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Abstract: Protein post-translational modifications (PTMs) play key roles in eukaryotes since they
finely regulate numerous mechanisms used to diversify the protein functions and to modulate their
signaling networks. Besides, these chemical modifications also take part in the viral hijacking of
the host, and also contribute to the cellular response to viral infections. All domains of the human
immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor
for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this
review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation,
phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out
how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1,
PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma
membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell
machinery to achieve viral budding as they drive recognition between viral proteins or cellular
components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several
other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.

Keywords: HIV-1; Pr55Gag precursor; post-translational modifications; retroviral Gag precursors;
retroviral life cycle

1. Introduction

Post translational modifications (PTMs) introduce a vast diversity in proteome includ-
ing addition of chemical groups, like phosphorylation, methylation, acetylation, redox-
based modifications, or alternatively, addition of polypeptides like ubiquitination, sumoyla-
tion or ISGylation. PTMs thus play a key role in functional proteomic by regulating proteins
activity, their localization, and the interaction with cellular or viral factors. Even though
many proteins are modified shortly after translation, PTMs can also occur at different
steps such as after protein folding or protein re-localization to influence their biological
activity at those specific sites (for reviews see [1,2]). Besides, depending on the nature of
the modification, they can also finely tune reversible processes. Consequently, analysis of
PTMs can provide an invaluable insight into cellular functions.

Viruses rely on the protein synthesis machinery of the host to support the production
of viral progeny, and several cellular pathways are modulated by viruses to achieve
the critical steps in viral replication. Hence, it is not surprising that viruses developed
different strategies to either counteract or exploit PTMs of cellular factors, and that many
viral proteins carry PTMs. Interestingly, PTMs are strongly involved in the regulation of
different steps of the retrovirus viral cycle (for reviews see [3,4]). More specifically, in the
HIV-1 (human immunodeficiency virus type 1) context, PTMs within the 55-kDa viral
precursor, Pr55Gag (or Gag), were found to be necessary for regulating the last phase of the
viral cycle, leading to the assembly of viral particles. Besides, several pieces of evidence
have shown that other retroviral Gag carry various PTMs regulate viral replication and
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pathogenesis. This review will summarize our current knowledge on PTMs observed in
HIV-1 Pr55Gag and in other retroviral Gag proteins. Considering the role of the PMTs in the
retroviral life cycle, the analysis of PTMs in retroviral Gag precursors could be particularly
important for a deeper understanding of the molecular mechanisms driving retroviral
replication. In a further step, this knowledge could contribute to the identification of new
targets, and the design of new treatments against retroviral replication.

2. HIV-1 Pr55Gag

The HIV-1 Pr55Gag precursor (Figure 1a) plays a crucial for genomic RNA (gRNA)
packaging, since it specifically selects the full-length gRNA amongst many other RNAs
(cellular and spliced viral RNAs) and this process involves specific interactions between
Pr55Gag and the highly structured 5′ region of the gRNA [5,6], which contains the packaging
signal (Psi) spanning SL (stem-loop)1 to SL4 in the 5′-end region of gRNA [7–9] (Figure 1b).
In cells, the HIV-1 gRNA dimer in association with low-order Pr55Gag multimers [10–12]
forms a viral ribonucleoprotein complex that traffics to the plasma membrane (PM) where
the assembly of the viral particle occurs (for reviews see [13–15]). HIV-1 Pr55Gag is com-
posed of four structural domains named matrix (MA), capsid (CA), nucleocapsid (NC), p6,
and two spacer peptides (p2 and p1) (Figure 1a) [16] and each of them carry PTMs.

From the N-terminus, the 17 kDa MA domain that possesses a bipartite signal leads
to Pr55Gag interaction with the PM. The first signal corresponds to the N-terminal myris-
toylated Glycine 2 (G2) (see § “HIV-1 Pr55Gag Myristoylation”), while the second one
is constituted by a highly basic region (HBR) at the MA surface (for a review see [17]).
MA was also found to interact with nucleic acids such as host tRNAs [18], and recent
findings showed that MA-RNA binding ensures the specific interaction between Pr55Gag

and the PM, by preventing nonspecific binding of Gag to intracellular membranes [19,20].
The CA is a 24 kDa domain that drives Pr55Gag multimerization and leads to formation
of the viral core [21–23]. Next, NC is a 7 kDa domain, which is crucial for specific inter-
action with gRNA and for the incorporation of tRNALys3, which is the primer for reverse
transcription. NC displays two zinc finger motifs (CCHC) that specifically interact with
the Psi (Figure 1b) [24,25]. This domain also contributes to Pr55Gag multimerization thus
promoting viral assembly [26–28]. At the C-terminal end of Pr55Gag, the unstructured
p6 domain of 6 kDa is required for specific binding to the gRNA [29], and is involved in the
recruitment of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery
that regulate viral particle budding. Finally, Pr55Gag codes for two spacer peptides, sp1 and
sp2 (also named p2 and p1, respectively), regulating the kinetics of Pr55Gag maturation.

Figure 1. Pr55Gag and the 5′UTR of HIV-1 genomic RNA. (a) Functional domains of Pr55Gag and a short
description of their roles. (b) Schematic representation of the secondary structure model of the 5′UTR
(adapted from [29]). TAR: transactivation response element; Poly-A: 5′-copy of the polyadenylation
signal; PBS: Primer Biding Site; DIS: Dimerization Initiation Site; Psi: packaging signal spanning SL1 to
SL4; U5: unique region at the 5′ end. The structure represents the U5-AUG conformation [5,6].
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The next sections of this revue will describe which PMTs are carried by the different
Pr55Gag domains and what are their roles in the viral life cycle.

3. HIV-1 Pr55Gag Myristoylation

The myristoylation is a co-translational and irreversible modification consisting in
the addition of a 14-carbon saturated fatty acid myristate to the protein via an amid bond
by the N-myristoyl-transferase (NMT) (for reviews see [30–32]). The myristoylation can
be achieved on an internal glycine (G) inside a consensus sequence recognized by NMTs,
which is G-X2-X3-X4-(S/T/C)-X6 (Figure 2a). The G residue at the first position is necessary
for this PMT, while at the second position there is preferentially an uncharged residue
(except for proline (P)) or an aromatic amino acid. At the fifth position, uncharged residues
are found, preferentially serine (S) and threonine (T) (for a review see [33]), while P is not
accepted at the sixth position [34]. In sum, three regions finely regulate myristoylation: the
binding pocket (positions from 1 to 6), the catalytic domain (positions from 7 to 10) and the
hydrophilic linker (position from 11 to 17) [34,35] (Figure 2a).

