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Abstract
Despite the remarkable strides made in artifi-
cial intelligence, current object recognition mod-
els still lag behind in emulating the mecha-
nism of visual information processing in hu-
man brains. Recent studies have highlighted the
potential of using neural data to mimic brain
processing; however, these often reply on in-
vasive neural recordings from non-human sub-
jects, leaving a critical gap in our understand-
ing of human visual perception and the devel-
opment of more human brain-like vision mod-
els. Addressing this gap, we present, for the
first time, ‘Re(presentational)Al(ignment)net’, a
vision model aligned with human brain activity
based on non-invasive EEG recordings, demon-
strating a significantly higher similarity to human
brain representations. Our innovative image-to-
brain multi-layer encoding alignment framework
not only optimizes multiple layers of the model,
marking a substantial leap in neural alignment,
but also enables the model to efficiently learn and
mimic human brain’s visual representational pat-
terns across object categories and different neural
data modalities. Furthermore, we discover that
alignment with human brain representations im-
proves the model’s adversarial robustness. Our
findings suggest that ReAlnet sets a new prece-
dent in the field, bridging the gap between arti-
ficial and human vision, and paving the way for
more brain-like artificial intelligence systems.

1. Introduction
While current vision models in artificial intelligence (AI) are
advanced, they still fall short of capturing the full complexity
and adaptability inherent in the human brain’s information
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Figure 1. ReAlnet aligned with human neural signals as a more
human brain-like vision model. (A) An overview of ReAlnet
alignment framework. Adding an additional multi-layer encoding
module to an ImageNet pre-trained CORnet-S, the outputs contain
the category classification results and the generated EEG signals.
Using training EEG data, we aim to minimize both classification
loss and generation loss, enabling CORnet to not only stabilize
the classification performance but also effectively learn human
brain features and transform into ReAlnet. (B) Using test EEG
data, we measure the representational similarity between the model
RDM and timepoint-by-timepoint EEG neural RDMs for early and
late layers in ReAlnet, CORnet-S, ResNet-101, and CLIP (with a
ResNet-101 backbone) respectively (early layer: the first layer; late
layer: the layer before the classification layer in ReAlnet, CORnet,
and ResNet, and the last visual layer in CLIP), and ReAlnet shows
the highest similarity to the human brain.
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processing. Deep convolutional neural networks (DCNNs)
have reached a performance level in object recognition that
rivals human capabilities (Lecun et al., 2015), and many
studies have identified similarities in the hierarchical struc-
ture between DCNNs and the ventral visual stream (Cichy
et al., 2016; Güçlü & van Gerven, 2015; Kietzmann et al.,
2019; Lu & Golomb, 2023a; Yamins et al., 2014). However,
the alignment between DCNNs and human neural repre-
sentations remains deeply inadequate, whether compared
with human electroencephalography (EEG) or functional
magnetic resonance imaging (fMRI) data. Enhancing the
resemblance between visual models and the human brain
has become a critical concern for both computer scientists
and neuroscientists. From a computer vision perspective,
brain-inspired models often exhibit higher robustness and
generalization, crucial for realizing true brain-like intelli-
gence; meanwhile, from a cognitive neuroscience perspec-
tive, models that more closely mirror brain representations
can significantly aid in our exploration of the brain’s visual
processing mechanisms.

Given these challenges and limitations, the pivotal question
arises is how we can leverage our understanding of the
human brain to enhance current AI vision models. Con-
ventional approaches have limitations in emulating the com-
plexity of the human brain’s visual information processing,
even with increased model depth and layers (Rajalingham
et al., 2018). This limitation has prompted the exploration
of new methodologies. Researchers have attempted vari-
ous strategies, including altering the model’s architecture
(adding recurrent structures (Kar et al., 2019; Kietzmann
et al., 2019; Kubilius et al., 2019; Spoerer et al., 2017; Tang
et al., 2018), dual-pathway models (Bai et al., 2017; Choi
et al., 2023; Han & Sereno, 2022; 2023; Sun et al., 2017),
topographic constraints (Finzi et al., 2022; Lee et al., 2020;
Lu et al., 2023; Margalit et al., 2023) or feedback pathways
(Konkle & Alvarez, 2023) ) and changing the training task
(using self-supervised training (Konkle & Alvarez, 2022;
Prince et al., 2023) or 3D task models (O’Connell et al.,
2023)). However, limited studies have focused on directly
using neural responses to complex visual information as
feedback to improve the model’s similarity to human brains.
Our research focuses on a third approach – utilizing hu-
man brain neural activity data to realize brain-like models.
This approach represents a more direct alignment strategy
between models and the human brain, unconstrained by
variations in model structure or pre-training methods, po-
tentially marking a crucial step towards achieving greater
resemblance to the human brain. Thus, our central research
question emerges: Can we use human brain activity to
align ANNs on object recognition and achieve more hu-
man brain-like vision models?

