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Abstract Previous studies investigating the anterior cin-
gulate cortex (ACC) have relied on a number of tasks
which involved cognitive control and attentional demands.
In this fMRI study, we tested the model that ACC functions
as an attentional network in the processing of language. We
employed a paradigm that requires the processing of con-
current linguistic information predicting that the cognitive
costs imposed by competing trials would engender the acti-
vation of ACC. Subjects were confronted with sentences
where the semantic content conXicted with the prosodic
intonation (CONF condition) randomly interspaced with
sentences which conveyed coherent discourse components

(NOCONF condition). We observed the activation of the
rostral ACC and the middle frontal gyrus when the
NOCONF condition was subtracted from the CONF condi-
tion. Our Wndings provide evidence for the involvement of
the rostral ACC in the processing of complex competing
linguistic stimuli, supporting theories that claim its rele-
vance as a part of the cortical attentional circuit. The pro-
cessing of emotional prosody involved a bilateral network
encompassing the superior and medial temporal cortices.
This evidence conWrms previous research investigating the
neuronal network that supports the processing of emotional
information.

Keywords Emotional prosody · Anterior cingulate cortex · 
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Introduction

Recently, great eVort has been invested to clarify the func-
tions of the anterior cingulate cortex (ACC) and to provide
a unifying concept for its signiWcance. ACC occupies the
medial wall of the cerebral hemispheres and includes
Brodmann’s areas (BA) 24, 25, and 32 (Koski and Paus
2000). Given its limbic location, and its extensive connec-
tions with motor, parietal, and prefrontal cortices (Koski
and Paus 2000; Vogt et al. 1995), ACC seems to play a
key role in the regulation of aVective, cognitive, motor
and autonomic functions, interfacing ancient and more
recent brain structures (Bush et al. 2000; Critchley et al.
2003).

Neuroimaging evidence has attributed a key role to this
brain structure, conceptualised as a crucial part of the
attentional system (Kondo et al. 2004a, b; Luks et al. 2002;
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Benedict et al. 2002; Bush et al. 2000; Davis et al. 2000;
Devinsky et al. 1995). ACC has been claimed to be
implicated in a form of attention known as attention for
action, thought to be allocated when routine functions
become inadequate or when new or stronger environmental
demands force ongoing processing or behaviour to be
adjusted (Posner and DiGirolamo 1998; Posner and Dehaene
1994).

This model implicates and predicts the engagement of
ACC in cases where greater attentional costs are imposed
by very demanding cognitive states, such as response com-
petition induced by competing response tendencies, and sit-
uations characterised by high error incidence.

The signiWcance of ACC for cognitive processing has
been assessed by tasks which elicit conXict, or cognitive
interference, employing for example stimuli characterised
by conXicting features (Grachev et al. 2001; Leung et al.
2000). A well known interference task is the Stroop
Color-Word task (Stroop 1935) which requires subjects to
name the colour of visually presented words in congruent,
neutral and incongruent conditions (i.e., where naming of
a colour name conXicts with the colour of the written
name). A number of variants for this paradigm have been
explored, such as the “Counting Stroop” and the “Emo-
tional Counting Stroop” tasks, introduced by Bush and
colleagues (1998; 1999; 2000) as instruments for imaging
the functions of the rostral and ventral subdivisions of
ACC.

However, so far research on the role of ACC in process-
ing of conXicting information has been carried out by
employing low-complexity stimuli, such as words, in the
case of the Stroop Task. As a matter of fact, the investiga-
tion of ACC recruitment during complex verbal interaction
remains a challenging topic, which might contribute to
reWning our understanding about the impact of attentional
resources on language processing.

In the present study, we explored ACC relevance for lan-
guage processing investigating its engagement in process-
ing of conXicting semantic and prosodic information. We
focused on sentences, in consideration of the fact that com-
plex linguistic stimuli can be regarded as the base constitu-
ent of ordinary speech communication.

In human verbal communication, the concordance
between aVective tone and propositional content cannot be
considered a conditio sine qua non for the achievement of
satisfactory interaction. Instead, discrepancies between the
messages conveyed by these two channels of communica-
tion can be used to engender a subtle and intriguing inter-
play of interpretations, creating forms of expressiveness
rich in complexity, which might be regarded as appreciable
in human verbal interaction. We took advantage of this

inherent feature of verbal communication to investigate the
functions of ACC.

