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Proteins are one of most significant components in living organism, and their main role

in cells is to undertake various physiological functions by interacting with each other.

Thus, the prediction of protein-protein interactions (PPIs) is crucial for understanding

the molecular basis of biological processes, such as chronic infections. Given the fact

that laboratory-based experiments are normally time-consuming and labor-intensive,

computational prediction algorithms have become popular at present. However, few of

them could simultaneously consider both the structural information of PPI networks and

the biological information of proteins for an improved accuracy. To do so, we assume

that the prior information of functional modules is known in advance and then simulate

the generative process of a PPI network associated with the biological information of

proteins, i.e., GeneOntology, by using an established Bayesianmodel. In order to indicate

to what extent two proteins are likely to interact with each other, we propose a novel

scoring function by combining the membership distributions of proteins with network

paths. Experimental results show that our algorithm has a promising performance in

terms of several independent metrics when compared with state-of-the-art prediction

algorithms, and also reveal that the consideration of modularity in PPI networks provides

us an alternative, yet much more flexible, way to accurately predict PPIs.

Keywords: protein-protein interaction, prediction, network topology, gene ontology, modularity

1. INTRODUCTION

As one of the most common and indispensable molecules in cells, proteins are critical in regulating
various biological processes observed in living organisms by interacting with other different
proteins through protein-protein interactions (PPIs) (Hu et al., 2021a). Since PPIs are of great
significance to undertake many physiological functions, there is a necessity for us to identify PPIs
from cells in order to fully explore the cellular mechanism behind biological processes.

In the last decades, a large number of prediction methods have been developed to verify
the interacting relationship between pairwise proteins, and they are divided into two categories,
one is laboratory-based and the other is computational-based. The technologies in the former
category include, but not limited to, yeast two-hybrid (Fields and Sternglanz, 1994), TAP-tagging
(Ho et al., 2002), and protein chips (Zhu et al., 2001). They normally suffer the disadvantage of
being time-consuming and labor-intensive, thus resulting in an inefficient identification of PPIs.
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To overcome these problems, attempts have been made to
develop different computational algorithms for PPI prediction.
In particular, computational algorithms mainly put their efforts
on extracting useful features from the biological information of
proteins, such as protein sequences (Zahiri et al., 2013; Hu and
Chan, 2015), protein structures (Zhang et al., 2012; Mirabello
and Wallner, 2017), and co-evolutionary profiles (Hsin Liu
et al., 2013; Hu and Chan, 2017), that are able to explicitly
represent the characteristics of proteins, and then solve the
problem of PPI prediction as a binary classification problem.
Though efficient, most of them are unable to handle the structural
information of PPI networks for better performing the prediction
task. Moreover, regarding the fact that the amount of PPI data
have also increased significantly with the development of high-
throughput technologies, studies have been conducted to develop
various prediction algorithms that are able to complete the task
of PPI prediction in a distributed manner (You et al., 2014; Hu
et al., 2017).

As a recent attempt in network-based PPI prediction, L3
(Kovács et al., 2019) reckons that the traditional triadic closure
principle is inappropriate for predicting PPIs from a given
PPI network, as two proteins are more likely to interact if
one of them is similar to the other’s partners rather than
sharingmany common interacting partners. Experimental results
demonstrate that L3 significantly outperforms existing link
prediction methods when applied to solve the PPI prediction
problem. Given two proteins, since L3 only considers their
common interacting partners, the network paths involved are
with the same length, i.e., 3. In this regard, L3 is incapable of
determining the interaction between proteins that are far away
from each other without any common neighbors. To address
this problem, Wang et al. (2020) design a novel stochastic block
model, namely PPISB, for predicting PPIs without specifying
the length of network paths in advance. PPISB can capture the
latent structural features of proteins in a PPI network, thus
verifying whether two proteins interact with each other or not.
However, a major concern for network-based algorithms is the
quality of PPI networks. In particular, when composing a PPI
network, the PPI data generated by high-throughput technology
is characterized by high false-positive and false-negative rates,
and accordingly the accuracy performance of network-based
prediction algorithms is severely affected. Similar to L3 and
PPISB, network-based distance Analysis can also be applied to
predict lncRNA-miRNA Interactions (Zhang et al., 2021).

