) are the only two nondimensional parameters required
for full dynamic similarity in pulsatile internal flows [15].

Therefore, the investigation of their effects on the hemody-
namics of IAs is strongly required. However, contradictory
conclusions have been made in the literature on this topic. In
fact, Jiang and Strother [16] concluded that increase ofWom-
ersley number can significantly increase the complexity of
the flow pattern and vortex structures in two patient-specific
intracranial aneurysms based on their CFD simulations. In
contrast, Le et al. [17] stated that Womersley number does
not affect the flow feature and structures based on their CFD
simulations of an IA from a rabbit. Furthermore, Gopalakr-
ishnan et al. [18] stated that while Womersley number does
not change the vortex mode, but high Womersley number
is associated with weak vortex rings in their simulation on
abdominal aortic aneurysms. Bouillot et al. [10] concluded
that Re has a negligible effect on the flow structures of an
idealized sidewall intracranial aneurysm for a steady inflow
according to their PIV measurements. A similar conclusion
was made by Le et al. [17] and Cebral et al. [19] based on
their CFD simulations of cerebral aneurysms in rabbits and
humans, respectively. In contrast, Gopalakrishnan et al. [18]
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stated that, by increasing Re, the strength of the main vortex
structure increases.

Previous works [7, 19] have shown the significant effect
of aneurysm geometry on the aneurysm hemodynamics,
which is not investigated further here. Our aim is to compare
the effects of the Reynolds and Womersley numbers on
the hemodynamics of both sidewall and bifurcations IAs by
keeping other parameters, for example, inlet flow waveform
and geometry, constant. Furthermore, their effect on the
hemodynamics is formulated using dimensional analysis and
compared with the literature.

2. Governing Equations and
the Numerical Method

In this section, Einstein’s tensor notation, where repeated
indices imply summation, is used unless otherwise indicated
(𝑘, 𝑑, and 𝑞 = 1, 2, 3). The governing equations are the3𝐷, unsteady incompressible Navier-Stokes equations for a
Newtonian fluid in curvilinear coordinates as follows [20]:

𝜕𝜕𝜉𝑞 (𝑈
𝑞

𝐽 ) = 0,
1𝐽 𝜕𝜕𝑡 (𝑈𝑚) + (𝜉𝑚𝑥𝑞){ 𝜕𝜕𝜉𝑘 1𝐽 (𝑈𝑘𝑢𝑞) + 𝜕𝜕𝜉𝑘 1𝐽 (𝑃𝜉𝑘𝑥𝑞)

− 1
Re

𝜕2𝜕𝜉𝑘𝜕𝜉𝑑 (1𝐽𝑔𝑘𝑑𝑢𝑞)} = 0,
(1)

where 𝑈𝑞, 𝜉𝑚, and 𝑥𝑞 are the contravariant velocity, curvi-
linear coordinate, and Cartesian coordinates components,
respectively. 𝑃 and 𝑡 are the nondimensional pressure and
time, respectively. 𝐽 is the Jacobian of the geometric transfor-
mation, 𝐽 = 𝜕(𝜉1, 𝜉2, 𝜉3)/𝜕(𝑥1, 𝑥2, 𝑥3), and 𝜉𝑘𝑥𝑞 = 𝜕𝜉𝑘/𝜕𝑥𝑞 are
the metrics of the transformation. 𝑢𝑞 is the nondimensional
Cartesian velocity, 𝑔𝑘𝑑 is the contravariant metric tensor,𝑔𝑘𝑑 = 𝜉𝑘𝑥𝑞𝜉𝑑𝑥𝑞 , andRe is the Reynolds number of the flowbased
on characteristic length and velocity scales.

We use curvilinear/immersed boundary (CURVIB) and
overset grid methods, which are extensively described
and validated [20]. A sharp-interface immersed boundary
method is used to handle the 3𝐷, arbitrary complex bound-
aries (IA geometry in this study) inside the flow domain [21].
The nodes that are outside the flow domain are blanked out
and do not affect the solution. These nodes are identified
using an efficient ray-tracing algorithm [22]. The boundary
conditions are reconstructed on the fluid nodes in the
immediate vicinity of the immersed boundary along the
normal direction to the boundary [21]. The method has
been shown to be second-order accurate for a variety of
flows [21, 23]. The overset grid approach is implemented to
reduce wasted nodes in a domain, which are blanked out
by the immersed boundary method [20]. In this approach,
a complex flow domain is divided into several arbitrary
subgrids with overlaps. To solve the governing equations
at each subgrid, boundary conditions at the interfaces are
constructed by interpolation from host subgrid. The details

of the overset-CURVIB method can be found in [20]. The
method has been validated against experimental and bench-
mark solutions [20, 24] and has been applied to a variety of
problems such as cardiovascular flows [17, 25–28], aquatic
swimming [23, 29], and rheology [30]. Furthermore, we have
validated our method for flows inside an immersed body by
comparing our results with themeasurements of the pulsatile
flow through a 90∘ bend in Appendix. As shown in Appendix,
the computational results are in excellent agreement with
our previous simulations using body-fitted grids [20] and the
experimental results [31].