Related Work. Several previous studies have already
started to try to apply neural data to machine learning es-

pecially deep learning models. The earliest attempt was
to apply human fMRI signals to amend the classification
boundary of SVMs and CNNs to achieve better category
classification performance (Fong et al., 2018). Some more
recent studies started to let the models learn neural repre-
sentations. One common way is to add a similarity loss to
increase the representational similarity between models and
neural activity (neural recordings from mouse V1, monkey
V1 or IT) during the training (Dapello et al., 2023; Federer
et al., 2020; Li et al., 2019; Pirlot et al., 2022). Another
strategy from (Safarani et al., 2021) is to add an additional
task based on an encoding module to predict monkey V1
neural activity. Both similarity-based method and multi-task
framework can achieve more brain-like representations and
improve model robustness. However, these neural align-
ment studies have two key challenges: (a) Dependence on
animal instead of human neural activity. This limits the di-
rect applicability and relevance of findings to human visual
processing, and it is harder to enable models to effectively
learn the human brain’s representational patterns based on
the low data quality. (b) Single brain region or single model
layer alignment. On the one hand, previous studies could
only align a single early or late layer in CNN and/or align
the model with a certain brain region, V1 or IT. On the other
hand, it remains unclear which specific brain region should
align with which particular layer of the model, leading to
potential misalignment and inaccuracies.

Additionally, a recent study focused on video emotion
recognition first applied a representational similarity-based
method to align CNN with human fMRI activity (Fu et al.,
2023). However, it is noteworthy that they focused on sim-
pler emotion recognition tasks, may fall short in the more
complex and diverse domain of object recognition which
has larger space and multitude of object categories. There-
fore, our work addressed this by employing an additional
encoding module that goes beyond mere similarity. This
module predicts human neural activity and is trained to au-
tonomously extract complex visual features, offering a more
effective approach for aligning the model with human neural
representations in object recognition.

Contributions. To bridge the gap between AI vision and
human vision, we propose a more human brain-like vision
model, ReAlnet, effectively aligned with human brain rep-
resentations based on a novel and effective encoding-based
multi-layer alignment framework. We summarize our con-
tributions and novel findings as follows:

• To the best of our knowledge, we are the first to directly
align object recognition models using non-invasive neu-
ral data recorded from human brains, which opens new
possibilities for enhancing brain-like representations
in models based on human brain activity.
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• We propose a novel image-to-brain encoding-based
representational alignment framework that optimizes
multiple layers of the network simultaneously, which
effectively improves the model’s similarity to human
brain representations across different modalities (both
human EEG and fMRI).

• Our representational alignment framework allows us
to obtain a personalized vision model by aligning with
individual’s neural data.

• Aligning with human neural representations can im-
prove the model adversarial robustness.

2. Re(-presentational)Al(-ignment)net
Here we describe the human neural data (EEG data for the
alignment, and both EEG and fMRI data for testing the sim-
ilarity between models and human brains) we used in this
study, the alignment pipeline (including the structure, the
loss functions, and training and test methods) for aligning
CORnet representations with human neural representations
to obtain ReAlnet, and the evaluation methods for measur-
ing representational similarity between models and human
brains and adversarial robustness.

2.1. Human EEG data for representational alignment

Human EEG data were obtained from an EEG open dataset,
THINGS EEG2 (Gifford et al., 2022), including EEG data
from 10 healthy human subjects in a rapid serial visual
presentation (RSVP) paradigm. Stimuli were images sized
500 × 500 pixels from THINGS dataset (Hebart et al., 2019),
which consists of images of objects on a natural background
from 1854 different object concepts. Before imputing the
images to the model, we reshaped image sizes to 224 ×
224 pixels and normalized the pixel values of images to
ImageNet statistics. Subjects viewed one image per trial
(100ms). Each participant completed 66160 training set
trials (1654 object concepts × 10 images per concept ×
4 trials per image) and 16000 test set trials (200 object
concepts × 1 image per concept × 80 trials).