As has been pointed out by Hu et al. (2021b), proteins in the
functional modules are densely connected with each other. In
other words, for two proteins in the same functional module,
their probability of being interacting should be considerably
larger than those across different functional modules. Moreover,
the neighboring relationship between molecules has also been
verified to be useful for predicting their interactions (Liu
et al., 2020). Hence, we believe that the performance of PPI
prediction can be further improved by taking into account this
motivation. In this work, we target to integrate the biological
information of proteins, specifically Gene Ontology (GO), into
a given PPI network, thus alleviating the negative influence
of noise data. Motivated by the aforementioned intuition that

proteins in the same functional module are more likely to
interact with each other, we adopt an established Bayesian
model proposed by Hu et al. (2020) to simulate the generative
process of PPI networks together with associatedGO information
by assuming that the prior information of functional modules
are known in advance. After that, a novel scoring function is
designed to compute the interaction probability of two proteins
according to their membership distributions and network paths.
Following this pipeline, we develop a new algorithm, namely
NGPM, to complete the task of PPI prediction. To evaluate
the performance of NGPM, a series of extensive experiments
have been conducted by comparing it with several state-of-the-
art PPI prediction algorithms on five practical PPI networks
collected from different species, and an in-depth discussion about
experimental results is provided to demonstrate the superiority of
NGPM in predicting PPIs.

The rest of this paper is organized as follows. In section 2,
the details of NGPM are described. Experimental results are
presented in section 3, following which we end with an in-depth
discussion in section 4.

2. MATERIALS AND METHODS

Given the fact that proteins interact with each other in cells
to form functional modules, a single protein is possible to be
involved in multiple protein complexes and thereby undertake
different physiological functions. For a PPI network associated
with GO information of proteins, we first assume that a total of K
functional modules are existed and the details of generating such
a PPI network is first presented by adopting the Bayesian model
proposed by Hu et al. (2020). After that, we describe the complete
procedure of NGPM.

2.1. Mathematical Preliminaries
A PPI network of interest is formally denoted as a four-element
tuple G = {V ,A,X,3}, where V = {vi}(1 ≤ i ≤ nV ) is a set of
all nV proteins, A = [Aij] is a nV × nV adjacency matrix where
Aij = 1 if two proteins, i.e., vi and vj, interact with each other
and 0 otherwise, X = {Xi}(1 ≤ i ≤ nV ) consists of the GO
information of proteins in V , and 3 = {3m}(1 ≤ m ≤ nV )
denotes a set of total n3 GO categories that are available to be
associated with proteins. Obviously, A and X describe G from
the perspectives of network topology and GO, respectively. In
this regard, an instance of G can thus be obtained if A and X
are determined.

Regarding X, each element, i.e., Xi = {xip}, denotes the set of
GO annotations taken by vi without considering GO categories,
and the size of Xi is |Xi|. The combination of Xi and 3 preserves
the necessary details to sample the GO information for each
protein. Assuming that 3ip ∈ 3 is the GO category of xip and
dom(3m) is a set of possible GO annotations in 3m, we have
xip ∈ dom(3m) if 3ip = 3m. The size of dom(3m) is denoted
as |dom(3m)|.

To indicate the functional modules of proteins, we adopt a
nV × 1 vector, i.e., C = [Ci](1 ≤ i ≤ nV , 1 ≤ Ci ≤ K), where
Ci represents the functional module label of vi. Therefore, for an
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arbitrary protein, i.e., vi, its Ci is equal to k if it is in the k-th
functional module.

2.2. Generating Functional Module Labels
For an arbitrary protein denoted as vi, its functional module label
Ci is chosen from a Multinomial distribution, which is defined
as (1).

p(Ci = k|α) = αk(1 ≤ k ≤ K) (1)

where αk is the probability of a protein that is assigned to the k-th
functional module and

∑K
k=1 αk = 1. Instead of predetermining

the value of each element in α, we consider α as a random
variable and sample it by using a Dirichlet distribution with a
parameter ζ .