We have assumed rigid walls similar to previous simula-
tions [2, 14, 17, 19] because the displacement of aneurysm’s
wall is typically small and the flow patterns of small disten-
sible and rigid models in the carotid region are very similar
[32]. In addition, we have assumed Newtonian fluid in our
simulations because the non-Newtonian effects are negligible
in larger (>500𝜇m) arteries [33] and previous simulations
of both Newtonian and non-Newtonian fluids have shown
similar flow patterns [19].

3. Description of Simulated Test Cases

Numerical simulations have been carried out on two sim-
plified geometries (sidewall and bifurcation), which can
be considered as simplified models of IA, and a patient-
specific IA geometry. Figure 1 shows the configuration of the
simplifiedmodels for (a) sidewall and (b) bifurcation IAs.The
inlet and outlet of the geometries are constructed from a pipe
with the diameter 𝐷. The aneurysm dome is modeled by a
cone-like shape with elliptical base and locus, whose radiuses
are 𝑎 = 𝐷/2, 𝑏 = 𝐷, and 𝑐 = 0.6𝐷.

Figure 2(a) shows the immersed body and overset grids
layout for sidewall type IAs and Figure 2(b) shows the
immersed body and a Cartesian grid layout for the patient-
specific IA geometry. The inlet and outlet(s) in simplified
models are meshed by body-fitted curvilinear grids; the
circular base is meshed by 41 × 41 grid nodes and the axial
(flow) direction is meshed by 81 grid nodes. The geometry
of the aneurysm is placed as an immersed boundary onto
the uniform grid, and all subdomains (Figure 2(a)) are solved
simultaneously [20]. The size of the domain that contains the
immersed body is 𝐿𝑥 = 1.4𝐷, 𝐿𝑦 = 2𝐷, and 𝐿𝑧 = 3𝐷
and 𝐿𝑥 = 1.4𝐷, 𝐿𝑦 = 3𝐷, and 𝐿𝑧 = 3𝐷 for sidewall and
bifurcation simplified IAs, respectively. The uniform grid is
meshed by 73×109×153 and 73×153×153 nodes for sidewall
and bifurcation simplified IAs, respectively. Such resolution
was found to be enough to obtain grid independent solutions
based on our extensive grid refinement studies. Furthermore,
the results obtained using a similar resolution for the pul-
satile flow through a 90∘ bend show good agreement with
experimental results (Appendix). The size of the domain that
contains the immersed body of a patient-specific geometry
is 𝐿𝑥 = 4.64𝐷, 𝐿𝑦 = 4.04𝐷, and 𝐿𝑧 = 5.8𝐷, where 𝐷
(= 0.0048m) is the hydraulic diameter of the cross section
of the inlet vessel and Cartesian grid layout.The uniform grid
for the patient-specific geometry is meshed by 233×201×289
nodes, which has a similar grid resolution with the simplified
IAs.
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Figure 1: Schematic illustrating of IA simplified models (a) sidewall and (b) bifurcation IA, where ellipse radiuses are 𝑎 = 𝐷/2, 𝑏 = 𝐷, and𝑐 = 0.6𝐷). Δ𝑠 denotes the location of the vortex ring from the proximal wall and inlet/outlet cross section in the sidewall and bifurcation IA,
respectively.
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Figure 2: Immersed body and overset grids layout for (a) sidewall IA simplified model and (b) patient-specific IA geometry. The immersed
body is meshed with triangular elements.

TheNeumann boundary condition is applied at the outlet
boundaries, and the volumetric flow rate of each outlet is
calculated based on the principle of optimal work [36]. The
inlet boundary condition is a uniform (plug) flow in space
but pulsatile in time with a waveform as shown in Figure 3
with pulsatility index PI = Δ𝑈/𝑈 = 1.43 (where Δ𝑈 is the
difference between the peak systolic and minimum diastolic
velocities). The pulsatile velocity waveform is from a patient
with a cerebral aneurysm [34]. The numerical simulations
were carried out for three cycles to obtain quasi-steady
results, which are not affected by the initial condition.

The Reynolds number is defined as Re = 𝑈𝐷/𝜗, where𝑈 is the average bulk inlet velocity and 𝐷 = 0.005m and0.0048m are the inlet diameter for simplified IAs and the pa-
tient-specific IA, respectively, and 𝜗 = 3.3 × 10−6m2 s−1
is the blood kinematic viscosity (calculated based on 𝜌 =1056 kgm−3 and 𝜇 = 0.0035 kg (ms)−1, where 𝜌 and 𝜇 are

the blood density and dynamic viscosity, resp. [7]). The
Womersley number is defined as Wo = 𝐷√2𝜋/𝑇𝜗, where𝑇 is the period of the waveform calculated based on the
heart rate. The simulations on the sidewall and bifurcation
IAs are carried out with two Womersley and two Reynolds
numbers. The Womersley number is modified by changing
the heart rate and Reynolds number is modified by altering
the inlet bulk velocity in the physiologically relevant range
[37]. The nondimensional time-step (Δ𝑡) is calculated by
dividing the nondimensional 𝑇 into 3200 equal time instants
for all simulated cases. Table 1 shows the simulated cases, their
specifications, and denoted names. It should be noted that the
calculated Re and Wo in Table 1 are within the physiological
range in IAs (173 < Re < 914 and 5 < Wo < 30 [7, 14, 38]).