In the present study, sets of incoherent and sets of
coherent sentences were employed. Incongruence (CONF
condition) was obtained by matching incompatible pro-
sodic and semantic valenced information (i.e., for exam-
ple, matching sad prosody and happy semantics). Subjects
were instructed to concentrate on the emotional prosodic
intonation of the strings, ignoring the content meaning,
and were required to carry out a prosody identiWcation
task. Although no attention was supposed to be allocated
to the propositional content, we assumed that the CONFL
condition would strongly aVect the amount of cognitive
resources recruited in order to perform correctly. We
assumed that the semantic content would elicit a dominant
but inappropriate response tendency, which would conXict
with the prosodic intonation, raising a response competition
once the subject realised that he or she needed to overcome
this tendency in order to perform correctly. We predicted
that this condition would impose increased processing
costs sustained by allocating attentional resources supplied
by ACC.

Behaviourally, we hypothesized that cognitive demands
imposed by the conXicting information would be mirrored
by a signiWcantly poorer performance, itself reXected by
lower accuracy rates.

Methods

Participants

Ten males, German native speakers (aged 24–38 years,
mean age 25), right handed according to the Edinburgh
Handedness Inventory (OldWeld 1971), participated in the
study. None of the recruited subjects had a neurological or
psychiatric history or was on medication. Each of them had
normal hearing capacities (audiometric thresholds
·20 dB HL at 500, 1,000, 2,000, 4,000, and 6,000 Hz),
gave written informed consent and was paid for participa-
tion. The protocol was approved by the Ethics Committee
of the Medical Faculty of the University of Tübingen,
Germany.

Task and stimuli

The stimuli consisted of four sets of German sentences of
the Tübingen AVect Battery (Breitenstein et al. 1996),
describing (i.e., with semantic content) happy, sad, angry or
neutral scenarios, for a total of 16 samples. Each of the 16
sentences was read by a professional actress with sad,
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happy, angry and neutral emotional intonation, producing a
total of 64 samples. 

The stimuli were digitally recorded in a sound-treated
booth (IAC 1604) with a 16-bit resolution at a 22,050-Hz
sampling rate. All stimulus material was scaled to the same
overall root mean square level and presented binaurally.
The sentences employed in the present study lasted for 2 s
and were randomly presented.

The NOCONF condition comprised the sentences that
conveyed coherent semantic-prosodic information (i.e.,
with the same emotional valence) and the sentences with a
neutral semantics or prosody, where no conXict was pres-
ent.

Uncovering the neural network that sustains the process-
ing of diVerent types of semantic-prosodic incongruence
was the aim of the present study and motivated the choice
of computing together diVerent types of conXict (i.e., sad–
happy, sad–angry, and angry–happy).

The subjects listened to a sentence in one piece and were
instructed to identify the emotional intonation in the short-
est time possible, within a 4-s limit. Prosody judgements
were performed by button pressing (i.e., selecting from four
buttons the key corresponding to the intended emotional
intonation), and provided by means of both hands. No feed-
back about the subjects’ performance was provided. A Wxed
inter-trial-interval (ISI) of 12 s was chosen. Error rates
were collected as a behavioural measure. Stimuli presenta-
tion and collection of responses were carried out using the
E-prime 1.1 software (Schneider et al. 2002). Incorrect or
failed responses were counted as errors. At the end of the
session, subjects were debriefed and their ability to reliably
hear and understand the auditory stimuli was assured.

Imaging parameters

Participants were lying in a supine position in a 1.5 tesla
whole body scanner (Siemens Vision, Erlangen, Germany).
In order to minimise movement, their head was Wxed within
the head coil by means of rubber foam. Subjects were pro-
vided with fMRI compatible earphones (Baumgart et al.
1988) to allow them to listen to the auditory stimuli pre-

sented during the experiment, and to isolate them from the
scanner noise.

Echo-planar images (EPIs) sensitive to the blood oxygen
level-dependent (BOLD) eVect, covering 27 axial slices (4 mm
thickness, 1 mm gap) were acquired (FOV 192 £ 192 mm;
TE 40 ms; TR 2s; Xip angle 90°, matrix 64 £ 64).

High resolution T1 weighted images served as anatomi-
cal reference (MPRage, matrix, 176 sagittal slices,
1 £ 1 £ 1 mm3 thickness).

The Wrst four functional images acquired at the begin-
ning of every session were excluded in order to avoid mea-
surements preceding T1 equilibrium.

fMRI and behavioural data analysis

Image pre-processing and statistical analysis were con-
ducted using SPM2 (Wellcome Trust Centre for Neuroim-
aging, London, UK; http://www.Wl.ion.ucl.ac.uk/spm/).
Movement parameters were estimated and functional
images were realigned to correct for movement artefacts.
The mean functional images obtained from each subject
were coregistered with the corresponding anatomical
image.