Figure 2. Protein sequence required for myristoylation and sequences of retroviral myristoylated
MA domains. (a) Pro-myristoylated consensus sequence underlying the three regions regulating
myristoylation: the binding pocket (positions 1–6), the catalytic domain (positions 7–10) and the
hydrophilic linker (positions 11–17) [34,35]. (b) Comparison of the first 17 residues of myristoylated
MA domains in different retroviruses. Myristoylation is generally conserved in retroviruses such as
lentivirus (HIV-1), betaretrovirus (Mason-Pfizer monkey virus (MPMV), mouse mammary tumor
virus (MMTV), and human endogenous retrovirus type K (HERK)), gammaretrovirus (Moloney
murine leukemia virus (MoMuLV) and murine leukemia virus (MLV)), and deltaretrovirus (human
T-lymphotropic viruses (HTLV-1) and bovine leukemia virus (BLV)), but not in alpharetrovirus
(Rous sarcoma virus (RSV)), some other lentivirus (equine infectious anemia virus (EIAV)), and in
spumavirus (foamy virus (FV)).

Myristoylation is rather conserved in retroviruses (Figure 2b) (For reviews see [17,36]
and [37,38]), and this PTM globally regulates the interaction of retroviral precursors with
membranes and sub-membrane domains, such as lipid rafts. However, this modification
is not sufficient by itself for membrane binding, and a distant polybasic domain is thus
required to complete the optimal attachment of myristoylated proteins to the PM (for
reviews see [39,40]). In HIV-1, this task is reached by the HBR spanning residues 17 to
31 of the MA domain, which contributes to a strengthening of the interaction with the PM
thanks to electrostatic interactions with the negatively charged PI(4,5)P2 [41–43].
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The myristoyl moiety can be exposed or sequestered in the hydrophobic pocket of the
mature MA (Figure 3a,b) by the so-called myristoyl-conformational switch [37,39,42,44,45],
which controls the exposure of myristoyl group for insertion into the PM, thus contributing
to the prevention of aberrant interactions with intracellular membranes. The myristate
exposure was found to be triggered by the interactions occurring between Pr55Gag and
PI(4,5)P2 [41]. Besides, NMR studies demonstrated that myristate exposure is also regu-
lated by the trimerization of the protein [37,42], and this would explain why the mature
MA displays a lower affinity for membranes in comparison with the full-length precur-
sor [37,41,42]. Indeed, several Pr55Gag domains, such as CA, p2 and NC, contribute to
the self-association of the precursor and, as a consequence, to the myristate exposure
(Figure 3b) [37]. Accordingly, mutational experiments on these domains inhibiting Pr55Gag

multimerization, impair Pr55Gag binding to the membrane [37].

Figure 3. Different structural conformations of HIV-1 MA monomer or trimer. The tertiary structures
of the MA domain in the different conformations of the switch look similar. (a) The MA domain in its
monomeric conformation (in blue) displays a sequestered myristoyl group (in red) (PDB: 1UPH [36]).
(b) Representation of the trimer of MA (in blue, light blue and cyan) and the corresponding exposed
myristoyl groups (in red). This model was proposed according to which the myristoyl group is
exposed in the multimeric form, thus allowing its interaction with PM (adapted from [37]).

4. Gag Myristoylation in Other Retroviruses

The MA domains of retroviral Gag polyproteins display two main roles: they par-
ticipate in genome incorporation, as several analyses recently pointed out, and they are
implicated in membrane association. Interestingly, the majority of the retrovirus family
displays a myristoylated MA domain (for reviews see [46–49]).

Among the different genera in which MA is myristoylated, the genus gammaretrovirus
is composed by simple and oncogenic retroviruses. One representative virus of this family
is MLV inducing leukemias or lymphomas in mice [50]. The MA domain of the primary
form of MLV Gag, Pr65Gag, is myristoylated and contains a polybasic region in its globular
domain that interacts electrostatically with PI(4,5)P2 at the PM, similarly to HIV-1 [47].
Besides, MLV has the particularity of encoding an additional form of Gag, gPr80Gag, which
is glycosylated, but not myristoylated, and this last one is involved in the Pr65Gag traffick-
ing to the PM [51]. However, beside MLV budding at PM, intracellular budding events
can also occur into multivesicular bodies (MVBs) or in intracellular compartments as late
endosomes in which virus-like particles (VLPs) accumulated [52]. Then, the deltaretrovirus
genus contains complex and oncogenic retroviruses, and consists of two different groups,
the primate T-lymphotropic viruses (PTLVs) including HTLV-1 and non-primate species,
such as BLV [53–55]. Similarly, to MLV, the assembly of those retroviruses can occur at
the PM, as well as in intracellular compartments such as late endosomes, MVBs or similar
compartments [56]. The myristoylation of MA and the presence of basic amino acids leads
to membrane binding and is, in this case, a PI(4,5)P2-independent process [57–59]. Indeed,
the HTLV-I viral precursor Pr53Gag is able to bind membranes by electrostatic interac-
tions involving the zwitterionic phosphatidylcholines (PC) and the negatively charged
phosphatidylserines (PS) contained in endocytic membranes [57,60]. Moreover, a model
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was proposed in which the HBR in the HIV-1 MA domain would bind RNA to prevent
premature or non-specific binding to cellular membranes [19,20,61]. Interestingly, a similar
regulation between MA and RNA was proposed for BLV [62]. Conversely, the lack of
this RNA regulation in HTLV-1 could explain the binding of myristoylated MA to the
cellular membranes of intracellular compartments [57]. Finally, betaretroviruses show
many similarities with lentiviruses, including a myristoylated MA domain [63]. This genus
is composed of two groups: the first one is represented by MMTV [64] and by MPMV;
and the second one is represented by HERK [65]. Myristoylated-deficient HERK Gag was
observed to localize in the nucleus [66]. Contrary to other lentiviruses, NMR structures
of MA domains of MPMV [63] and MMTV [67] show that the myristate group is hidden
inside the MA in its oligomeric form. These differences suggest that betaretroviruses have
developed different strategies to sequester the myristoyl group until the VLP is bound to
the PM. At this site, a conformational change, leading to exposure of the myristate group
would occur, similarly to other retroviral Mas that bind PM [67].

In contrast, some retroviral Gag precursors are not myristoylated. Indeed, alpharetro-
viruses represents simple and oncogenic retroviruses like RSV [68]. At the PM, RSV Pr76Gag

interacts with charged lipids PI(4,5)P2 [38,69], and to ensure proper Pr76Gag-PM association,
the lack of myristoylation is then counterbalanced by electrostatic interactions occurring
between the inositol phosphates and a membrane binding domain (MBD), which is com-
posed of basic residues forming a patch of clustered lysines (K) and arginines (R) on the
MA surface ([49,68,70], for a review see [71]). Similarly, the MA domain of the lentivirus
EIAV [72,73] is not myristoylated, but binds preferentially with phosphatidylinositol 3-
phosphate (PI(3)P) with a higher affinity compared to PI(4,5)P2 [73,74]. Finally, foamy
viruses (FV) as the PFV presents interesting differences compared to HIV-1 ([75], for a
review see [76]). In particular, the FV Pr74Gag displays a limited number of PTMs compared
to the other retroviruses, and strikingly, the FV MA domain contains neither the HBR nor a
myristoylation modification. All those elements emphasize a different evolutionary history
among retroviruses [75]. Indeed, in this case, viral Env proteins play a major role for viral
budding, and the co-expression of Pr74Gag with Env is necessary for VLP production [77].