EEG data were collected using a 64-channel EASYCAP and
a BrainVision actiCHamp amplifier. We use already pre-
processed data from 17 channels (O1, Oz, O2, PO7, PO3,
POz, PO4, PO8, P7, P5, P3, P1, Pz, P2) overlying occipital
and parietal cortex. We re-epoched EEG data ranging from
stimulus onset to 200ms after onset with a sample frequency
of 100Hz. Thus, the shape of our EEG data matrix for each
trial is 17 channels × 20 time points. and we reshaped
the EEG data as a vector including 340 values for each
trial. Before the model training and test, we averaged all the
repeated trials (4 trials per image in the training set and 80
trials per image in the test set) to obtain more stable EEG
signals.

It is worth noting that the training and test sets do not overlap
in terms of object categories (concepts), which means that
the performance of ReAlnet trained on the training set, when
evaluated on the test set, can effectively reveal the model’s
generalization capability across different object categories.

2.2. Human fMRI data for cross-modality testing

To demonstrate that our approach of aligning with human
EEG not only enhances the model’s similarity to human
EEG but indicates that ReAlnet has effectively learned the
human brain’s representational patterns more broadly, we
also performed cross-modal testing, testing ReAlnet on data
from a different modality (fMRI), from a different set of
subjects, viewing a different set of images. The fMRI data
originate from (Shen et al., 2019). This Shen fMRI dataset
recorded human brain fMRI signals from three subjects
while they focused on the center of the screen viewing nat-
ural images sourced from ImageNet. We selected he test
set from Shen fMRI dataset, which comprises fMRI signals
of each subject viewing 50 images of different categories,
with each image being viewed 24 times. We averaged the
fMRI signals across the 24 repeated trials to obtain more sta-
ble brain activity for each image observation and extracted
signals from five regions-of-interest (ROIs) for subsequent
comparison of model and human fMRI similarity: V1, V2,
V3, V4, and the lateral occipital complex (LOC).

2.3. Image-to-brain encoding-based alignment pipeline

Basic architecture of ReAlnet: We have chosen the state-
of-the-art CORnet-S model (Kubilius et al., 2018; 2019)
as the foundational architecture for ReAlnet, incorporating
recurrent connections akin to those in the biological visual
system and proven to more closely emulate the brain’s visual
processing. Both CORnet and ReAlnet consist of four visual
layers (V1, V2, V4, and IT) and a category decoder layer.
Layer V1 performs a 7 × 7 convolution with a stride of 2,
followed by a 3 × 3 max pooling with a stride of 2, and
another 3 × 3 convolution. Layer V2, V4, and IT each
perform two 1 × 1 convolutions, a bottleneck-style 3 ×
3 convolution with a stride of 2, and a 1 × 1 convolution.
Apart from the initial Layer V1, the other three visual layers
include recurrent connections, allowing outputs of a certain
layer to be passed through the same layer several times
(twice in Layer V2 and IT, and four times in Layer V4).

EEG generation module: In addition to the original re-
current CNN structure, we have added an EEG generation
module designed to construct an image-to-brain encoding
model for generating realistic human EEG signals. Each vi-
sual layer is connected to a nonlinear N × 128 layer-encoder
(Enc-V1, Enc-V2, Enc-V4, and Enc-IT correspond to Layer
V1, V2, V4, and IT) that processes through a fully connected
network with a ReLU activation. These four layer-encoders
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are then directly concatenated to form an N × 512 Multi-
Layer Visual Encoder, which is subsequently connected to
an N × 340 EEG encoder through a linear layer to generate
the predicted EEG signals. Here N is the batch size.

Therefore, we aim for the model to not only perform the
object classification task but also to generate human EEG
signals which can be highly similar to the real EEG signals
when a person views the certain image through the EEG
generation module with a series of encoders. During this
process of generating brain activity, ReAlnet’s visual layers
are poised to effectively extract features more aligned with
neural representations.

Alignment Loss: Accordingly, the training loss LA of our
alignment framework consists of two primary losses, a clas-
sification loss and a generation loss with a parameter β that
determines the relative weighting:

LA = LC + β · LG (1)

LC represents the standard categorical cross entropy loss
for model predictions on ImageNet labels:

LC = −
N∑
i=1

yilog(pi) (2)

Here, yi represents the i-th image, and pi represents the
probability that model predicts the i-th image belongs to
class i out of 1000 categories. However, the correct Ima-
geNet category labels for images in THINGS dataset are
not available. Therefore, we adopt the same strategy as in
(Dapello et al., 2023), using the labels obtained from the
ImageNet pre-trained CORnet without neural alignment as
the true labels to stabilize the classification performance of
ReAlnet.