The anatomical images were normalised using the Mon-
treal Neurological Institute (MNI) templates implemented in
SPM2. The estimated parameters obtained for each subject
were used for normalisation of the functional EPI images.
Functional images were smoothed using a Gaussian kernel
with a full width at half maximum (FWHM) of 12 mm.

The hemodynamic responses were convolved with a syn-
thetic hemodynamic response function and the fMRI data
were analysed within the framework of the General Linear
Model as implemented in SPM2 (Friston et al. 1995).

First-level Wxed eVects analyses were carried out for
every subject. Event onsets were set at the beginning of
each sentence presentation and ISIs were modelled as the
baseline. The computed contrast images were then entered
into second-level random eVects analyses and four diVerent
contrasts were calculated:

(a) “main eVect” of identiWcation of prosody, where all
sets of sentences were contrasted to the baseline (i.e.,
sentence judgements minus ISIs) to determine the main
activation eVect (i.e., the brain activation pattern
recruited by the detection of emotional intonations).

(b) “emotional prosody eVect”, to determine the brain activa-
tion pattern recruited by the processing of selective emo-
tional intonations. To compute this comparison, sentences
with neutral intonations were subtracted from sentences
with emotional intonations (i.e., “happy minus neutral”,
“sad minus neutral”, and “angry minus neutral”).

(c) “coherent emotional prosody”, with the aim of isolat-
ing the neuronal network supporting the processing of

Example sentences

Sad semantics Der Mann hilft dem sterbenden Sohn.

The man helps the dying son.

Happy semantics Das Fest war nett und lustig.

The party was nice and funny.

Angry semantics Diese Schufte stahlen mein ganzes Geld.

These rascals stole all my money.

Neutral semantics Das Kind geht in den Zoo.

The child goes to the zoo.
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coherent prosody, obtained by subtracting the CONF
condition from the NOCONF condition, and

(d) “incoherent emotional prosody”, with the aim of high-
lighting the brain network recruited by the increased
cognitive costs imposed by incongruent speech. This
contrast was investigated by subtracting the NOCONF
condition from the CONF condition.

Statistical inference was based on the resulting t statistics
for each voxel and was corrected for the amount of false
positive activations in the whole brain (Genovese et al.
2002). A sphericity correction was applied to take into
account between-subjects variance.

Statistical analyses on behavioural data (i.e., levels of
accuracy) were computed using the statistical package
SPSS 11.1 (SPSS Inc., Chicago, IL, USA). A paired t test
analysis between the CONF and the NOCONF conditions
was conducted, and values exceeding a threshold of
P < 0.05 were considered to be signiWcant.

Results

The task of identifying emotional intonations [contrast (a)]
elicited the activation of a bilateral brain network (see
Table 1 and Fig. 1) comprising the medial and superior
temporal gyri (BA 21, BA 41, and BA 42), the triangular
part of the inferior frontal gyrus (BA 45), and the supple-
mentary motor areas (BA 6).

The investigation of the cortical network underlying the
identiWcation of diVerent emotional intonations (i.e., happy,
sad, angry vs. neutral) and coherent prosody (i.e., the
NOCONF minus the CONF condition) failed to yield any
signiWcant results.

The processing of incoherent versus coherent sentences
[contrast (d)] elicited the activation of the dorsal part of the
ACC (BA 32) and of the middle frontal gyrus (BA 10) (see
Table 1 and Fig. 1).

Behaviourally, subjects succeeded in correctly identify-
ing the emotional intonation of 73 § 9% (mean § SD) of
all stimuli. Moreover, subjects identiWed 83 § 12%
(mean § SD) of the sentences characterised by congruency
(NOCONF condition) and 71 § 9% (mean § SD) of the
stimuli belonging to the CONF condition (see Fig. 2).

Paired t test analysis on behavioural data showed signiW-
cant diVerences in the accuracy levels between CONF and
NOCONF conditions (P < 0.001, df = 9, t = 5.05).

Discussion

In the main contrast of interest, the NOCONF condition
was subtracted from the CONFL condition in order to

investigate the brain network involved in assessing conXict-
ing linguistic information. Consistently with our assump-
tions, the comparison between the two conditions revealed
the activation of the rostral ACC (BA 32). Further activa-
tion was observed in the middle frontal gyrus (BA 10).

The aim of the present study consisted in testing the
hypothesis that attributes a functional role in cognitive con-
trol and attentional workload to ACC, identifying this brain
site as an important area for the allocation of attentional
resources during the processing of competing information
and mediation of response selection (Kondo et al. 2004a, b;
Bush et al. 2000; Barch et al.2000; Devinsky et al. 1995,
Posner and Dehaene 1994).