In sum, there are three main distinct strategies used by retroviruses to target mem-
branes for budding. The first one requires the myristate exposure and a highly basic
region (HBR) in the MA domain of retroviral precursors to interact with PM. The two
others display dispensable myristoylation to achieve proper membrane binding since the
hydrophobic interactions are in this case substituted by electrostatic ones produced by a
basic domain in the MA, or alternatively by interactions between the precursor and viral
elements such as Env proteins.

5. HIV-1 Pr55Gag Phosphorylation

Phosphorylation consists of the addition of a phosphate group to the side chain of amino
acids. This PMT modifies the local electrostatic potential of proteins, induces conformational
modifications, and affects the protein subcellular localization (for a review see [78], and [79,80]).
Kinases, which are the enzymes that catalyze the transfer of phosphate group, have a role at
multiple steps of HIV-1 viral, and the inhibition of cellular kinases interacting with HIV-1 at
the nuclear level has been shown to affect the viral replication cycle [81]. Among HIV-1 viral
proteins, which are phosphorylated, there is Pr55Gag (Table 1 and Figure 4). The MA domain
is a substrate for the protein kinase C (PKC) [82], which catalyzes S and T phosphorylation.
Several studies identified S111 in HIV-1 MA as the substrate for PKC [82]. Interestingly,
substituting S111 with an alanine (A) led to decreased association of Pr55Gag with PM,
even though MA was myristoylated. This suggests that PKC could also be involved in
membrane binding by regulating the exposure of the myristoyl group [83,84].

Alpha-screen assays allowed us to screen for human kinases interaction with the
HIV-1 precursor, and the p6 domain resulted to be a target for PKC. In a further step,
mass spectrometry indicated the phosphorylation of S488 residue [85,86]. Its substitution
with a hydrophobic aromatic residue such as phenylalanine (F), which can occur sponta-
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neously during anti-retroviral treatments, was found to perturb CA-SP1 processing, virus
morphogenesis, maturation and virion infectivity [87–89]. On the other hand, the substi-
tution of S488 by another non phosphorylable residue, such as asparagine (N), displayed
no global impact on infectivity, thus suggesting that the production of non-mature viral
particles would not be due to the lack of phosphorylation, but by the substitution itself [89].
Moreover, the phosphorylation of the p6 domain was found to be also important for the
recruitment of the viral factor Vpr. As a consequence, the inhibition of PKC activity reduced
Vpr level in virions, and this affected HIV-1 infectivity [85]. The p6 domain is the main
phosphorylated domain in Pr55Gag and can be phosphorylated at several positions [86,90].
Indeed, phosphoamino acid analysis [90] and mass spectrometry experiments [86] identi-
fied several phosphorylated amino acids (Table 1 and Figure 4), that were found to globally
promote viral budding [91]. Moreover, electron microscopy analysis revealed that mutation
T471A leads to immature viral particles incompletely separated from PM, and immunoblot-
ting analysis showed an incomplete Pr55Gag proteolytic maturation [91]. In contrast, other
findings showed no effects on assembly or on viral release when T471 was substituted with
isoleucine (I) or N. Since none of these amino acids can be phosphorylated, it is possible
that the observed differences were not due to phosphorylation itself. Furthermore, except
for T456 located in the PTAP late domain, the other eleven positions that can be phosphory-
lated in the p6 domain present redundancy. Mutagenesis experiments confirmed that the
modifications of those residues seem to be dispensable for viral release and infectivity [86].

Experiments using an inhibitor of cyclin-dependent kinases [92] showed that also a
MAP kinase, the extracellular-signal-regulated kinase 2 (ERK2), is involved in p6 phos-
phorylation, and this factor can be incorporated into viral particles by interacting with
the S148-P149 motif in CA and T471-P472 in p6 [91,93–96] (Table 1, Figure 4). HIV-1 par-
ticles without active ERK2 were found to be poorly infectious due to a defect in reverse
transcription [93,95]. Interestingly, ERK2 phosphorylates other viral proteins including
Rev [97], Nef [98], Vif [99,100], and mature MA [95]. Besides, the substitution of four highly
conserved and major phospho-acceptor S residues in the mature MA (Table 1) with A was
found to impair viral replication [95,101].

Table 1. Summary of different roles of phosphorylated residues in HIV-1 Pr55Gag.

Domain Residue Enzyme Observations and Associated (or Proposed) Roles References

MA

S9

ERK2
Involved in the viral replication
Phosphorylation of the mature form of MA [95,101]

S67
S72
S77

S111 PKC could be involved in membrane binding by regulating the exposure of the
myristoyl group [82–84]

Y132 Src In MA mature 1% of Y132 is phosphorylated
Src overexpression was found to promote the localization of Pr55Gag at the PM [102,103]

CA S148 ERK2 Belongs to S-P motif involved in recruitment of ERK-2 [93–96]

p6

T456 Belongs to the PTAP late domain
Potential role in viral infectivity and assembly [86]

T470 Redundancy with T471, S473, S488, S491, and S499 [91]

T471 ERK-2

Belongs to T-P motif involved in the recruitment of ERK-2 [91]

Its substitution induces the accumulation of immature viral particles
incompletely separated from PM [91]

Redundancy with T470, S473, S488, S491, and S499 [91]

Effects on assembly or on viral release is not due to phosphorylation [86]

S473 Redundancy with T470, S471, S491, and S499 [91]
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Table 1. Cont.

Domain Residue Enzyme Observations and Associated (or Proposed) Roles References

S488

ERK2
Viral particles without active ERK2 were found to be poorly infectious due to a
defect in reverse transcription [93,95]

Involved in the phosphorylation of other viral proteins: Rev, Nef, Vif, mature MA [97–100]

PKC
The p6 domain of Pr55Gag is a target for PKC [85,86,90]

The inhibition of PKC activity reduced Vpr level in virions [85,87,88]

Its mutation with F perturbs:
- Viral morphology, maturation and infectivity [87–89]

Effects on assembly or on viral release could be not due to phosphorylation [86]

S491 Redundancy with T470, S471, S473, and S499 [91]

S499 Redundancy with T470, S471, S473, and S491 [91]

Figure 4. Phosphorylated residues in HIV-1 Pr55Gag. The different colors represent the Pr55Gag

domains, MA (blue), CA (green), spacer peptides p1 and p2 (purple), NC (red), and p6 (black).
Phosphorylation positions are highlighted in yellow. TP (in p6) and SP (in CA) motifs involved in
the ERK2 recruitment and incorporation into viral particle are indicated in bold [91,93–96].