2.3. Generating GO Information of Proteins
In order to completely retain the relationship between GO
categories and their corresponding annotations, we sample the
GO annotations of vi with two steps. Specifically, to obtain xip,
we first choose its GO category, i.e., 3ip, from a Multinomial
distribution that is specific to the functional module of vi. Hence,
we have

p(3ip = 3m|θCi ) = θCim(1 ≤ m ≤ n3) (2)

In the above equation, θCi is a n3-dimensional variable randomly
selected from the Dirichlet distribution with a parameter λCi . As
the subscript of λCi , Ci indicates that the probability distribution
of λCi is conditioned on the functional module label of vi.

Once the GO category of xip is determined, the next step is to
select the annotation of xip from the domain of 3ip. Assuming
that 3ip is actually them−th category in 3, i.e., 3m, the value of
xip is then sampled from a Multinomial distribution defined as:

p(xip = valmt|βCim) = β t
Cim

(1 ≤ t ≤ |dom(3m)|) (3)

where valmt is the t-th annotation in dom(3m). Regarding
the subscripts Ci and m, their combination indicates that the
Multinomial distribution of xip is specific to the functional
module of vi and the GO category 3m. In other words, proteins
in the same functional module share similar Multinomial
distributions of GO annotations, which can differ across different
GO categories or functional modules. To generate βCim, we also
place a Dirichlet distribution over it with a prior parameter µCim.
The graphical presentation of generating the GO information of
proteins is presented in Figure 1.

2.4. Generating PPIs
As mentioned before, we introduce A to represent the interaction
relationships for all pairwise proteins in G. Hence, generating
PPIs in a PPI network is identical to generate A. Following
the observation that proteins in the same functional module
are densely connected, the value of Aij is dependent on a finite
mixture of functional modules labels according to Stochastic
BlockModel (Nowicki and Snijders, 2001).

FIGURE 1 | Graphical model representation of generating the GO information

of proteins.

FIGURE 2 | Graphical model representation of generating PPIs.

Given two proteins, i.e., vi and vj, the probability of vi
interacting with vj follows a Multinomial distribution described
below.

p(Aij = 1|Ci = k,Cj = l, εk) = εkl (4)

In the above equation, the parameter εkl is conditioned on
the functional module labels of vi and vj. The interaction
probabilities between all pairs of functional modules are therefore
parameterized by ε, which is a K × K matrix. With (4), proteins
in the same functional modules present similar regularities
when interacting with other proteins. Similarly, we also place a
Dirichlet distribution with a prior parameter τ k to determine
εk. The graphical presentation of generating PPIs is presented in
Figure 2.

So far, the generative process of G is completed by the above
generative process that involves several latent variables α, θ , β ,
and ε. Regarding the values of these variables, we also define
corresponding prior parameters, i.e., ζ , λ, µ, and τ , to sample
them in a Bayesian manner.

2.5. Bayesian Decision
According to the above generative process, a PPI network,
i.e., G, is represented as a collection of proteins, PPIs and
GO annotations. To indicate the functional module label of
each protein, we need to compute the probability of each
possible C conditioning on both A and X, and select the
one with the maximum posterior probability as the optimal
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result. Hence, we can formulate an optimization problem
as below.

Ĉ = argmax
C

p(C|A,X, ζ , λ,µ, τ ) (5)

To address this problem, we apply the solution developed in Hu
et al. (2020). Instead of explicitly determining C, this solution
yields the optimal membership matrix, i.e., α̂ = [α̂ik] to derive
Ĉ. Specifically, for vi, its functional module label Ci is more likely
to be equal to k if α̂ik is larger.