With respect to the CONFL condition, we assumed that
the valenced propositional content of the sentences would
trigger a potent emotional response tendency, which would
cause the subjects to fail in correctly identifying the
intended intonation. Furthermore, we assumed that the allo-
cation of attentional resources, which was required in order
to override this tendency and perform correctly, would
engender the recruitment of ACC. This response pattern
was not expected in response to the NOCONF condition.

Table 1 Brain areas activated for the conditions of interest

The table shows the brain sites activated for the main eVect, for the
conditions “aVective versus neutral prosody”, “NOCONF versus
CONF”, and “CONF versus NOCONF”. MNI (MNI stereotactic
space; Collins et al. 1994) coordinates and corresponding t values are
listed for each brain site. Corrected for the expected amount of false-
positive Wndings among suprathreshold voxels in the whole brain
(P < 0.001)

BA brodmann area, STG superior temporal gyrus, IFG inferior frontal
gyrus, SMG supramarginal gyrus, SMA supplementary motor cortex,
ACC anterior cingulate cortex, MFG middle frontal gyrus

* SigniWcant on the cluster level

Brain region BA area Coordinates 
MNI (x, y, z)

t values

IdentiWcation of emotional prosody

STG left (BA 41) ¡51, ¡30, 12 6.75

MTG left (BA 21) ¡51, 2, ¡15 7.91

MTG right (BA 21) 51, 3, ¡15 7.56

STG left (BA 42) ¡63, ¡30, 6 9.53

IFG left (BA 45) ¡39, 21, 3 6.23

IFG right (BA 45) 42, 21, 3 6.35

ACC right (BA 32) 3, 9, 42 7.69

SMA left (BA 6) ¡6, 1, 52 10.7

SMA right (BA 6) 6, 0, 54 13.9

AVective versus neutral prosody – –

NOCONF versus CONF – –

CONF versus NOCONF

ACC left (BA 32) ¡3, 45, 0 4.71*

MFG right (BA 10) 3, 54, 6 4.58*
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Our result supports a key role for the rostral ACC in atten-
tional control. As expected, identifying emotional intonation
in the discordant condition proved to be more diYcult, as indi-
cated by a signiWcant lower level of accuracy in performance
(see Fig. 2). Moreover, the selective activation of the rostral
ACC during processing of prosodic intonations supports its
functional specialisation for the assessment of emotional
salience (Bush et al. 2000). Bush and colleagues (2000)
devised two Stroop-like tasks to investigate the role of the
ACC rostral/ventral and dorsal subdivisions in the processing
of emotional and cognitive interference. To generate cognitive
interference, Bush and colleagues presented sets of number
words and instructed the subjects to report the number of all
of them. The incongruence between the words meaning and
the number of the words contained in each set elicited the acti-
vation of the dorsal ACC. To elicit emotional interference, the
number words were replaced with emotionally valenced
words such as “murder”. As reported by these authors, the
Emotional Counting Stroop engendered the selective activa-
tion of the rostral and ventral areas of ACC. In coherence with
those studies, our result supports a role of this brain site in
processing of conXicting emotional information.

Further activation was observed in the middle frontal
gyrus (BA 10). The coactivation of ACC and prefrontal

regions is often observed in studies that investigate conXict
(for a review, refer to Duncan and Owen 2000).

BA 10 occupies the anterior part of the frontal lobe and
has been implicated in a wide range of cognitive, emo-
tional and motivational processes (for a review, refer to
Ramnani and Owen 2004). Recent Wndings suggest an
important role of this brain region in decision-making
processes during response selection (Fleck et al. 2006,
Rowe et al. 2000).

With respect to the task investigated in the present study,
we assume that selecting the correct responses to incoher-
ent items imposes additional cognitive workload: during
the processing of incongruent sentences, selection of task-
relevant information (i.e., the string emotional intonation)
is more diYcult and must be carried out despite cognitive
interference engendered by task-irrelevant information.
Such a process is likely to have increased the diYculty of
the response selection process, thus recruiting the activation
of BA 10.

The detection of emotional intonations elicited BOLD
responses of a bilateral brain network encompassing the
superior (BA 41–42) and medial (BA 21) temporal gyri, the
pars triangularis of the inferior frontal gyrus (BA 45), and
the supplementary motor area (BA 6).