LG is the generation loss, which includes a mean squared er-
ror (MSE) loss LMSE and a contrastive loss LCont between
the generated and real EEG signals. This contrastive loss
is calculated based on the dissimilarity (1 minus Spearman
correlation coefficient) between generated and real signals,
aiming to bring the generated signals from the same im-
age (positive pairs) closer to the corresponding real human
EEG signals and make the generated signals from different
images (negative pairs) more distinct. LG is calculated as
followed:

LG = LMSE + LCont (3)

LMSE =
1

N

N∑
i=1

(Si − Ŝi)
2 (4)

LCont =
1

N

N∑
i=1

[1− p(Si, Ŝi)]

− 1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

[1− p(Si, Ŝj)]

(5)

Here, Si and Ŝi represent the generated and real EEG signals
corresponding to the i-th image.

Training procedures: Unlike CORnet which trained on
the same ImageNet dataset, ReAlnet additionally trained on
individual EEG data consists of 10 personalized ReAlnets,
1 per EEG subjects. Each network were trained to mini-
mize the alignment loss including both classification and
generation losses with a static training rate of 0.00002 for
30 epochs using the Adam optimizer. We used a batch size
of 16, meaning the contrastive loss computed dissimilari-
ties of 256 pairs for each gradient step. Also, we trained
various ReAlnets using four different β weights (β = 1, 10,
100, 1000) separately. In total, we trained 40 ReAlnets (4 β
weights × 10 subjects).

Representational similarity analysis (RSA): RSA is used
for representational comparisons between models and hu-
man brains (Kriegeskorte et al., 2008) based on first comput-
ing representational dissimilarity matrices (RDMs) for mod-
els and human neural signals, and then calculating Spearman
correlation coefficients between RDMs from two systems.

To evaluate the similarity between models and human EEG,
the shape of each RDM is 200 × 200, corresponding to 200
images in THINGS EEG2 test set. For EEG RDMs, we
applied decoding accuracy between two image conditions
as the dissimilarity index to construct EEG RDM for each
timepoint and each subject. For model RDMs, we input 200
images into each model and obtained latent features from
each visual layer. Then, we constructed each layer’s RDM
by calculating the dissimilarity using 1 minus Pearson corre-
lation coefficient between flattened vectors of latent features
corresponding to any two images. To compare the represen-
tations, we calculated the Spearman correlation coefficient
as the similarity index between layer-by-layer model RDMs
and timepoint-by-timepoint neural EEG RDMs.

To evaluate the similarity between models and human fMRI,
the shape of each RDM is 50 × 50, corresponding to 50
images in Shen fMRI dataset test set. For fMRI RDMs,
we calculated 1 minus Pearson correlation coefficient be-
tween voxel-wise activation patterns corresponding to any
two images as the dissimilarity index in the RDM for each
ROI and each subject. For model RDMs, similar to the
EEG comparisons above, we obtained the 50 × 50 RDM
for each layer from each model. Then, we calculated the
Spearman correlation coefficient as the similarity index be-
tween layer-by-layer model RDMs and neural fMRI RDMs
for different ROIs, assigning the final similarity for a certain
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Figure 2. ReAlnets show higher similarity to human EEG representations. (A) Representational similarity time courses between human
EEG and models for different layers respectively. Black square dots at the bottom indicate the timepoints where ReAlnet vs. CORnet were
significantly different (p < .05). Shaded area reflects ±SEM. (B) Similarity improvement and similarity improvement ratio of ReAlnets
compared to CORnet at the similarity peak timepoint and the average during 50 to 200ms time-window. Each circle dot indicates an
individual ReAlnet.

brain region as the highest similarity result across model
layers due to the lack of a clear correspondence between
different model layers and brain regions. All RSA analyses
were implemented based on NeuroRA toolbox (Lu & Ku,
2020).

Adversarial attacks: For performing white box adversarial
attacks, we used Fast Gradient Sign Attack (FGSA). We
evaluated top-5 classification accuracies on ImageNet with
epsilon ranged from 0 to 0.06 for each model.

3. Results
Our core focus in this study is to investigate whether align-
ing the model with individual neural representations of hu-
mans can enhance the model’s similarity to the human brain
and its adversarial robustness in white-box testing scenarios.
In Section 3.1 to 3.4, we primarily present the results of the
aligned ReAlnets with β = 100. In Section 3.5, we compare
the performance of ReAlnet under different β values. In
Section 3.6, we show the results of our control experiments.