2.6. Computing Interaction Probability
To indicate to what extent two proteins are likely to interact,
a scoring function is designed by taking into account their
membership distributions and network paths simultaneously.
The motivation of designing such a function is twofold. First of
all, for two proteins, the probability of being grouped in the same
functional module is larger if their membership distributions are
more similar, and accordingly they are more likely to interact
with each other. On the other hand, two proteins are less likely to
interact if the network path connecting them is longer. Assuming
that Lvivj is a set of all network paths connecting vi and vj in G
and its size is |Lvivj |, the scoring function is defined as below.

score(vi, vj) =

|Lvivj |∑

w=1

weight(Lw)
decay(Lw) (6)

In the above scoring function, weight(Lw) evaluates the strength
of Lw in terms of providing evidence to support the interaction
between vi and vj and its definition is given as:

weight(Lw) =

|Lw|∏

z=1

α̂zk (7)

where k is the value ofCi, |Lw| is the number of proteins in Lw and
α̂zk is the membership over the k-th function module for the z-
th protein along the path Lw. Obviously, the value of weight(Lw)
is determined by the likelihood of being group in the function
module of vi for the remaining proteins in Lw.

Regarding decay(Lw), the motivation of introducing this term
is that it is less likely to interact with each other if two proteins
are located far away from each other in a given PPI network.
Hence, the definition of decay(Lw) is given by (8) where ϕ is the
decay coefficient and usually set to be greater than or equal to 1.
Since the value of weight(Lw) ranges from 0 to 1, decay(Lw) has a
decay effect as an exponentiation. The longer the length of Lw is,
the more obvious the decay effect of decay(Lw) has. To achieve a
balance between accuracy and time, the value of |Lw| is set to be
3 in our experiments.

decay(Lw) = ϕ × |Lw| (8)

For each pair of testing proteins, we propose a novel prediction
algorithm, namely NGPM, to calculate their interacting
probability. To begin with the prediction, NGPM ranks the

TABLE 1 | Statistics of PPI networks used in the experiments.

Dataset N E kav CC

Yeast-Tong 964 3,846 7.98 0.15

Yeast-Krogan 2,708 7,123 5.26 0.19

Human 6,657 32,307 9.52 0.07

E. coli 312 5,108 32.74 0.19

Mouse 786 1,975 5.03 0.15

N, number of proteins; E, number of PPIs; kav , average graph distance; CC, clustering

coefficient.

scores of all pairs of proteins including known PPIs and newly
predicted PPIs. Since a predicted PPI is more likely to be real if
it is surrounded by more already known PPIs, a sliding window
is set by NGPM by selecting the upper and lower 50 pairs of
proteins as a reference for the given pair of proteins. NGPM
calculates the percentage of known PPIs to all pairs of proteins in
this window, and then regards this percentage as the interacting
probability for the given pair of testing proteins.

3. RESULTS

In this section, the performance of NGPM has been compared
with several state-of-the-art prediction algorithms on five
practical PPI networks and the evaluation metrics include
Precision, Recall, f-measure, AUC, and PR-AUC.

3.1. Experimental Setup
In the experiments, five independent PPI networks collected
from different species are used, and they are denoted as Yeast-
Tong (Tong et al., 2004), Yeast-Krogan (Krogan et al., 2006),
Human (Rolland et al., 2014; Kovács et al., 2019), Escherichia coli
(E. coli) (Gagarinova et al., 2016), and Mouse (Malty et al., 2017)
respectively. The first two datasets are obtained from the species
of yeast, and the Human dataset is composed of three human
PPI networks, i.e., HI-II-14 (Rolland et al., 2014), HI-III (Rolland
et al., 2014), and HI-tested (Kovács et al., 2019). The rest datasets
are generated from other species as indicated by their names. The
statistics of all these PPI networks are presented in Table 1.

In the experiments, a five-fold cross-validation has been
conducted to yield convincing results and the performance of
NGPM is compared with that of ASNE (Liao et al., 2018)
and L3 (Kovács et al., 2019) to demonstrate its superiority
in PPI prediction. When generating the negative samples, i.e.,
non-interacting proteins, we adopt the same strategy as L3
for conducting a fair comparison. In particular, for each PPI
network, a total of 244 pairs of non-adjacent proteins are
randomly selected as negative samples and 100 pairs of them
should contain at least one of proteins listed in the top 500 PPIs
predicted by L3.