An (aneurysm number) in Table 1 is the ratio of the
transport to vortex formation time scales in IAs [17]. The
transport time scale in sidewall IAs is the time it takes for the
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Table 1: Specifications of simulations. H, high; L, low;𝐷, diameter; 𝑇, heart beat period; Re, Reynolds number; Wo, Womersley number; 𝑈,
the average bulk inlet velocity; An, aneurysm number; Δ𝑡, the nondimensional time-step.

Simulation IA type 𝐷 (m) Heart beats per
minute 𝑇 (s) Wo 𝑈 (m/s) Re An Δ𝑡

ReLWoL Simplified sidewall 0.005 75 0.8 7.71 0.1 151.51 1.43 0.002
ReHWoL Simplified sidewall 0.005 75 0.8 7.71 0.25 378.79 1.43 0.005
ReHWoH Simplified sidewall 0.005 125 0.48 9.96 0.25 378.79 1.43 0.003
ReLWoL Simplified bifurcation 0.005 75 0.8 7.71 0.1 151.51 2.86 0.002
ReHWoL Simplified bifurcation 0.005 75 0.8 7.71 0.25 378.79 2.86 0.005
ReHWoH Simplified bifurcation 0.005 125 0.48 9.96 0.25 378.79 2.86 0.003
ReLWoL Patient-specific 0.0048 75 0.8 7.4 0.1 145.45 2.4 0.002
ReHWoL Patient-specific 0.0048 75 0.8 7.4 0.25 363.64 2.4 0.005
ReHWoH Patient-specific 0.0048 125 0.48 9.56 0.25 363.64 2.4 0.003
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u
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Figure 3:The inlet velocity waveform during one heartbeat. Adapt-
ed from [34].

parent artery flow to transport a fluid particle across the IA
neck and the transport time scale in bifurcation IAs is the time
it takes for the inlet artery flow to transport a fluid particle to
the outlets. An can be defined as follows:

An = 𝛼𝑊mod𝐷 PI, (2)

where 𝑊mod is the aneurysm neck and the outlet diameter
in sidewall and bifurcation IAs, respectively, defined based
on the transport time scale. 𝛼 = 1 and 2 is determined
based on the transport time scale definition for sidewall and
bifurcation IAs, respectively. If vortex formation time scale
is smaller, that is, An > 1, the vortex is formed before it is
advected out of the dome area. In contrast, if An < 1 the flow
is dominated by a stationary shear layer from the proximal
wall to the distal wall through the IA neck.

4. Results and Discussion

In this section, the effects of Reynolds and Womersley num-
bers on the flow patterns and vortical structures of IAs are

investigated. Because of the substantial difference between
vortical structures in sidewall and bifurcation IAs, they are
investigated in different sections, that is, Sections 4.1 and 4.2
for sidewall and bifurcation IAs, respectively. In Section 4.3,
whether observed effects of Reynolds and Womersley num-
bers (on flow patterns and vortical structures) in simplified
IAs can be seen in a patient-specific (complex) IA is explored.
In Section 4.4, the location of the vortex ring in simplified
IAs and the patient-specific IA is investigated using the
nondimensionalization method. Finally, the effect of Re and
Wo on the oscillatory shear index and wall shear stress of all
test cases is investigated in Section 4.5.The three-dimensional
vortical structures are visualized by the isosurfaces of 𝑞-
criteria [35].

4.1. Sidewall IA SimplifiedModels. In this section, the effect of
Womersley and Reynolds numbers on the flow patterns and
vortical structures of simplified sidewall IAs is investigated.
Figure 4 shows the time evolution of the nondimensional out-
of-plane vorticity and in-plane velocity vectors for simplified
sidewall IAs with different Re and Wo. In Figure 4, the
dominant flowpatterns are similar for different Re andWo. In
all cases a vortex ring, denoted as R1, starts to form from the
proximal wall in the early acceleration phase (Figure 4(a)).
Before the inlet velocity reaches the peak systole, the vortex
ring is convected across the IA neck (Figures 4(b)–4(d)).
Eventually it hits the distal wall and diffuses just after the
peak systole and in the deceleration phase (Figures 4(e)
and 4(f)). A similar behavior can be observed in Figure 5,
which shows the time evolution of the three-dimensional
vortical structures visualized by the isosurface of 𝑞-criteria
for simplified sidewall IAs with different Re and Wo. In
all cases the vortex ring forms at early acceleration phase
(Figure 5(a)) and is convected across the IA neck (Figures
5(b)–5(d)) and hits the distal wall before the peak systole
phase. Subsequently, it rolls up to form a recirculation vortical
structure, denoted as VS1, which stays until the end of the
cycle. The size of vortex ring for all cases is approximately
similar (Figure 5).The An for all the simplified sidewall cases
is equal to 1.43, which is consistent with the previous work
[11, 17, 26] stating that when An > 1 the flow is dominated by
the vortex formation.
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Figure 4: Evolution of the nondimensional out-of-plane vorticity and in-plane velocity vectors for simplified sidewall IAs with different Re
and Wo; (upper row) Re = 378.79 and Wo = 9.96; (middle row) Re = 378.79 and Wo = 7.71; and (lower row) Re = 151.51 and Wo = 7.71 at
various time instants during the cycle: (a) 𝑡/𝑇 = 0.21, (b) 𝑡/𝑇 = 0.24, (c) 𝑡/𝑇 = 0.27, (d) 𝑡/𝑇 = 0.29, (e) 𝑡/𝑇 = 0.44, and (f) 𝑡/𝑇 = 0.75. R1
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Figure 5: Evolution and topology of the three-dimensional vortical structures for sidewall IAs with different Re and Wo; (upper row) Re =378.79 andWo = 9.96; (middle row) Re = 378.79 andWo = 7.71; and (lower row) Re = 151.51 andWo = 7.71 at various time instants during
the cycle: (a) 𝑡/𝑇 = 0.21, (b) 𝑡/𝑇 = 0.24, (c) 𝑡/𝑇 = 0.27, (d) 𝑡/𝑇 = 0.29, (e) 𝑡/𝑇 = 0.44, and (f) 𝑡/𝑇 = 0.75.
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Figure 6: Evolution of the nondimensional out-of-plane vorticity and in-plane velocity vectors for simplified bifurcation IAs with different
Re andWo; (upper row) Re = 378.79 andWo = 9.96; (middle row) Re = 378.79 andWo = 7.71; and (lower row) Re = 151.51 andWo = 7.71
at various time instants during the cycle: (a) 𝑡/𝑇 = 0.19, (b) 𝑡/𝑇 = 0.22, (c) 𝑡/𝑇 = 0.24, (d) 𝑡/𝑇 = 0.25, (e) 𝑡/𝑇 = 0.44, and (f) 𝑡/𝑇 = 0.75.
R2 depicts the vortex ring in simplified bifurcation IAs and the green cross shows the location of the maximum 𝑞-criteria on the midplane of
IAs.