Finally, the tyrosine kinase Src can also be incorporated into HIV-1 particle [102], and it
is involved in the phosphorylation of the tyrosine (Y) 132 in a minority of mature MA
proteins. This PMT was shown to play a role in the early phases of HIV-1 replication as
the proviral DNA nuclear import [103] and its deletion causes the enhancement of MA
accumulation in the cytoplasm at the expense of PM. On the contrary, Src overexpression
was found to promote the localization of Pr55Gag at the PM [102].

In sum, HIV-1 Pr55Gag is phosphorylated by at least three kinases, PKC, ERK-2 and
Src. Interestingly, mutation of phosphorylated residues in the p6 domain revealed that this
domain, in addition to MA, can act as membrane targeting domain of Gag [104]. However,
phosphorylation positions in p6 mainly display redundancy, thus hindering the evaluation
of the impact of each individual phosphorylated residue.

6. Gag Phosphorylation in Other Retroviruses

Phosphorylation is a conserved modification in the retroviral family (Table 2). In al-
pharetroviruses, within the RSV MA domain, a small proportion of Y residues results in
being phosphorylated [105], as well as S68 and S106 residues (Table 2). However, S68 seems
to be transitionally phosphorylated, while S106 is the main phosphorylated signal [106].
Besides, MA phosphorylation could be involved in the recruitment of factors promoting
NC phosphorylation [106,107]. In turn, phosphorylation of S529 in NC was found to be
necessary for the specific interaction with gRNA [108], but no other notable effects on
assembly, or on infectivity, were observed [106].
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The deltaretroviruses, HTLV-1 MA is also a phosphoprotein, and S105, which is
located close to the two late domains involved in viral release [109], PPPY [110] and
PTAP [111], is phosphorylated by ERK-2. Similarly, to HIV-1, ERK-2 is incorporated into
HTLV-1 particles, and phosphorylation of the MA domain was found to be involved in
virus release and budding efficiency [110].

Interestingly, betaretroviruses such as MPMV encode a phosphoprotein pp24 within
the Gag precursor, and its C-terminal cleavage produces the protein pp18 which con-
tains proline-rich motifs (PPPY). Deletion assays indicated that the phosphorylated residue
Y205 in pp18 is dispensable for capsid assembly, but is necessary for the viral release [112]. Im-
munoprecipitation experiments identified the presence of phosphoserines in pp18, [113,114]
displaying a redundant character. Similarly, for spumaviruses such as FV, mapping of
the p4 domain revealed that seven residues can be phosphorylated (Table 2), but a single
substitution of those residues displayed no influence on viral replication [115]. In gam-
maretrovirus, the phosphorylation of the RNA binding phosphoprotein (p12) within the
Gag precursor was found to be necessary for early events of viral life cycle and virion
production [116,117]. Mutagenesis experiments identified two residues which can be phos-
phorylated (S192 and S209). In particular, S192 mainly contributes to p12 phosphorylation
and its substitution by A impairs viral assembly and infectivity. However residual phos-
phorylation can also occur at other positions (Table 2) [117], thus suggesting a redundant
character of these modified amino acids. Indeed, the single substitution of one of these
residues induced different levels of phosphorylation in p12, displaying no overall effect on
the viral cycle [117], even though these PTMs were proposed to modulate p12 early and
late functions and p12 viral RNA-binding activity [117,118].

Table 2. Summary of phosphorylated positions in the different domains of retroviral Gag precursors.

Retrovirus Protein Residues Enzyme Observation and Associated (or Proposed) Roles References

RSV MA

Y15
PKC No effect on the viral cycle [105,106]Y46

S68

S106 PKC
Major site of phosphorylation
Involved in the recruitment of factors which promote
NC phosphorylation

[105,106]

Y155 PKC No effect on the viral cycle [105,106]

NC S529 Role for the specific interaction with the gRNA [106,107]

HTLV-1 MA S105 ERK2 Close to late domains (PPPY et PTAP)
Involved in viral release and budding efficiency [110]

MoMuLV p12

S137 - Redundancy
- Modulation of early and late functions and the
RNA-binding activity of p12

[117]
S148
S150
S173

S192
- S192 mainly contributes to p12 phosphorylation and its
substitution by A impairs viral assembly and infectivity [117]

S209

MPMV p18

Y205 Belongs to proline-rich motif (PPPY)
Necessary for the viral release [112]

S167
Redundancy [113,114]S176

S211

FV p4

S116

Redundancy [115]
S119
S120
S124
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In conclusion, similarly to HIV-1, the kinases PKC and ERK-2 are the main drivers
of retroviral Gag phosphorylation. Interestingly, ERK-2 can be incorporated into the viral
particle of HTLV-1. Globally, these PTMs generally seem to play a role in viral particle
release and in virus infectivity, even though the impact of the phosphorylation rate in
retroviral proteins is complicated by the redundancy of phosphorylated positions.

7. HIV-1 Pr55Gag Ubiquitination

Another crucial PTM for retroviral infectivity is ubiquitination. This PMT consists of
intracellular protein modification by adding one or more ubiquitin (Ub) protein(s) (for a
review see [119]). Ub is a 76-amino acid polypeptide, which has a conserved structure [120].
The Ub sequence contains seven K residues that can be used for subsequent Ub linkage
leading to polyubiquitination (for a review see [121]), even if the two most common
polyubiquitination chains consist in the formation of Ub chain connected to residues K48 or
K63 of Ub. Monoubiquitylation corresponds to a signal for DNA repair, and vesicle sorting
or signal transduction, while polyubiquitinated proteins are often targeted to the 26S
proteasome for degradation, or alternatively involved in regulation of the endocytosis of
ESCRT-dependent cargo proteins into Multi Vesicular Bodies (MVB) (for a review see [122])
and DNA damage response [123]. Ubiquitination can be reversed by deubiquitinating
enzymes (DUB) [124].