3.2. Parameter Sensitivity Analysis
As the most important parameter involved in NGPM, K
determines the number of functional modules observed from a
given PPI network. To investigate the sensitivity of NGPM to the
change of K, we present the performance of NGPM by varying
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FIGURE 3 | The performance of NGPM given different values of K.
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the value of K from 2 to 20 at a step size of 1. In doing so, we are
able to determine the best value of K for each dataset.

Given different values of K, the performance of NGPM is
presented in Figure 3. Fluctuations are observed for the AUC
and PR curves, while the f-measure cures are more stable for all
datasets except Mouse. A possible reason for that phenomenon
is that f-measure is a harmonic mean of Precision and Recall.
Since the increase in the score of K results in opposite changes
of Precision and Recall, the fluctuation in the curve of f-measure
is alleviated.

Among all kinds of curves in Figure 3, we also note that
the robustness of NGPM in terms of AUC is the worst, as the
AUC curves are more extensively fluctuated when compared
with other curves. After investigating the experimental results,
we find that the false-positive rates obtained by NGPM with
different values ofK are different, thus having a significant impact
to the change of AUC curves. Another point worth noting is
that the AUC curves are below the PR and f-measure curves
for all datasets except Mouse. The reason for the unsatisfactory
performance of AUC is due to the imbalance between positive
and negative samples in the testing datasets.

According to Figure 3, the best values of K for Yeast-Tong,
Yeast-Krogan, Human, E. coli, and Mouse are 14, 6, 10, 18,
and 2, respectively. Hence, in the following experiments, we use
the best performance of NGPM obtained by using these values
for comparison.

3.3. Performance Comparison
During the comparison, since ASNE can use different
measurements to calculate the similarity between two proteins
and determine their interacting probability accordingly, two
most commonly used measurements including Euclidean
similarity and cosine similarity are chosen in our experiments,
and they are denoted as eASNE and cASNE, respectively. The
results of performance comparison are shown in Figures 4, 5
and Table 2 where Figures 4, 5 show the ROC and PR curves
of L3, NGPM, and ASNE obtained in each dataset, and Table 2

records the exact scores yielded by each prediction algorithm.
When compared with ASNE, NGPM obtains a better

performance on each metric across all the datasets except for
Human and E. coli. On average, NGPM performs better by 6.28,
17.28, 12.08, 49.50, and 15.32% in terms of Precision, Recall,
f-measure, AUC, and PR-AUC, respectively than eASNE while
cASNE yields the worst performance among them. However,
both NGPM and ASNE do not perform well on the Human
dataset in terms of AUC. A main reason for that phenomenon
is due to the serious imbalance between interacting and non-
interacting proteins in the Human dataset. As mentioned before,
the strategy of selecting negative samples in NGPM is as same
as in L3, but it leads to the imbalance of interacting samples and
non-interacting samples. Since the Human dataset is the largest
one, it has more than 30,000 positive samples, while the negative
sample is only 244. Thus it suffers the disadvantage of imbalance
seriously and smaller AUC scores are obtained by all algorithms
when compared with the other datasets.

In order to more specifically illustrate the advantage of NGPM
compared to ASNE in PPI prediction, we take the prediction

results of NGPM on the Human dataset as an example. In
particular, the nodes in Figure 6 represent proteins, and an edge
connecting two nodes represents the interaction between them.
Regarding the two proteins UBE2D3 and CLNS1A, they are
classified as the negative sample in the testing dataset and thus
there is no edge between them. However, ASNE predicts that
they can interact with a probability as high as 0.76, thus leading
to a wrong conclusion. NGPM accurately predicts the true
relationship between UBE2D3 and CLNS1A. In the prediction
result of NGPM, the interacting probability between these two
proteins is <0.4. Hence, NGPM is believed to be more reliable
than ASNE when predicting PPIs. In addition, PPIs indicated by
red lines are all successfully predicted by NGPM but incorrectly
predicted by ASNE. These interactions have been verified by
the BioGRID database (Chatr-Aryamontri et al., 2017) and can
provide help for understanding the biological processes in the
cell. Among them, CLNS1A, SNRPD1, EPB41, SNRPG, SNRPD3,
and LSM6 are all important components of the cytoplasm, they
can form protein complexes together. It is for this reason that
NGPM is able to provide a precise prediction result for these
proteins. Besides, all the proteins except EPB41 can participate
in the process of RNA molecular interaction. Proteins UBE2D3
and RNF115 can also add ubiquitin groups to the proteins in cells
to help them form ubiquitin chains, so that they can complete
the catalysis of the ubiquitin reaction due to the interaction
between them.