Fig. 1 SigniWcant activations elicited by the identiWcation of emo-
tional prosody. Statistical parametrical maps are based on random
eVects analyses. All sets of sentences were contrasted with the rest con-
dition (baseline). Parametric images were corrected for multiple com-
parisons and thresholded at P < 0.001. At the bottom of the Wgure,
signiWcant diVerential activations resulting from the comparison be-
tween sentences characterised by incoherence between prosody and
semantics and sentences characterised by semantics-prosody coher-
ence are shown. Second level statistical parametrical maps are based
on random eVects analyses. All images were thresholded at P < 0.05
(corrected for multiple comparisons)

Fig. 2 Levels of accuracy for coherence and incoherence between
semantics and aVective prosody. The Wgure depicts mean levels of
accuracy for the detection of emotional intonations, for the NOCONF
(trials conveying coherent prosodic and semantic valences) and the
CONF conditions (trials conveying incoherent prosodic and semantic
valences). Error bars show mean § 1 SE. Statistical analyses on accu-
racy levels revealed a signiWcant diVerence between the two conditions
(paired t test, P < 0.05, df = 9, t = 5.05)
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As mentioned, the task required the subjects to identify
aVective prosody expressed by emotional (happy, sad, and
angry) or neutral intonations, ignoring the semantics con-
veyed by the propositional meaning picturing happy, sad,
angry, or neutral scenarios.

Although subjects were not required to pay attention to
the content of the sentences, and although the structure of the
stimuli was kept as simple as possible, we assume that
encoding of syntactic and semantic information must have
taken place to some extent. The behavioural data showing
the impact of the CONF condition on the accuracy levels
conWrm this hypothesis, leading us to assume that the conXict
created by the semantic valence strongly aVected the task.
Therefore, the activation pattern revealed by this contrast
presumably mirrors the processing of prosodic and semantic
information together, and in order to account for these results
both components must be taken into consideration.

The investigation of cognitive processing of emotional
prosody has gained considerable interest during the last
years. A conceptualisation which Wrst emerged from studies
conducted on right-brain lesioned patients, and which has
also been supported by neuroimaging evidence, highlights
the dominant engagement of the right hemisphere in assess-
ing emotional prosody regardless of valence or processing
mode (Wildgruber et al. 2005; Dogil 2003; Adolphs et al.
2000; Borod 2000; Buchanan et al. 2000; Baum and Pell
1999; Blonder et al. 1991).

SpeciWcally, activation of the right middle temporal
gyrus has been observed in tasks where detection of emo-
tional prosody was investigated. This brain site has been
hypothesized to be a prime processor for prosody and its
signiWcance as a conveying area of auditory and emotional
information processing has been sustained by recent imag-
ing evidence (Mitchell et al. 2003).

On the other hand, processing of propositional semantics
has been consistently attributed to a left lateralised fronto-
temporal network (Friederici and Alter 2004; Wildgruber
et al. 2004; Mitchell et al. 2003; Vikingstad et al. 2000).
Right recruitment for prosody and left for semantics was
documented by Mitchell and colleagues (2003) who
described activation of the right superior temporal gyrus in
response to simple congruent emotional prosody, and acti-
vation of the controlateral left area for semantic encoding
of the same stimuli.

In consideration of these accounts we are led to consider
the activation pattern elicited by the main eVect [contrast
(a)] as a result of combined and indissociable demands
imposed by the processing of semantic and prosodic infor-
mation. This explanation accounts for the bilateral involve-
ment of the superior temporal gyri and the left inferior
frontal gyrus.

Moreover, this explanation appears to be consistent with
imaging evidence proposed by Buchanan and co-workers

(2000), who found bilateral temporal activation in response
to both emotional and verbal aspects of language.

The engagement of the right inferior frontal gyrus
seems to be ascribable to processing of prosodic features
of the auditorily presented stimuli, as reported by previ-
ous imaging Wndings (Friederici and Alter 2004; Kotz
et al. 2003).

The contrast (a) also revealed the bilateral activation of
the supplementary motor areas (BA 6), which can presum-
ably be attributed to motor responses preparation elicited
by button pressing as required by the task.

Investigations of brain networks underlying the process-
ing of pure emotional (i.e., happy, sad, and angry vs. neu-
tral) and coherent (NOCONF vs. CONF) prosody failed to
yield any signiWcant results. This Wnding supports previous
neuroimaging evidence (Wildgruber et al. 2005) indicating
that processing of aVective intonations is sustained by a
common cortical network, and leads us to suggest that com-
prehension of coherent speech imposes less of a workload
than processing of incoherent information.

Conclusions

In our study, we aimed at testing the “attentional” hypothe-
sis conceptualised for explaining the cognitive relevance of
the rostral ACC with respect to the process of incoherent
and demanding verbal information. ConWrming the results
of previous imaging research, the current study emphasises
the key role of the rostral ACC and the middle frontal gyrus
in allocating attentional resources required when process-
ing conXicting linguistic information.
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