HIV-1 Pr55Gag is ubiquitinated in its domains at different levels (Table 3 and Figure 5). In-
deed, MA, CA, and NC are monoubiquitinated, while p2 can be mono or bi-ubiquitinated [125].
The cumulative mutations of ubiquitin acceptor sites were observed to cause generally
budding defects, even if the substitution of K residues by R in CA (Table 3) revealed very
limited effect on viral release, showing that these ubiquitination sites are likely redun-
dant [126]. Besides, it was observed that the level of Pr55Gag ubiquitination increases in
cellula when a full-length HIV-1 molecular clone is expressed in comparison to a Pr55Gag

expression plasmid, suggesting a role of other viral proteins in Pr55Gag ubiquitination [125].
Globally, the ubiquitination of Pr55Gag was found to be involved in the viral release and,
during HIV-1 assembly, viral particles incorporate free Ub proteins corresponding to
about 10% of the Pr55Gag level, and around 2–5% of ubiquitinated Pr55Gag are mono-
ubiquitinated [125,127–130]. When the level of free Ub in cells is reduced by proteasomal
inhibition, the number of free Ub in viral particles and the number of mono-ubiquitinated
residues in the p6 domain of Pr55Gag also decreased [125,127,131]. However free Ub incor-
poration into viral particles seems to be independent from the global Pr55Gag ubiquitination
state [132], and the ubiquitination level in virions increased upon overexpression of free
Ub [133]. Furthermore, ubiquitination seems to take place at the PM, and interestingly the
level of Pr55Gag mono-ubiquitination was found to be directly correlated with ability of the
precursor to bind the PM [134].

Table 3. Summary of ubiquitinations in HIV-1 Pr55Gag proteins.

Domain Residues Observation and Associated (or Proposed) Roles References

MA Mono-ubiquitination [125,126]

CA

K157
K162
K202
K263
K272
K290
K302
K314
K331
K335
K359

Mono-ubiquitination
Observed redundancy [125,126]
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Table 3. Cont.

Domain Residues Observation and Associated (or Proposed) Roles References

NC

K388
K391
K397
K403
K410
K411
K415
K424

Mono-ubiquitination [125,126]

p2 K436
K442 Mono or di-ubiquitination [125,126]

p6

Mono or di-ubiquitination.
Most ubiquitinated domain in Pr55Gag [125,126]

K475
Major target for mono-ubiquitination
No effect in the viral release and infectivity
Involved in global Pr55Gag ubiquitination

[125,132]

K481
Major targets for mono-ubiquitination
No effect on virus release and infectivity
Involved in the global Pr55Gag ubiquitination

[125,132]

S488F

Conformal changes: formation of a hydrophobic patch
in a-helix at the C-terminus of p6
Leads to strong interaction of Pr55Gag with the PM
This structure promotes L48 linked polyubiquitination

[104]

Figure 5. Ubiquitinylated residues in HIV-1 Pr55Gag. The domains of Pr55Gag are represented by
different colors (see Figure 4). Experimentally identified ubiquitinylated positions are highlighted in
light green. Potential ubiquitinylated positions are highlighted in light blue.

The C-terminal p6 domain is the most ubiquitinated domain in Pr55Gag [125], and K475
and K481 are the major targets. Even if these mono-ubiquitinated residues are neither
directly involved in virus release, nor in infectivity, they were found to be necessary to
promote the overall ubiquitination of Pr55Gag [132]. Besides, the mutation of the highly
conserved and phosphorylated S488 residue in p6 domain with F (S488F), which can
occur spontaneously during anti-retroviral treatments, has not only an impact on virus
morphogenesis, maturation and virion infectivity (Table 1) [87–89], but it can also in-
duce conformal changes in p6, resulting in an enhanced interaction of Pr55Gag with the
PM. This would lead to the polyubiquitination of the precursor and consequently to its
proteasomal degradation [104].

The p6 domain is known to be involved in the recruitment of host factors, such as
Tsg101 (Tumor susceptibility gene 101) and ALIX (ALG-2 interacting protein X), and ubiq-
uitination of those factors strongly promote viral budding [135]. In this frame, fusion
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experiments in which the p6 domain was coupled with Ub showed that the affinity of
Tsg101 for p6 in this case results in being strengthened [136], and the ubiquitination of
Pr55Gag can increase Tsg101 recruitment [137]. Besides, Tsg101 displays an N-terminal Ub
E2 variant (UEV) domain that shows homology with E2 Ub ligases, and that can specifically
bind Ub proteins, as well the PTAP late domain in Pr55Gag [136]. During assembly, the inter-
action of Pr55Gag with the PM promotes the intermolecular interaction between Tsg101 and
the PTAP domain in Pr55Gag [137]. In this conformation, the di-ubiquitinylated K63 of
Tsg101 was found to interact with p6, with the consequence of impairing the potential
polyubiquitination of the precursor at PM [137].

Finally, the ESCRT-III-associated ALIX protein is also ubiquitinated [128] and specifi-
cally interacts with the E3 ubiquitin-protein ligase NEDD4 that can bind the proline-rich
retroviral domain PPPY. The interaction between NEDD4 and the retroviral precursor
leads to the recruitment of the ESCRT-III complex, including the eukaryotic sucrose
non-fermenting protein 7 (Snf7), and the vacuolar protein sorting-associated proteins
Vps 2, Vps20 and Vps24, and Vps4 in order to promote retroviral release [138–141]. Since
in HIV-1 the PPPY domain is absent, ALIX recruits directly NEDD4 to facilitate this
step [128,129].

8. Gag Ubiquitination in Other Retroviruses

The role of ubiquitination in the retroviral cycle is not yet fully elucidated. Some retro-
viruses display a functional contribution of Ub modifications in virus release such as
MLV, MPMV or RSV, and for those viruses, it was shown that, similarly to what ob-
served for HIV-1 [131], the inhibition of proteasome not only induces a reduction of
the level of free Ubs in the cytoplasm, but also impairs the release of the viral particles
(Table 4) [127,132,133,142]. In addition, fusion experiments between RSV Pr76Gag and Ub,
or overexpression of Ub, displayed an increase in viral particle release [142], thus support-
ing the idea that ubiquitination of retroviral precursors is crucial for viral budding [133].
However, for other retroviruses such as MMTV or HTLV-1, to date it was not possible
to identify a precise role of ubiquitination [127] (Table 4). Besides, the inhibition of the
proteasome did not impair the budding of EIAV [127,143]. On the other hand, similarly
to HIV-1, EIAV particles contain free Ubs corresponding to 10–15% of Gag proteins. Like-
wise, the C-terminal p9 domain is mono-ubiquitinated and contains a YPDL late domain
which is involved in the recruitment of the ESCRT machinery [143,144]. Moreover, p9 also
contains an Ub-like motif (NVKEKD) that may contribute to virus release, thus suggesting
alternative release pathways for EIAV even if Ub quantity is low [133,144].

MMTV Gag is monoubiquitinated in its p8 domain, in CA, and is potentially di-
ubiquitinated in NC [127]. In comparison with other retroviruses, MMTV does not contain
late domains such as PPPY and PTAP, but an alternative PSAP late domain was found
in CA, although its functional role was not yet elucidated. Besides, YXXL motifs, which
also represent alternative late domains, were identified in MA and in pp21 viral factor.
Importantly, since Gag ubiquitination seem to take place mostly in regions close to the late
domains [133], it is possible that the presence of these alternative late domains in EIAV and
MMTV precursors promote virus release.