3.1. Improved similarity in ReAlnets to Human EEG

Here, for each of the 10 human subjects, we calculated
(1) the similarity between their EEG data and the single
CORnet, and (2) the similarity between their EEG data and
the subject-matched ReAlnet. ReAlnets show significantly
higher similarity to human EEG neural dynamics for all four
visual layers (Layer V1: 70-130ms and 160-200ms; Layer

V2: 60-200ms; Layer V4: 60-200ms; Layer IT: 70-160ms)
than the original CORnet without human neural alignment
(Figure 2A). Further statistical analysis of each layer’s simi-
larity improvement (ReAlnet - CORnet) and improvement
ratio ((ReAlnet - CORnet) / CORnet) also indicate that at
the similarity peak timepoint, there is a maximum of an 8%
similarity improvement and an 80% improvement ratio, with
the average improvement for the 50-200ms time-window
being over 5% and the average improvement ratio over 40%
(Figure 2B). Additional comparisons also show that ReAl-
net is more human brain-like than not only CORnet, but also
ResNet and CLIP (Figure 1B).

These results suggest three findings: (1) Our multi-layer
alignment framework indeed improves all layers’ similarity
to human EEG representations. (2) Every ReAlnet with
individual neural alignment exhibits improved similarity to
human EEG compared to the basic CORnet. (3) ReAlnets
demonstrate the generalization of improvement in human
brain-like similarity cross object categories, as the image
categories used for testing were entirely absent during the
alignment training.

3.2. Improved similarity in ReAlnets to Human fMRI

Although ReAlnet demonstrates higher similarity to human
EEG, a question arises: Does ReAlnet learn representations
specific to EEG, or more general neural representations of
the human brain? To ensure that our alignment framework
enables the model to learn representations beyond the sin-
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Figure 3. ReAlnets show higher similarity to human fMRI representations. (A) Representational similarity between three subjects’ fMRI
activity of five different brain regions and models respectively. Asterisks indicate significantly higher similarity of ReAlnet than that of
CORnet (p < .05). (B) Correlation of similarity improvement between ReAlnet vs. human EEG and ReAlnet vs. human fMRI. Each
circle dot indicates an individual ReAlnet.

gle modality of EEG, we utilized additional human fMRI
data to evaluate the model’s cross-modality representational
similarity to human fMRI.

Excitingly, we indeed observed an increase in this cross-
modal brain-like similarity. The results indicate that even
though ReAlnets were aligned based on human EEG data,
they still resemble the human brain more closely on fMRI
data compared to CORnet (Figure 3A). Also, there is a
significant correlation of ReAlnets’ similarity improvement
compared to CORnet between EEG and fMRI (r=.9204,
p < .001) (Figure 3B).

These findings further highlight three points: (1) Across
multiple ROIs, ReAlnets exhibits higher human fMRI sim-
ilarity than CORnet. (2) Despite not being trained with
the EEG data of subjects in the fMRI dataset, almost ev-
ery ReAlnet shows higher fMRI similarity, suggesting that
ReAlnet learns consistent brain information processing pat-
terns across subjects. (3) Images from fMRI dataset for
evaluation were never presented during the alignment train-
ing, reaffirming the generalization of ReAlnets in improving
brain-like similarity across object categories and images.

3.3. Hierarchical individual variabilities in ReAlnets

Unlike traditional models in computer vision, ReAlnet is a
personalized model trained based on different individual’s
neural data. This sparked our interest in exploring whether
these personalized ReAlnets exhibit intra-model individual
variabilities and how such variabilities change across differ-
ent layers of the model. To investigate this, we conducted
comparisons between model RDMs based on 200 images
in THINGS EEG2 test set across different layers, using the
dissimilarity (1 minus the Spearman correlation coefficient)
between two RDMs corresponding to two ReAlnets as an

individual variability index.

Our results show: (1) Personalized ReAlnets indeed exhibit
individual variability (Figure 4A and Figure 4B). (2) This
variability increases with the depth of the layers (from Layer
V1 to Layer IT, Figure 4A and Figure 4B). This may also
suggest a trend of increasing individual variability from
primary to higher visual cortical areas in human brains.

Figure 4. Individual variability across ten personalized ReAlnets.
(A) ReAlnet individual variability matrices of four visual layers.
(B) ReAlnet individual variability along the model layers. Each
circle dot indicates a pair of two different ReAlnets.