The only difference in the vortex ring formation and
evolution is the location of the vortex ring for different Wo
and Re (Figures 4 and 5). To further investigate the effect
of Re and Wo, the location of the center of the vortex ring
at different time instants in the cycle is identified by the
maximum 𝑞-criteria on the midplane of simplified sidewall
IAs and is shown by the green crosses in Figure 4. As it can
be observed by comparing different rows of Figures 4(a)–
4(d), the location of vortex ring is different at specific time
instants. The effect of Wo on the convection of the vortex
ring can be observed by comparing middle and upper rows
of Figures 4(a)–4(d) at specific time instants; that is, the
convection of the vortex ring corresponding to Wo = 7.71
(middle row) is higher than Wo = 9.96 (upper row) with
similar Re = 378.79 because the distance of vortex ring from
proximal wall is higher forWo = 7.71 (middle row) at similar𝑡/𝑇 in the cycle. The effect of Re on the convection of the
vortex ring can be observed by comparing middle and lower
rows of Figures 4(a)–4(d) at specific time instants; that is, the
convection of the vortex ring corresponding to Re = 378.79
(middle row) is higher than Re = 151.51 (lower row) with
similar Wo = 7.71. This behavior can be observed by the
location of the nondimensional out-of-plane vorticity as well.
The convection of the vortex ring in simplified sidewall IAs

and its effect on hemodynamic stresses is discussed in detail
in Sections 4.4 and 4.5, respectively.

4.2. Bifurcation IA Simplified Models. In this section, the
effect of Womersley and Reynolds numbers on the flow
patterns and vortical structures of simplified bifurcation IAs
is investigated. Figure 6 shows the time evolution of the
nondimensional out-of-plane vorticity and in-plane velocity
vectors for simplified bifurcation IAs with different Re and
Wo. FromFigure 6, the dominant flowpatterns, that is, vortex
formation, are similar in all simulations of simplified bifurca-
tion IAs.This is consistent with our previous simulationswith
An > 1 in terms of vortex formation.Thevortex ring, denoted
as R2, starts to form at inlet/outlet cross sections in the early
acceleration phase (Figure 6(a)). Subsequently, the vortex
ring grows in size, while it moves to the outlets (Figures 6(b)–
6(d)). Finally in the peak systole, the complicated vortical
structures are observed (Figure 6(e)).

At peak systole more segments of vortical structures in
the dome can be observed for the higher Re (middle and
upper rows of Figure 6(e)) in comparison to the lower Re
(the lower row of Figure 6(e)). This is the consequence of the
vortex ring interactions with other vortical structures, which
cannot be seen in two-dimensional vorticity on themidplane.
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In order to show the three-dimensional vortical structures,
Figure 7 plots the time evolution of the three-dimensional
vortical structures visualized by the isosurfaces of the 𝑞-
criteria for simplified bifurcation IAs with different Re and
Wo.Other than the vortex ring, another vortical structure can
be seen at the inlet/outlet cross section close to the IA neck,
denoted as VS2, for Re = 387.79 (middle and upper rows in
Figures 5(a)–5(d)). VS2 is observed by Vigolo et al. [39] for
the first time and later by Chen et al. [40] in 𝑇-junction pipes
and named “particle trapping vortical structures.” Particle
trapping vortical structures are distinguished from other
structures by the vorticity magnitude in normal direction to
the midplane of models (𝑥-direction) in Figure 7, because
particle trapping structures have almost zero vorticity in the
normal direction to the midplane of the models. Because
of the existence of an IA in the current study, the particle
trapping is distorted in comparison to that in the 𝑇-junction
pipe [39].