In HLTV-1, more than 40% of MA are ubiquitinated [111,145,146], and MA can be
mono- and di-ubiquitinated [146]. Furthermore, mutagenesis experiments identified K74 in
Pr53Gag as the main substrate for ubiquitination [146]. Indeed, substitution experiments in
which the K74 is replaced by an R resulted in a decreased release of infectious particles [146].
The ubiquitination of K74 could also play a role in the recruitment of NEDD4 [146], which
is also involved, through its interaction with the PPPY late domains, in the release of other
retroviruses such as MMPV [112], avian sarcoma virus (ASV) [147], and MLV [132,148].
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Table 4. Summary of ubiquitinations in the different domains of retroviral Gag proteins.

Retrovirus Domain Residues Associated (or Proposed) Roles References

HIV

About 100 free Ubs are incorporated into viral particles
2–5% mono-ubiquitinated [130,132–134]

Pr55Gag ubiquitination promotes the virus release
K475 and K481 in p6 domain are major targets
for ubiquitinations
Pr55Gag ubiquitination is correlated with the ability of the
precursor to bind the PM

[132,134]

MLV
Increases viral release and infectivity [127]

p12 PPPY late domain is involved in the recruitment of NEDD4 [148]

HTLV-1 MA

Ubiquitination of this domain has a crucial role in release [111,145,146]

40% of MA are ubiquitinated
MA can be mono- or di-ubiquitinated [111,145,146]

K74 Substrate for Pr53Gag ubiquitination [146]

MPMV PPPY late domain is involved in the recruitment of NEDD4 [112]

RSV

- Mono-ubiquitination is crucial for viral release
- Ubiquitylation is required for the recruitment of ESCRT
machinery and for the budding

[133,143,149]

- Contains free Ubs into mature particles
- Pr76Gag mono-ubiquitination is necessary for budding and
to recruit the ESCRT machinery

[142,149]

EIAV

10–15% of the molar level of the Gag protein of free Ub [143]

Proteasome inhibition: does not impair the release [143]

p9
Ub-like motif (NVKEKD)
Mono-ubiquitinated domain
Contains YPDL late domain [143,144]

MMTV

Proteasome inhibition: does not decrease the release [143]

MA (p10) YXXL Late domain [127]

pp21 YXXL Late domain [127]

p8 Mono-ubiquitinated [127]

CA (p27)
Mono-ubiquitinated [127]

PSAP domain [127]

NC (p14) Di-ubiquitinated [127]

PFV Encodes for a very restricted number of K residues [150]

In RSV particles, more than 100 free Ubs were found [142,149]. However, contrary
to other retroviruses, RSV displays free Ubs exclusively into mature viruses [149]. Since
Pr76Gag mono-ubiquitination was found to be necessary for budding and to recruit the
ESCRT machinery [142,149], it is thus possible that the presence of free Ubs could be
the result of a host-encoded and encapsidated deubiquitinating enzyme (DUB) [124].
Interestingly, this process was also observed to occur during budding or cells lysis [124].
Finally, Gag precursors from spumavirus encode a very limited number of K residue.
This observation suggests that Gag of spumavirus could not be a favorable substrate for
the ubiquitination machinery [150].

9. HIV-1 Pr55Gag Sumoylation

Another modification important for retroviral infectivity is sumoylation, which is a
reversible PTM and consists of intracellular protein modification by a covalently attached
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small Ub related modifier (SUMO) protein to a K substrate (for reviews see [151,152]).
Even though SUMO is structurally comparable to Ub (Figure 6a), it presents many dif-
ferences in amino acids sequence (only 18% of homology) (Figure 6b) [152]. This PTM is
usually involved in the maintenance of genomic integrity, with a role in repair of damaged
DNA, and in the regulation of transcription and in gene expression. Like ubiquitination,
sumoylation is involved in intracellular signal transduction and can regulate biological
processes such as apoptosis, immune response, and carcinogenesis. Besides, sumoylation
controls protein localization and it can induce protein conformational changes. SUMOs
are highly conserved in eukaryotes, and four SUMO isoforms (SUMO-1 to SUMO-4) are
present in mammals [152–154] (Figure 6b). Similarly, to Ub, the C-terminus region of
SUMO-1 is linked to ε-amino groups of K residues in the target protein [155,156]. SUMO-
1 was interestingly found to counterbalance the effect of ubiquitination [157]. SUMO-2 and
SUMO-3 are mainly involved in the cellular response to environmental stresses [156] and
display very similar sequences with more than 95% identity [151,152,156]. For this reason,
they are often named SUMO-2/3. Finally, SUMO-4 is less well known, and its mRNA had
been found in few organs such as kidney, spleen, and lymph nodes [152].

To sumoylate a protein, different successive biochemical reactions are required [152,158–160]
(Figure 7). Generally, the consensus sequence for K sumoylation is ψKXD/E (ψ stands for
a hydrophobic residue). Nevertheless, targets with non-consensus acceptor sites have also
been identified [151,152].

Figure 6. Comparison between Ub and Ub-like proteins: SUMO and ISG15. (a) Structural comparison
between Ub (heavy blue, PDB: 1A5R), SUMO-1 (ligth blue, PDB: 2QHO), and ISG15 (green, PDB:
3PHX). They contain a typical ββαββαβ fold, even if SUMO-1 has long unstructured N-terminal
domain which is absent in Ub. ISG15 is composed with two Ub-like domains in N- (TSG15N) and
C- (TSG15C) terminus. (b) Amino acid sequence alignments of Ub, the four SUMO homologs and
ISG15 from humans. Identities and similarities are indicated between Ub and SUMO (blue residues
into Ub sequence) and between Ub and ISG15 (shaded green residues in Ub and ISG15). Differences
between SUMO-2 and 3 are highlighted in pink. The red vertical line represents the GG end free after
the maturation step required for sumoylation. The amino acid sequence homology between SUMO
and Ub is 18% [152], and 30% between Ub and ISG15 [161].
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The p6 domain of HIV-1 Pr55Gag is sumoylated by SUMO-1, which covalently links
K475 in the consensus sequence (ψKXE: QKQE) (Table 5). The K475R substitution par-
tially inhibits binding of the precursor to the SUMO-conjugating enzyme E2 (Ubc9) [162],
suggesting that more than one Pr55Gag domain could be involved in the recruitment of
Ubc9 [162,163]. It was proposed that SUMO-Ubc9 could be involved in intracellular traf-
ficking of Pr55Gag [164]. Indeed, after translation, the first trafficking complex intermediate
observed in the perinuclear region is composed of Pr55Gag, kinesin family motor 4 (KIF4),
Ubc9, and SUMO-1 [164]. In contrast, other studies suggested that the recruitment of
Ubc9 would be required for the late stages of viral replication, thus participating to Env
incorporation into viral particles [163]. Moreover, the overexpression of SUMO-1 was
observed to globally decrease viral infectivity, and sumoylation could be then involved in
the negative regulation of viral replication [162]. Interestingly, sumoylation and ubiquitina-
tion co-regulate each other [165], and sumoylation and mono-ubiquitination of p6 were
both found to occur on K475. It is thus possible that SUMO-1 interaction with p6 protects
Pr55Gag from proteasomal degradation [162]. Overproduction of SUMO-1 should have no
direct effect on viral assembly, but if sumoylation competes with ubiquitination, subsequent
decrease of Tsg101 recruitment could produce a negative effect on budding [162].