3.4. Increased adversarial robustness in ReAlnets

Using white-box FGSA, we also discovered that ReAlnets,
aligned with human neural representations, have increased
adversarial robustness against adversarial attacks (Figure 5).
The left panel of Figure 5 shows a slight increase in ad-
versarial robustness in ReAlnets compared to CORnet at
around Epsilon = 0.02. However, the original classification
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performance (Epsilon = 0) of ReAlnets is lower than that
of CORnet, due to the absence of correct labels for images
in THINGS EEG2 dataset. To make a fairer comparison,
we aligned the classification accuracy at Epsilon = 0 as the
baseline to observe the relative decline in accuracy for both
ReAlnets and CORnet as Epsilon value increases. The cor-
rected results (Figure 5 right) demonstrate more pronounced
adversarial stability in ReAlnets.

Figure 5. Increased adversarial robustness in ReAlnets. Original
(left) and baseline-aligned (right) adversarial robustness for Re-
Alnets and CORnet as a function of Epsilon. Asterisks indicate
significantly higher adversarial robustness of ReAlnets than that
of CORnet (p < .05).

3.5. ReAlnet performance across different weights

The results presented above are based on a generation loss
weight β set to 100. We further explored the impact of this
β value on the performance of ReAlnet. Theoretically, a
higher β should lead to stronger learning of human neural
representations. However, is a larger β always better? Our
findings suggest otherwise.

We observed that with an increase in β, ReAlnets show
greater similarity to human EEG and fMRI (Figure 6A
and Figure 6B) and more pronounced individual variabil-
ity within models (Figure 6C). However, an increase in β
also reduces the improvement of adversarial stability (the
improvement at β = 100 was less significant than at β =
1 or 10) (Figure 6D). Moreover, at excessively high val-
ues (β = 1000), ReAlnet’s adversarial robustness was even
lower than the original CORnet without neural alignment
(Figure 6D). Therefore, this analysis suggests that: (1) It
justifies our use of β = 100 as a weight that balances the
trade-offs and maximizes advantages of ReAlnet. (2) β is
a parameter that could be manipulated differently in future
research depending on research goals.

Figure 6. Figure 6. ReAlnet performance across different β values.
(A) Improvement in human EEG similarity of ReAlnets compared
to CORnet (averaging four visual layers and timepoints in a 50-
200ms time-winodw). (B) Improvement in human fMRI similarity
of ReAlnets compared to CORnet (averaging three subjects and
five brain regions). (C) ReAlnet individual variability (averaging
four visual layers). (D) Adversarial robustness of ReAlnets and
CORnet when Epsilon = 0.02. Asterisks indicate significantly
higher adversarial robustness of ReAlnets than that of CORnet
(p < .05).

3.6. Control experiments

For the control experiments, we tested two aspects: (1) How
does contrastive learning influence model-to-brain align-
ment? (2) If we disrupt the pairing of each image with the
EEG signal from the same subject but elicited by viewing a
different image, can the model still learn the neural represen-
tation patterns of the human brain? Accordingly, we trained
two additional sets of ReAlnets based on human EEG data
from ten subjects in THINGS EEG2 dataset, termed as W/o
ContLoss models (without the constrastive loss component)
and Unpaired models (where the pairing between images
and EEG signals was disrupted).

The results of the control experiments reveal: (1) W/o Con-
tLoss models still exhibit an improvement in human brain
similarity compared to CORnet. However, while the simi-
larity to human EEG did not decrease compared to ReAlnet,
the similarity to cross-modality human fMRI significantly
decreased. This suggests that the contrastive loss component
in our alignment framework aids ReAlnet in extracting more
cross-modality brain visual representation features. (2) Un-
paired models failed to enhance brain similarity, which show
no significant improvement in brain similarity compared to
CORnet, indicating that the training process requires the
model to effectively learn the specific neural visual fea-
tures corresponding to each image. Only in this way can
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the model become more human brain-like and then exhibit
higher similarity to the human brain across different object
images, categories, and human neuroimaging data modali-
ties.

Figure 7. Results of control experiments. (A) Improvement in hu-
man EEG similarity of ReAlnets and control models compared to
CORnet. (B) Improvement in human fMRI similarity of ReAlnets
and control models compared to CORnet. Asterisks indicate the
significance (p < .05).