One effect of Re in simplified bifurcation IAs is that
particle trapping vortical structures do not form at the
acceleration phase of Re = 151.51 (the lower row of Figure 7).
This behavior is also observed by Vigolo et al. [39] who
reported that particle trapping vortical structures do not form

for Re < 200. As a consequence, more complex and highly
asymmetric flow patterns are observed for Re = 387.79
(upper and middle row of Figure 7(e)) in contrast to Re =151.51 because of the vortex ring interaction with the particle
trapping vortical structure.

The green crosses in Figure 6 show the location of the
center of the vortex ring by the maximum 𝑞-criteria on
the midplane of simplified bifurcation IAs at different time
instants in the cycle.The effect ofWo on the convection of the
vortex ring can be observed by comparing middle and upper
rows of Figures 6(b)–6(d) at specific time instants; that is, the
convection of the vortex ring corresponding to Wo = 7.71
(middle row) is higher thanWo = 9.96 (upper row) at similar
Re = 378.79 and 𝑡/𝑇.The effect of Re on the convection of the
vortex ring can be observed by comparing middle and lower
rows of Figures 6(b)–6(d) at specific time instants; that is,
the convection of vortex ring corresponding to Re = 378.79
(middle row) is higher than Re = 151.51 (lower row) with
similar Wo = 7.71 at the same 𝑡/𝑇. This behavior is similar
to what was observed in sidewall IAs in the previous section
(Figure 4). The convection of the vortex ring in simplified
bifurcation IAs and its effect on hemodynamic stresses is
discussed in detail in Sections 4.4 and 4.5, respectively.
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Figure 8: Evolution of the nondimensional out-of-plane vorticity and in-plane velocity vectors for patient-specific IAs with different Re and
Wo; (upper row) Re = 363.64 andWo = 9.56; (middle row) Re = 363.64 andWo = 7.4; and (lower row) Re = 145.45 andWo = 7.4 at various
time instants during the cycle: (a) 𝑡/𝑇 = 0.19, (b) 𝑡/𝑇 = 0.22, (c) 𝑡/𝑇 = 0.24, (d) 𝑡/𝑇 = 0.25, (e) 𝑡/𝑇 = 0.44, and (f) 𝑡/𝑇 = 0.75. R1 depicts the
vortex ring in patient-specific IAs and the green cross shows the location of the maximum 𝑞-criteria on the midplane of IAs.

4.3. Patient-Specific IA. In this section, the effect of Womer-
sley and Reynolds numbers on the flow patterns and vortical
structures of a patient-specific IA, which is of sidewall type,
is investigated. Figure 8 shows the time evolution of the
nondimensional out-of-plane vorticity and in-plane velocity
vectors for patient-specific IAs with different Re andWo.The
plane is selected the way that vortical structures in the dome
can be observed clearly (the plane is shown in Figure 2(b)).
From Figure 8, the dominant flow patterns are similar to
sidewall IAs (Figure 4). In all cases with different Re and Wo
a vortex ring, denoted as R1, starts to form from the proximal
wall in the early acceleration phase (Figure 8(a)). The vortex
ring evolves as it is convected across the IA neck (Figures
8(b)–8(d)). Finally it hits the distal wall and diffuses after
the peak systole and in the deceleration phase (Figures 8(e)
and 8(f)). A similar behavior can be observed from Figure 9
for different Re and Wo, which shows the time evolution of
the three-dimensional vortical structures visualized by the
isosurface of 𝑞-criteria for patient-specific IAs. In all cases the
vortex ring forms at early acceleration phase (Figure 9(a)) and
is convected across the IA neck (Figures 9(b)–9(d)) and hits
the distal wall before the peak systole phase. An for all cases
is equal to 2.4, which is consistent with the previous work
[11, 17, 26] stating that when An > 1 the flow is dominated

by the vortex formation. The only effect of Wo and Re on
the vortex ring formation and evolution is the location of the
vortex ring at specific time (Figures 8 and 9).

By comparing the flow structures in patient-specific IAs
(Figure 9) with simplified sidewall IAs (Figure 5), it can be
observed that more complex and broken vortical structures
are formed in the patient-specific IA in comparison to the
simplified sidewall IA, while the dominant flow pattern (vor-
tex ring formation and evolution) is similar. The vortex ring
in patient-specific IA is deformed because of the complexity
of its geometry.

To further investigate the effect of Re andWo, the location
of the center of the vortex ring at different time instants in the
cycle is identified by the maximum 𝑞-criteria on the plane
(shown in Figure 2(b)) of patient-specific IAs and is shown
by the green crosses in Figure 8. The similar behavior with
simplified models (Figures 4 and 6) can be observed in the
patient-specific geometry (Figure 8); that is, the convection
of the vortex ring corresponding toWo = 7.4 (middle row) is
higher thanWo = 9.56 (upper row) with similar Re = 363.64
because the distance of vortex ring from proximal wall is
higher for Wo = 7.4 (middle row) at similar 𝑡/𝑇 in the cycle.
The convection of the vortex ring corresponding to Re =363.64 (middle row) is higher than Re = 145.45 (lower row)
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Figure 9: Evolution and topology of the three-dimensional vortical structures for patient-specific IAs with different Re andWo; (upper row)
Re = 363.64 and Wo = 9.56; (middle row) Re = 363.64 and Wo = 7.4; and (lower row) Re = 145.45 and Wo = 7.4 at various time instants
during the cycle: (a) 𝑡/𝑇 = 0.19, (b) 𝑡/𝑇 = 0.22, (c) 𝑡/𝑇 = 0.24, (d) 𝑡/𝑇 = 0.25, (e) 𝑡/𝑇 = 0.44, and (f) 𝑡/𝑇 = 0.75.

with similar Wo = 7.4. The convection of the vortex ring in
the patient-specific IAs and its effect of hemodynamic stresses
are discussed in detail in Sections 4.4 and 4.5, respectively.