Figure 7. The cycle of sumoylation. This modification is catalyzed by different enzymes and
consists in ligation of SUMO protein to K residues of protein substrates. (1) SUMO is maturated by
Ub-like specific protease 1 (Ulp1) or human sentrin-specific protease 1 (SENP1). This proteolytic
cleavage exposes the C-terminal GG motif required for the activation step. (2) SUMO is activated
by a heterodimer composed with SAE1/SAE2 (Aos1/Uba2) to form the SUMO (E1/E2)-activating
enzyme. Heterodimer is bound via a thioester bond between the C-terminal G residue of SUMO and
the catalytic C of SAE2. (3) SUMO is transferred to the catalytic C of SUMO-conjugating enzyme
E2 (or Ubc9) by a transesterification reaction. (4) SUMO is bound to the target protein by Ubc9 in
association with SUMO E3 ligase. Ubc9 forms an amide bond between the SUMO C-terminus and
ε-amino groups of the acceptor L residues in the target protein. (5) These reactions are reversible by
means of the Ulp or SENP proteases.

10. Gag Sumoylation in Other Retroviruses

As for HIV-1, other retroviruses are sumoylated (Table 5); however, the impact of
sumoylation is not yet fully elucidated. The Ubc9 factor was found to interact with MLV
and MPMV Gag proteins [166,167]. Similarly, to HIV-1, in MPMV this factor was suggested
to be involved in the trafficking of Pr78Gag to the PM [167]. Besides, the CA domain of
MoMuLV Gag was shown to interact not only with Ubc9 [168], but also with PIASy, a SUMO
E3 ligase [168]. These interactions, leading to CA sumoylation during the early stages of
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the viral life cycle after reverse transcription, might have a role in viral replication [168].
Single K substitutions have generally no effect on the viral cycle, suggesting redundancy
between sumoylable positions. On the other hand, the modification of K218 with an R
residue was found to reduce the overall viral replication, without affecting the overall
SUMO-1 rate on Gag [168].

Table 5. Summary of sumoylated positions in retroviral Gag proteins.

Retrovirus Domains Residues Associated (or Proposed) Roles References

HIV-1

Sumoylation and ubiquitination co-regulate each other [165]

p6

More than one domain should be involved in Ubc9 recruitment [162,163]

SUMO-Ubc9 could be involved in intracellular trafficking of Pr55Gag

- in the early phase: perinuclear region or
- in the late stages of replication: potential role in Env incorporation

[163,164]

K 475
Sumoylation could be then involved in the negative regulation of
viral replication [162]

Belongs to QKQE consensus sequence
Sumoylation and mono-ubiquitination of p6 can both occur on K475 [162]

MoMuLV CA CA domain of MLV Gag interacts with Ubc9 and with PIASy [168]

MPMV Recruitment of Ubc9 involved in the active transport of MPMV
Pr78Gag to the PM [167]

RSV CA K 244 Its substitution with non sumoylable R reduces the overall
viral infectivity [142]

EIAV

MA
K 13
K 86

K 107

Targets of sumoylation [144,169]
CA K 282

K 297

NC

K 368
K 373
K 388
K 420
K 423

p9 K 465 Constitutes the main target for sumoylation [144,169]

In the EIAV p9 domain of Gag, K465 is the main target for sumoylation, and muta-
tional experiments showed that this PTM is involved in the regulation of viral replication
and infectivity [144,169]. Moreover, sumoylation of K465 seems to regulate the sumoy-
lation of other K residues in different domains of the precursor, such as the MA, the CA
and NC (Table 5) [169]. However, a specific role of all those PTMs in viral replication
remains to be clarified. Finally, K244 in CA of RSV Pr76Gag was found to be sumoylated,
and its substitution with a non-sumoylable R residue (K244R) displayed decreased viral
infectivity [142].

Similarly, to ubiquitination, the exact role of sumoylation is still a matter of debate
and might be different among retroviruses. Moreover, sumoylation is still very difficult
to detect, and thus further technological advances will be required to better identify and
characterize this PTM.

11. Retroviral Gag Protein ISGylation

Besides sumoylation, there exists another Ub-like protein, which is the interferon
stimulated gene 15 (ISG15) (for reviews see [161,170]). ISG15 was identified in mammals
and corresponds to a 17 kDa protein induced by type I IFN (α and β) ([171,172], for a
review see [173]) (Figure 8) that contributes to regulation of the cell cycle, and plays a
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role in stress response, signaling transduction, and immune response. The IFN response
starts with the binding of type I IFN to cell specific receptors, leading to the activation of
the Janus kinase (JAK), the signal transducers and the activators of transcription (STAT)
signaling pathway (for a review see [174]), which stimulate the transcription of several
hundreds of ISGs, including ISG15. This last one presents a sequence homology with Ub,
as it contains two Ub-like domains (Figure 6b). The cycle of ISGylation is comparable with
the one of Ub (Figure 8). Indeed, three distinct biochemical reactions leads the binding
between ISG15 and the target protein. This reaction is reversible and the Ub specific
peptidase 18 (USP18), also called UBP43, is involved in the reverse reaction, thus acting as
an ISG15 deconjugating enzyme [175].

Figure 8. The cycle of ISG15. Viral infection induces the expression of type I IFN. These molecules
activate the JAK/STAT signaling pathway, which is responsible for the activation of the ISG15 pro-
moter (for reviews see [161,172]). The ISG15 is maturated by ISG15-specific proteases which cleave
the C-terminal extension from ISG15 precursor. (1) The mature ISG15 is activated by UBE1L (E1).
It corresponds to the formation of a thioester bond between ISG15 and E1. (2) ISG15 linked to UBE1L
is transferred to UbcH8 (E2). (3) Finally, E2 recruits an E3 ligase such as HERC5, transferring the
activated Ub from the E2 to the K substrate (ligation reaction). (4) The reaction can be reverted via
UBP43. Indeed, it cleaves ISG15 molecules that are conjugated to the substrate proteins via isopeptide
bonds (adapted from [161]).