4. Discussion
Building upon previous research utilizing neural data for
aligning object recognition models, we have proposed a
novel and more effective framework for human neural repre-
sentational alignment, along with the corresponding human
brain-like model, ReAlnet. Unlike previous studies that
focused on using animal neural signals to optimize models
or were unable to use global neural activity for comprehen-
sive model optimization (Dapello et al., 2023; Federer et al.,
2020; Li et al., 2019; Pirlot et al., 2022; Safarani et al., 2021),
our approach efficiently utilizes human neural activity to
simultaneously optimize multiple layers of the model, en-
abling it to learn the human brain’s internal representational
patterns for object visual processing. Notably, unlike prior
research relying on behavioral or single modality neural
recording data for model evaluation (Dapello et al., 2023;
Federer et al., 2020; Fu et al., 2023; Li et al., 2019; Pirlot
et al., 2022; Safarani et al., 2021), we employed different
modalities of human neuroimaging data for model evalua-
tion to ensure that ReAlnet learns broader, cross-modal brain
representational patterns. Additionally, we observed that
ReAlnet exhibits individual representational variabilities
akin to human brain’s hierarchical processing and adversar-
ial stability similar to the findings in other brain-inspired
models (Dapello et al., 2023; Konkle & Alvarez, 2023).

Regarding ReAlnet itself, it warrants further exploration to
ascertain what specific information has learned from the
alignment with human brains. The fact that different gener-
ation loss weights do not significantly impact the behavioral
performance but do enhance its similarity to human brains
suggests that nodes in the model, which originally did not

encode category-specific information, may have been opti-
mized (Federer et al., 2020). More analyses of the neural
network’s internal representations may be needed to delve
into this. Also, from a reverse-engineering perspective, at-
tempting to understand the brain-like optimization process
of the model could further aid in unraveling the mechanisms
by which our brains process visual information (Ayzenberg
et al., 2023; Cic, 2019; Doerig et al., 2023; Kanwisher et al.,
2023; Lu & Ku, 2023; Lu & Golomb, 2023b).

Certainly, it is important to highlight that ReAlnet tran-
scends being merely a specific vision model; it represents
a pioneering framework potentially applicable for aligning
any AI model with brain activity. On the one hand, this align-
ment framework can be extended to other neural modalities,
such as fMRI and MEG (dimensionality reduction might
be necessary for extensive neural data features), paving the
way for the development of variants like ReAlnet-fMRI and
ReAlnet-MEG. On the other hand, the ambition is to adapt
this framework to a wider range of models and tasks in
the future, including language and auditory processing and
self-supervised or unsupervised models, leading to innova-
tions such as ReAlnet-Language, ReAlnet-Auditory, and
self-supervised or unsupervised versions of ReAlnet.

Limitations: From a data perspective, the primary limita-
tions of our current study stem from (1) the relatively lower
sample size of neural datasets compared to image datasets
with huge samples, and (2) the lack of shared labels between
different datasets, such as the absence of corresponding Ima-
geNet category labels for images in THINGS dataset. These
limitations restrict further enhancement of ReAlnet’s simi-
larity to the human brain and reduce its classification perfor-
mance on ImageNet. From a technical perspective, future
research may need to focus on (1) more effectively learning
the alignment of models with the human brain on small-
sample neural data, and (2) employing self-supervised or
unsupervised learning methods that do not require category
labels for model training.

5. Conclusion
Our study transcends traditional boundaries by employing a
groundbreaking alignment framework that pioneers the use
of human neural data to achieving a more human brain-like
vision model, ReAlnet. Demonstrating significant advances
in bio-inspired AI, ReAlnet not only aligns closely with hu-
man EEG and fMRI but also exhibit hierarchical individual
variabilities and increased adversarial robustness, mirror-
ing human visual processing. We hope that our alignment
framework stands as a testament to the potential synergy
between computational neuroscience and machine learn-
ing and enables the enhancement of any AI model to be
more human brain-like, opening up exciting possibilities for
future research in brain-like AI systems.
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Güçlü, U. and van Gerven, M. A. Deep Neural Net-
works Reveal a Gradient in the Complexity of Neu-
ral Representations across the Ventral Stream. Jour-
nal of Neuroscience, 35(27):10005–10014, 2015. doi:
10.1523/JNEUROSCI.5023-14.2015.

Han, Z. and Sereno, A. Modeling the Ventral and Dorsal
Cortical Visual Pathways Using Artificial Neural Net-
works. Neural Computation, 34(1):138–171, 2022. doi:
10.1162/NECO A 01456.