4.4.The Effect ofRe andWo on the Location of the Vortex Ring.
In this section, the effect of Wo and Re on the convection of
the vortex ring in simplified IAs (sidewall and bifurcation)
and a patient-specific IA is investigated, and a formula for
the location of the center of the vortex ring is derived using
dimensional analysis. Figure 10 plots the distance of the
maximum 𝑞-criteria (location of the center of the vortex ring)
on the midplane of simplified IAs (sidewall and bifurcation)
and the plane of patient-specific IAs at different Re and
Wo. These distances (Δ𝑠) are calculated from the proximal
wall for sidewall (in 𝑧-direction shown in Figure 1(a)) and
also from the proximal wall for patient-specific IAs (in 𝑠-
direction shown in upper row of Figure 8(f)) and from the
inlet/outlet cross section for bifurcation IAs (in 𝑦-direction
shown in Figure 1(b)). Δ𝑠 is normalized by the diameter of
the inlet parent artery (𝐷) in all test cases. It can be observed
that the vortex ring formation starts in 𝑡/𝑇 ≈ 0.19 and0.17 for simplified sidewall and bifurcation IAs, respectively,
regardless of Re and Wo. The location of the vortex ring
is different in various Re and Wo at similar instants in
the cycle. Based on Figure 10 and previous discussion in
Figures 4, 6, and 8, high Re and low Wo are associated with
faster convection of the vortex ring since the vortex ring
corresponding to high Re and low Wo reaches the distal

wall sooner. This behavior can be explained by dimensional
analysis. The dimensionless distance of the vortex ring from
the proximal wall can be defined as

Δ𝑠𝐷 = 𝑢𝑡𝐷 , (3)

where 𝑢 and 𝑡 are the vortex convection velocity and time,
respectively.Δ𝑠 is the distance of the vortex ring location from
the proximal wall in simplified sidewall IAs (Δ𝑧), also the
proximal wall in patient-specific IAs (Δ𝑠), and the distance of
the vortex ring location from the inlet/outlet cross section in
bifurcation IAs (Δ𝑦) as denoted in Figure 1. Here, we simply
approximate the vortex ring convection velocity by assuming
that it is equal to the bulk flow velocity in the parent artery.
Applying the dimensional analysis in (3) leads to

Δ𝑠𝐷 = 𝑢𝑡𝑈𝑇𝐷 , (4)

where𝑢 = 𝑢/𝑈 and 𝑡 = 𝑡/𝑇. Re = 𝑈𝐷/𝜗 andWo2 = 𝐷22𝜋/𝑇𝜗
definitions can be applied in (4), which results in

Δ𝑠𝐷 = 2𝜋𝑢𝑡 Re
Wo2

. (5)

Based on (5), decreasing Re and increasing Wo result in
decreasing distance of the vortex ring from the proximal wall
at specific instants (𝑡), which is in agreement with Figure 10. It
is noted that 𝑢(= 𝑢/𝑈) is the dimensionless velocity, which is
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Figure 10: The distance of the maximum 𝑞-criteria [35] on the midplane for different Re and Wo for (a) sidewall IAs, where the vortex ring
distance is measured from the proximal wall in the 𝑧-direction; (b) bifurcation IAs, where the vortex ring distance is measured from the
inlet/outlet cross section in 𝑦-direction; (c) patient-specific IAs, where the vortex ring distance is measured from the proximal wall in the𝑠-direction at various time instants during a part of cycle that vortex ring forms and breaks down.This distance is normalized by the IA width
(𝐷), distance between proximal and distal wall (𝑊), and outlet diameter (𝐷) in simplified sidewall, patient-specific, and simplified bifurcation
IAs, respectively. Values for ReHWoH, ReHWoL, and ReLWoL can be found in Table 1 for different geometries.

similar for all simulations at the specific dimensionless time
(𝑡/𝑇) regardless of Re andWo (as can be seen from Figure 3).
The effectiveness of Re and Wo on the normalized distance
of the vortex ring from the proximal wall can be compared
using (5) as follows:Δ𝑠(Re=378.79,Wo=7.71)Δ𝑠(Re=378.79,Wo=9.96)

= 1.67,
Δ𝑠(Re=378.79,Wo=9.96)Δ𝑠(Re=151.51,Wo=7.71)

= 1.5.
(6)

The trend observed in (6) agrees well with that of Figure 10,
meaning that Δ𝑠(ReHWoL) > Δ𝑠(ReHWoH) and Δ𝑠(ReHWoH) >Δ𝑠(ReLWoL) at specific instants (𝑡/𝑇). The trend of the location
of the vortex ring for various Re and Wo agrees well with
the formulation developed from experiments on thin core
rings generated by a piston gun in water [41]. By substituting
simulation specifications of current study on the formulations
expressed in [41] Δ𝑠(Re=378.79,Wo=7.71)/Δ𝑠(Re=378.79,Wo=9.96) ≈1.62 and Δ𝑠(Re=378.79,Wo=9.96)/Δ𝑠(Re=151.51,Wo=7.71) ≈ 1.73 can
be reached which shows promising agreement with the
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simple formulation obtained in this study (6), considering
that in [41] the vortex forms in the tank instead of an IA neck.