In addition to correctly predict known PPIs, NGPM is also
capable of predicting novel PPIs that are not found in the testing
dataset. Since NGPM allows each protein to be associated with
a membership distribution and also finds the path between two
proteins, the interacting probability can be determined by NGPM
for any pair of proteins in a PPI network given such information.
As indicated by Figure 7, several pairs of proteins extracted from
the Yeast-Tong dataset are presented. PPIs represented by the
edges are novel PPIs predicted by NGPM and these interactions
have been confirmed by BioGRID database (Chatr-Aryamontri
et al., 2017). In this regard, the ability of NGPM in predicting
novel PPIs could thus be verified.

In order to verify whether NGPM can effectively eliminate
the negative impact imposed by noise data such as false positives
and false negatives after combining gene ontology and network
topology, we compare the performance of NGPM on five PPI
network with L3. From Table 2, NGPM obtains the best Recall
and f-measure scores on all datasets. Specifically, when compared
with L3, the performance of NGPM is better by 174.57, 79.42,
1.68, and 1.83% in terms of Recall, f-measure, AUC, and PR-
AUC, respectively, and hence NGPM can reduce the negative
impact caused by the noise data for PPI prediction. However,
NGPM does not achieve the best performance on Precision,
there are several reasons for this phenomenon. First of all The
performance of NGPM is constrained by the existence of network
paths. If there is no path between two proteins, NGPM can not
predict the interaction between them and hence it will consider
their interacting probability as 0. In doing so, a part of PPIs in the
testing dataset are able to be predicted as non-interacting protein
pairs, thus increasing the false negatives in the prediction result.
Secondly, when predicting the interacting probability for proteins
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FIGURE 4 | The ROC curves of L3, eASNE, cASNE, and NGPM.
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FIGURE 5 | The PR curves of L3, eASNE, cASNE, and NGPM.
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TABLE 2 | The performance of models.

Dataset Model f-measure AUC PR-AUC

Precision Recall f-measure

Yeast-Tong

L3 0.84 0.39 0.54 0.64 0.87

eASNE 0.72 0.82 0.77 0.40 0.72

cASNE 0.68 0.01 0.03 0.46 0.73

NGPM 0.76 0.96 0.85 0.68 0.87

Yeast-Krogan

L3 0.94 0.19 0.31 0.57 0.91

eASNE 0.78 0.61 0.68 0.30 0.79

cASNE 0.69 0.01 0.01 0.39 0.80

NGPM 0.85 0.91 0.88 0.55 0.89

Human

L3 0.98 0.39 0.56 0.61 0.98

eASNE 0.96 0.85 0.90 0.43 0.96

cASNE 1.00 0.02 0.03 0.47 0.96

NGPM 0.96 0.94 0.95 0.37 0.95

E. coli

L3 0.82 0.53 0.64 0.56 0.85

eASNE 0.81 1.00 0.89 0.52 0.82

cASNE 0.85 0.02 0.04 0.50 0.81

NGPM 0.81 1.00 0.89 0.56 0.82

Mouse

L3 0.91 0.23 0.37 0.59 0.75

eASNE 0.55 0.77 0.65 0.37 0.56

cASNE 0.60 0.02 0.04 0.44 0.57

NGPM 0.68 0.94 0.79 0.86 0.91

Best scores are bolded.

pairs, the longest path is set to be 3 in experiments, which is
constrained by the computational efficiency of NGPM. A longer
path will consume more time and we may be unable to obtain the
prediction result after an acceptable period. Although the longer
a path is, the less impact it has on determining the interacting
probability between two proteins and consequently some PPIs
are falsely predicted by NGPM. In this regard, the number of
false positive samples obtained by NGPM is larger than the other
algorithms, thus reducing the prediction accuracy of NGPM.