Interestingly, recent studies on HIV-1 gave first information about the role of ISG15 in
viral replication. Indeed, suppression of IFN produced by dendritic cell (pDC2) induces
the rapid progression of viral infection [176], thus displaying an antiviral role for ISG15.
Moreover, in vitro studies showed that ISG15 would inhibit not only the early [177,178]
but also the late steps [179,180] of viral replication. The co-transfection with plasmids
expressing ISG15 and HIV-1, inhibited the release of viruses, while no impact was seen
on HIV-1 proteins production [181]. Moreover, the overexpression of ISG15 and of the
activating enzyme UBE1 was observed to impair HIV-1 replication [181]. Interestingly,
in these assays, the ubiquitination of Pr55Gag and Tsg101 also resulted affected, with the
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consequent abolition of the interactions between the p6 late domain and Tsg101. This im-
pairs the assembly of viral particles and their release, and EM assays showed that immature
viruses accumulate of at the PM [180,181]. Furthermore, the production of viral particles
was also found to be impaired by the E3 ligase HERC5. Interestingly, this inhibition was
not found to alter the trafficking of HIV-1 Gag to the PM, but the budding at the PM [180].
Since HERC5 is described to restrict also MLV Gag particle production, it results that
HERC5 and more generally, the response ISG15, can be considered as a restrictive factor
against retrovirus [180].

In general, ISG15 may affect many other RNA viruses and other retroviruses such as
the avian sarcoma leukosis virus (ASLV) (for review see [182]). Similar to HIV-1, ISG15 in-
hibits the release of ASLV, and the ubiquitination of ASLV Gag precursor. In this context the
E3 ubiquitin-protein ligase, NEDD4 was found to maintain its ability to bind the late motif
in ASLV Gag [179]. Thus, ISG15 does not seem to prevent directly the interaction between
NEDD4 and ASLV Gag, but likely it interferes with the Ub ligase activity of NEDD4, which
inhibits ubiquitination [183] even if the precise mechanism remains unclear. Alternatively,
it was proposed that the impaired budding of ASLV and HIV-1 could be due to the IS-
Gylation of the ESCRT-III component Charged Multivesicular body Protein 5 (CHMP5)
(Figure 9a,b). Indeed, during retroviral budding, the ESCRT-III complex polymerizes at
PM in interaction with Pr55Gag. This complex then recruits the inactive dimer form of the
ATPase Vps4, which requires it to recruit ATP and its coactivator protein, Vps-associated
protein LIP5, to achieve its activated double hexameric-ring structure. This leads to the
disassembly of the ESCRT-III complex, thus promoting the viral budding (Figure 9a). Ac-
cording to the proposed model, ISGylation of CHMP5 was found to impair Vps4 binding
to LIP5, and thus Vps4 would remain in its inactivated conformation while ESCRT-III
complexes would be trapped at the PM, thus blocking virus budding [179] (Figure 9b).

Figure 9. Model of the impact of ISG15 on Vps4 function during retroviral budding. (a) Normal
assembly and budding phase during the retroviral cycle. Vps4 activity depends on its oligomeric state.
In its dimeric form, Vps4 is cytosolic and inactive. During retrovirus assembly at PM, upon polymer-
ization of the ESCRT-III complex with the p6 domain of HIV-1 Pr55Gag, ATP-bound Vps4 is recruited
at the PM. At this step, Vps4 interacts with the coactivator protein LIP5, which is bound to CHMP5,
and achieves its double hexameric-ring structure. Then, ATP hydrolysis by the Vps4-LIP5 oligomer
releases the ESCRT-III complexes from PM and the dissociation of the ESCRT complex coincides with
the membrane fission event that releases retrovirus particles. (b) ISG15 inhibits the budding phase.
When CHMP5 is ISGylated, this prevents the interaction between Vps4 and LIP5 by excluding LIP5.
In the absence of the Vps4-LIP5 complex, the ESCRT-III complex remains trapped at the PM and the
viral release is thus impaired (adapted from [179]).
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Similar mechanisms can occur in the context of other retroviruses [179].

12. Post-Translational Methylation of Retroviral Gag Proteins

Finally, retroviral Gag precursors are also subjected to methylation. This covalent
PTM is reversible [184]. It consists of the transfer of a methyl group from a donor, the S-
adenosylmethionine (SAM), to a target K residue, and this reaction is catalyzed by the
K-methyltransferases (for reviews see [185,186]). The same residue can be mono-, di- or tri-
methylated, thus conferring a signature which can be specifically recognized by transacting
factors named “readers”, whose recruitment can promote signaling pathways, regulation of
protein–protein interactions, transcription, T-cells activation [187] and subcellular localiza-
tion [188]. Interestingly, immunoblotting of the CA domain of HIV-1 in presence of AdOx,
an inhibitor of methylation, showed an increase of mature CA, suggesting that methylation
of HIV-1 Pr55Gag could affect proteolytic maturation and likely the viral assembly [189].
The basic region of the NC domain of HIV-1 Pr55Gag is also methylated, and this modifi-
cation was proposed to be involved in the subnuclear localization of the precursor [190].
This same PMT on NC would also decrease the rate of tRNALys3 annealing to the PBS
region in gRNA, thus inducing defects in the reverse transcription step [191]. Similarly,
the R540 residue in the NC domain of PFV Pr74Gag was found to be methylated, and this
modification seems to be required for the subnuclear localization of the precursor [192].

13. Conclusions

PTMs create a vast diversity in proteins and thus regulate their functions. Globally,
PTMs play a role in many processes such as cell signaling, and protein–protein and protein–
RNA interactions. Besides, PTMs are crucial for the life cycle of many viruses and the
characterization of viral PTMs would provide a better understanding of the mechanisms
of viral processes. HIV-1 Pr55Gag, as many other retroviral Gag precursors, displays
several PTMs in its different domains (Figure 10). These PTMs include myristoylation,
phosphorylation, ubiquitination, sumoylation, and methylation. All these PTMs can have
either antagonistic or cooperative roles, thus allowing fine regulation of the viral cycle.
However, up to now, the role of many of these modifications is not fully elucidated and
further investigations will be required to better understand their contributions in the
viral life cycle. One of the main challenges to study PTMs carried by proteins consists of
the development of refined proteomic technologies, allowing the specific detection and
characterization of the modifications. The improved knowledge of those regulations would
be useful in the future to identify new targets for antiretroviral treatments.

Figure 10. Summary of post-translational modifications of HIV-1 Pr55Gag residues. The domains
of Pr55Gag are represented by different colors (see Figure 4). Experimentally identified modified
residues are highlighted: myristoylation (pink), phosphorylation (yellow), ubiquitination (light blue),
potential ubiquitinations (light green), and sumoylation (black).
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