4.5. The Effect of Re and Wo on the Oscillatory Shear Index
and Wall Shear Stress. The oscillatory shear index (OSI) and
wall shear stress (WSS) are important parameters in deter-
mining aneurysm rupture risk [2, 42, 43]. In this section, we
investigate the effect of Re andWo on OSI andWSS in terms
of the dynamic behavior of the vortex ring. Figures 11 and
12 show the cycle-averaged distribution of oscillatory shear
index and normalized wall shear stress, respectively, with
different Re and Wo (Table 1) for (a) simplified bifurcation,
(b) simplified sidewall, and (c) patient-specific IAs. For the
purpose of comparison, WSS of the IA dome is normalized
by that of the inlet parent artery similar to previous work [2].
To quantify the effect of Re and Wo on the hemodynamic
stresses, normalized WSS and OSI are averaged over the

dome surface. The results are plotted in Figure 13, which
shows oscillatory shear index and normalized wall shear
stress for different Re and Wo on simplified bifurcation,
simplified sidewall, and patient-specific IAs.

It can be observed in Figure 13(a) that in the simplified
sidewall IA OSI for low Re (lower row of Figure 11) is 79%
higher than that of high Re (middle row of Figure 11) with
similar Wo. In addition, OSI for high Wo (upper row of
Figure 11) is 86% higher than that of low Wo (middle row
of Figure 11) with similar Re in the simplified sidewall IA. A
similar trend can be seen in the patient-specific IA for OSI;
that is, OSI for low Re (lower row of Figure 11) is 43% higher
than that of high Re (middle row of Figure 11) with similarWo
and OSI for high Wo (upper row of Figure 11) is 27% higher
than that of low Wo (middle row of Figure 11) with similar
Re. This is due to the fact that low Re and high Wo increase
the vortex residence time (the time that vortex ring hits the
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wall and breaks down minus the time that vortex ring starts
to form, normalized by the period of the cycle) in the dome
of sidewall IAs (Figures 10(a) and 10(c)), which increases the
flow disturbance in the cycle and, consequently, results in
higher OSI.

For the simplified bifurcation IA, in contrast to sidewall
IAs, it can be observed in Figure 13(a) that OSI corresponding
to Wo = 9.96 is slightly (12%) higher than Wo = 7.71 with
similar Re = 378.79. OSI corresponding to Re = 151.51 is63% lower than Re = 378.79 in simplified bifurcation IA
with similar Wo = 7.71 because of the absence of “particle
trapping” vortical structures at acceleration phase of Re =151.51, which decreases the segments of vortical structures
(by comparing lower and middle row of Figure 7) and flow
disturbance.

It can be observed in Figure 13(b) that Wo and Re
variations change the normalized WSS by only a maximum
of 14% among all IAs. Therefore, we conclude that the effect

ofWo andRe variations on the normalizedWSS is severalfold
smaller than that of OSI.

5. Conclusions

The effect of two key parameters, that is, Reynolds andWom-
ersley number, on the hemodynamics of simplified IAs (side-
wall and bifurcation) and patient-specific IAs is investigated
using CFD simulations. Based on our results, the dominant
flow pattern and the vortex structure, for example, the vortex
ring formation, remain similar by modifying Re from 378.79
to 151.51 and Wo from 7.71 to 9.96 in both simplified bifur-
cation and sidewall IAs. Similarly, the vortex ring formation
remains similar by modifying Re from 363.64 to 145.45 and
Wo from 7.4 to 9.56 in patient-specific IAs. However, the
location of the vortex ring at different instants in a cycle in
both simplified and patient-specific IAs is controlled by Wo
and Re. In addition, the interaction of the vortex ring with
other vortical structures depends on Re in bifurcation IAs.
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The location of vortex ring as function of time depends
on the combination of Re and Wo. We found that the high
Re and low Wo are associated with the fast convection of the
vortex ring in IAs. Using dimensional analysis, a formulation
(Equation (5)) is obtained which can clearly demonstrate
the trend of vortex ring distance from the proximal wall
in simplified sidewall and patient-specific IAs and from
the inlet/outlet cross section of simplified bifurcation IAs.
Based on the obtained formula, the location of vortex ring is

proportional to Re/Wo2 which shows good agreement with
formulations expressed in [41] for the vortex ring location in
a tank.

The highly asymmetric and complicated vortical struc-
ture observed in bifurcation IAs at Re = 378.79 in compar-
ison to Re = 151.51 are a consequence of the interaction
between the vortex ring and the particle trapping vortical
structures. More organized vortical structures are observed
for Re = 151.51 since the particle trapping vortical structure
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Figure 15: Pulsatile flow through a 90∘ bend. The calculated streamwise velocity profiles at the plane of symmetry are compared with
experimental results (circles) [31] at different time instants. 𝑟 = (𝑟 − 𝑟∘)/(𝑟𝑖 − 𝑟∘) (𝑟∘ and 𝑟𝑖 are the outer and inner bend radius, resp.), 𝑈𝜃
is the streamwise velocity at the symmetry plane, and 𝑈𝑚 is the maximum streamwise velocity at the symmetry plane at 𝑡/𝑇 = 0 and 𝜃∘ = 0.

does not form in the acceleration phase at low Re (Re < 200
according to [39]).Therefore, there is no interaction between
the vortex ring and the particle trapping vortical structures in
bifurcation IAs with Re = 151.51.