4. DISCUSSION

In this paper, an efficient network-based prediction algorithm,
namely NGPM, is proposed to predict PPIs by additionally
considering the GO information of protein. The motivation
behind NGPM is to make use of the property of functional
modularity observed in PPI networks and also to combine the
GO knowledge to alleviate the negative impact imposed by the
noise data. Hence, by simulating the generative process of a
PPI network, NGPM is able to incorporate these two kinds
of information and optimize the membership distributions of
proteins over functional modules. After that, a new scoring
function is then designed to compute the interacting probability
between two proteins. Experimental results have demonstrated
that NGPM could better solve the prediction problem of
PPIs as it yields a superior performance in terms of several
independent metrics when compared with state-of-the-art
prediction algorithms. In this regard, the novel PPIs predicted

by NGPM may probably missed due to the constraints of
laboratory experiments.

Several reasons can be summarized to explain the promising
accuracy of NGPM. First of all, for a given protein, themodularity
property of PPI networks allows NGPM to search potential
interacting partners in a more accurate range, as proteins in
the same functional module are more likely to interact with
each other. However, there is no such a prior knowledge about
the existence of functional modules in a PPI network before
PPI prediction. By assuming the existence of total K functional
modules embedded in a given PPI network, NGPM combines
both network structure and GO to simulate the generative
process of this network and then adopts an efficient solution to
infer the membership distributions of proteins over functional
modules. In doing so, the accuracy of PPI prediction can be
improved. Secondly, to indicate how likely two proteins interact
with each other, a novel scoring function is specifically designed
by taking into account both network paths and membership
distributions of proteins. It is also meaningful from a biological
view. In particular, two proteins are more likely to interact with
each other if they share many common interacting partners and
are grouped into the same functional module together with these
partners. Lastly, unlike conventional PPI prediction algorithms,
NGPM does not rely on the selection of classifiers nor the
generation of negative samples, thus making its performance
more robust. One should note that the strategy of generating
negative samples we describe in section 3.1 is only used for testing
rather than training.

In addition to GO, there are also other kinds of biological
information that can be used to characterize proteins. It is
possible for NGPM to incorporate these biological information.
Specifically, when generating the GO information of proteins,
NGPM adopts different Multinomial distributions to sample
the GO category and corresponding annotations. Hence, given
a particular kind of biological information, we are able to
incorporate it into NGPM if it can be represented as a set of
attribute values taken by proteins.

Regarding future work, we would like to unfold it from
three aspects. Firstly, since the longest length of paths used
in (6) affects the performance of NGPM in some ways and
we currently set it as 3 in the experiments, we intend to
release this constraint by allowing NPGM to consider more
path information. However, the increase in the longest length
of paths could result in a consequence that more time will
be taken by NPGM. Furthermore, there are many variational
parameters that have to be optimized. The increase in the scale
of PPI networks will obviously take more time to optimize these
variational parameters. Hence, the current version of NGPM is
not applicable for large-scale PPI prediction. To overcome this
limitation, we would like to develop a distributed version of
NGPM by following the MapReduce framework. Furthermore,
regarding K, we have performed several trials to find its best
value and thus we are also interested in providing a simpler,
yet effective, strategy to determine its value. Lastly, since self-
supervised pre-training has proven beneficial for many computer
vision tasks, we would like to explore the possibility of pre-
training NGPM on a different dataset when predicting PPIs.
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FIGURE 6 | An illustration of PPIs correctly identified by NGPM in the Human dataset.

FIGURE 7 | An illustration of novel PPIs identified by NGPM in Yeast-Tong dataset.
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