Han, Z. and Sereno, A. Identifying and Localizing Multi-
ple Objects Using Artificial Ventral and Dorsal Cortical
Visual Pathways. Neural Computation, 35(2):249–275,
2023. doi: 10.1162/neco a 01559.

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y.,
Corriveau, A., Van Wicklin, C., and Baker, C. I. THINGS:
A database of 1,854 object concepts and more than 26,000
naturalistic object images. PLoS ONE, 14(10):1–24, 2019.
doi: 10.1371/journal.pone.0223792.

Kanwisher, N., Khosla, M., and Dobs, K. Using artificial
neural networks to ask ‘why’ questions of minds and
brains. Trends in Neurosciences, 46(3):240–254, 2023.
doi: 10.1016/j.tins.2022.12.008.

Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., and DiCarlo,
J. J. Evidence that recurrent circuits are critical to the
ventral stream’s execution of core object recognition be-
havior. Nature Neuroscience, 22(6):974–983, 2019. doi:
10.1038/s41593-019-0392-5.

9

http://arxiv.org/abs/2209.03718
http://arxiv.org/abs/2209.03718


ReAlnet: Achieving More Human Brain-Like Vision via Human Neural Representational Alignment

Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K., Cichy,
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A. Appendix.
A.1. ImageNet classification performances of ReAlnets at different β values

We tested the classification accuracy of ReAlnets on ImageNet at different β values (Figure 8). Importantly, to ascertain that
the observed decrease in accuracy was not due to the additional generation task compromising classification performance,
but rather the absence of correct ImageNet labels for images in THINGS EEG2 dataset, we trained a ReAlnet with β = 0.
This ReAlnet excluded the EEG signal generation module but underwent fine-tuning with images from THINGS EEG2
dataset. The results indicated that the ReAlnet with β = 0 also experienced a similar level of decline.

Figure 8. ImageNet classification accuracy of different ReAlnets. Left: Top-1 accuracy. Right: Top-5 accuracy. The blue dotted line
indicates the accuracy of CORnet, and the grey dotted line indicates the accuracy of ReAlnet at β = 0.
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A.2. EEG generation performances of our alignment framework at different β values

We evaluated the EEG generation performance of the alignment frameworks at different ( values by calculating the Spearman
correlation between the generative EEG signals and the actual EEG signals. Figure 9 shows the EEG generation performance
and some examples of generated results.

Figure 9. (A) EEG generation performance of different alignment frameworks. (B) Four examples of EEG generation results (from the
model at β = 100 of Sub-01). For each example, the left image indicates the image input to the ReAlnet and the image viewed by the
subject. The grey curves represent the real EEG signals, and the green curves represent the generated EEG signals corresponding to the
same image.
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A.3. Representational similarity between human EEG and ReAlnets at different β values

Figure 10 shows the representational similarity between human EEG and ReAlnets at different β values.

Figure 10. Representational similarity time courses between human EEG and different ReAlnets for different layers respectively. Black
square dots at the bottom indicate significant timepoints (p < .05). Shaded area reflects ±SEM.
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A.4. Representational similarity between human fMRI and ReAlnets at different β values

Figure 11 shows the representational similarity between human fMRI and ReAlnets at different β values.

Figure 11. Representational similarity between three subjects’ fMRI activity of five different brain regions and different ReAlnets
respectively. Asterisks indicate significantly higher similarity of ReAlnet than that of CORnet (p < .05).
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A.5. Individual variability across personalized ReAlnets at different β values

Figure 12 shows the representational similarity between human fMRI and ReAlnets at different β values.

Figure 12. Individual variability matrices of four visual layers of different ReAlnets.
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A.6. Adversarial robustness of ReAlnets at different β values

Figure 13 shows the adversarial robustness of ReAlnets at different β values.

Figure 13. Baseline-aligned adversarial robustness for different ReAlnets as a function of Epsilon. Asterisks indicate significantly higher
adversarial robustness of ReAlnets than that of CORnet (p < .05).
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A.7. Representational similarity between human brains and controlled models

Figure 14A shows the representational similarity between human EEG and controlled models, and Figure 14B shows the
representational similarity between human fMRI and controlled models.

Figure 14. (A) Representational similarity time courses between human EEG and ReAlnets and control models (β for different layers
respectively. Shaded area reflects±SEM. (B) Representational similarity between three subjects’ fMRI activity of five different brain
regions and ReAlnets and control models (β = 100) respectively.
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