We found that variations of Wo and Re slightly affect
the normalized WSS (maximum of 14%), while OSI is
proportional toWo and 1/Re in sidewall IAs (both simplified
and patient-specific). The observed trend of OSI in these
IAs is a consequence of higher residence time of the vortex
(because the vortex reaches the distal wall later in the cycle
at high Wo and low Re), which disturbs the flow for a
longer time in each cycle and increases the OSI. This trend
is not observed in bifurcation IAs because the ring vortex is
convected toward the outlets and does not enter the dome.

The shear stress in bifurcation IAs is dominated by the particle
trapping structures. In fact, the observed lower OSI (63%) in
bifurcation IAs at Re = 151.51 in comparison to Re = 378.79
is because of the absence of particle trapping structures at
Re = 151.51. Increasing Wo from 7.71 to 9.96 only slightly
increased OSI (12%) at similar Re = 378.79 in simplified
bifurcation IAs.

Based on our results, the hemodynamics of the simplified
and the patient-specific sidewall IAs is similar in terms of
vortex formation, propagation, normalized WSS, and OSI.
The bifurcation IA showed different OSI trend relative to the
sidewall ones.Note that the conclusions of thiswork are based
on two idealized geometries and on two idealized and one
patient-specific geometries for two Re and Wo. We believe
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our results are valid for other geometries in the physiological
range of Re andWo for aneurysms. Nevertheless, this will be
tested in a cohort of aneurysms rigorously in the future.

Appendix

Validation: Pulsatile Flow through a 90∘ Bend

The three-dimensional pulsatile flow through a strongly
curved 90∘ pipe bend is simulated to validate our method,
which is used to simulate the test cases in this study, for a
pulsatile flow inside an immersed body. The geometry of the
test case is shown in Figure 14(a). As shown in Figure 14(a),
the radius of the curvature of the bend is three times the pipe
diameter (𝐷). The outlet is placed 7𝐷 after the bend and the
inlet is placed 5𝐷 before the bend. A gear pump providing
a steady flow with the Reynolds number equal to 500 (Re =𝑈𝐷/𝜗, where 𝑈 is the bulk velocity, 𝐷 is the pipe diameter,
and 𝜗 is the kinematic viscosity) in conjunction with a piston
pump generating sinusoidal flow waveform with Re = −300
to Re = 300was used to generate the pulsatile flow waveform
in the experiments [31]. The resulting Womersley number of
the flow in the experiments was 7.8.

To generate a waveform that matches the experiment’s
waveform, the inlet boundary condition is the velocity profile
set from theWomersley solution of a fully developed pulsatile
flow in a circular pipe as follows [44]:

𝑢inlet = 2 [1 − ( 𝑟𝑅)
2]

− 𝑖 𝑘𝜔𝑒𝑖𝜔𝑡 [1 −
𝐽0 (𝑟√−𝑖𝜔/V)
𝐽0 (𝑅√−𝑖𝜔/V)] ,

(A.1)

where 𝐽0 is the zero-order Bessel function of the first kind,𝑅 is the radius of the pipe, 𝑟 is the radial distance from
the center of the pipe, 𝜔 = 13.31 rad/s is the angular
frequency of the flow oscillation, and V is the flow viscosity.
The constant 𝑘 is selected to be 0.375 to generate a sinusoidal
flow waveform, which matches the experiment’s waveform
[31, 44]. The above equation is solved using MATLAB, and
the resulting solutions are stored and fed into the solver
to specify the time-varying inlet flow (Figure 14(b)). As
shown in Figure 14(b), the computed inlet Re waveform is
in reasonably good overall agreement with the experimental
inlet Re. The outlet boundary condition is the Neumann
boundary condition. The time period of inflow oscillations,
which is nondimensionalized based on 𝐷 and 𝑈, is 𝑇 =12.3. The nondimensional time-step Δ𝑡 = 0.0123 is used
for the simulations. The Cartesian domain is discretized by249 × 53 × 233 grid nodes. The region around the 90∘ bend
is discretized by 179 × 53 × 179 uniform grid nodes and the
grid is stretched to the boundaries.

The simulated flow in the 90∘ bend with the pulsatile inlet
is compared with the experimental results [31] in Figure 15.
The streamwise velocity profiles at the symmetry plane are
plotted at five different locations (i.e., 𝜃 = 0∘, 22.5∘, 45∘,67.5∘, and 90∘) for four different time instants during the
cycle (𝑡 = 0, 0.25𝑇, 0.5𝑇, and 0.75𝑇). The results in Figure 15

are in excellent agreement with the computational results
of the same setup with body-fitted grids [20]. Furthermore,
as observed in Figure 15, the computational results are
in good overall agreement with the experimental results.
The maximum discrepancy is at 𝑡 = 0.75𝑇, where the
largest deviation from experimental inlet waveform from
Womersley inlet waveform exists (Figure 14(b)).
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