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The role of genetic factors in the occurrence and progression of CHB (CHB) is

still not fully explored. In recent years, genome-wide association studies on

CHB patients have demonstrated that a large number of CHB-associated single

nucleotide polymorphisms exist in the gene intron, which may regulate

expression at the transcriptional level. Modification of RNA m6A methylation

is one of the key mechanisms regulating gene expression. Here we show that

METTL16, an m6A regulator involved in mRNA intron splicing, is differentially

expressed in CHB the tissue of patients who has definite diagnosis of mild and

severe fibrosis. At the same time, there are also significant differences in the

expression of CHB-associated genes such as HLA-DPA1 and HLA-DPB1. The

expression of HLA-DPB1 is related to METTL16. Furthermore, analyses of RNA

binding of METTL16 and HLA-DPB1 show that the silencing of METTL16 in

astrocytes downregulates m6A and expression of HLA-DPB1. In conclusion,

METTL16 participates in the progression of CHB fibrosis by regulating the m6A

level and expression of HLA-DPB1.
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Introduction

Chronic hepatitis B (CHB) is a chronic inflammatory disease in patients with hepatitis

B virus (HBV) infection. The incidence of CHB ranks first among all kinds of infectious

diseases (Lok, 2002). More than 1.3 billion people in global are infected with HBV, about

260 million are with CHB, which causes about 1 million deaths every year (Perz et al.,

2006; Schweitzer et al., 2015). CHB has become a very serious health and social problem.

Heredity, the virus, and the environment are important factors in the pathogenesis of

CHB, which leads to high heterogeneity in clinic. From the perspective of population

susceptibility to CHB and disease progression, genetic variation can lead to differences in

clinical manifestations among individuals. Since the publication of the first genome-wide
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association study (GWAS) of CHB in 2009, genetic studies on

patients with CHB have revealed many single nucleotide

polymorphisms (SNPs) associated with susceptibility to CHB

(Raza et al., 2007). Several studies have confirmed that these

SNPs are mainly concentrated in a series of human leukocyte

antigen (HLA) loci, including HLA-DP, HLA-DQ, HLA-C, and

HLA-DOA (Lau et al., 2011; Yamada et al., 2014; Akcay et al.,

2018). Among them, Mbared et al. found that the SNP

rs9277535 with the most significant association with CHB in a

Japanese population was located in the 3′ untranslated region of

HLA-DPB1. The SNP was also identified in Korean, Thai, and

Han populations with different significance. Moreover, rs3077, a

representative CHB-associated SNP in different populations, is

located in the 3′ untranslated region of HLA-DPA1. In addition,

SNPs located in EHMT2, TCF19, UBE2l3, CFB, FDX1, and other

gene regions are also associated with susceptibility to CHB in

different regions. However, CHB progresses to liver cirrhosis and

liver cancer. GWAS shows that variation in the SNP ofHLA gene

closely related to the progression of CHB to liver cirrhosis and

participates in the occurrence of liver cancer. Previous studies

have shown that the cytotoxicity of HLA class I and class II play

an critical role in the spontaneous clearance of HBV. However,

the clinical heterogeneity of CHB cannot be fully analyzed from

only the level of genetic variation. The associated SNPs vary in

different populations, and some findings are difficult to

replicate, or even show the opposite results. In the results of

GWAS, the genes that play an important role in CHB is not

statistically significant. Most SNPs located at HLA loci are

located in the untranslated region. The functional mechanism

is not clear, which may be related to mRNA expression of the

gene. SNP loci associated with hepatitis are distributed in the

intron region of the gene. From the perspective of SNP–amino

acid protein function, the mechanism of action of these SNPs

cannot be deeply analyzed. Although it is believed that

these SNPs can affect the pathogenesis of CHB by altering

gene expression, their key mechanism of action has not been

revealed.

Recent studies have found that modification of N6 methyl

adenosine (m6A) is an important way of controlling gene

expression by eukaryotic mRNA. m6A modification is mainly

distributed in introns and the 3′ untranslated region, especially in
region near the stop codon and splice site, which is involved in

RNA processing and metabolic function (Liu and Zhang, 2018).

m6Amodification takes part in different stages of development of

mRNA (Imam et al., 2018), including RNA folding, stability,

splicing, nuclear output, translation regulation, and degradation,

to regulate RNA biological function, protein translation, and life

activity (Zhao et al., 2021; Tong et al., 2022). m6Amodification of

precursor mRNA mainly takes place in the untranslated region,

and m6A methylase and reader proteins located in the nucleus.

Thus, it can be inferred that m6A modification mainly occurs in

the nucleus and affects mRNA splicing (Meyer et al., 2012; Zhao

et al., 2014; Xu et al., 2017). Knockout of METTL3 results in the

downregulation of introns. In addition, m6A demethylase FTO

preferentially binds to the RNA intron region, downregulates

m6A modification on the one hand, but prevents RNA from

binding to splicing protein SRSF2 on the other hand, resulting in

abnormal splicing (Dominissini et al., 2012). These studies show

that m6A modification of RNA in untranslated regions could

affects gene expression by regulating RNA processing and

metabolism. This phenomenon provides clues for analyzing

the role of SNPs in the untranslated region in the

pathogenesis of CHB. We speculate that SNPs in the

untranslated region impact the occurrence and development

of CHB by affecting m6A modification and regulating gene

expression.

In addition, many studies have shown that m6A modification

can change expression of important viral genes. Researchers have

proven that modification of m6A methylation is widely involved

in replication of the HBV virus, inflammatory response, immune

regulation, and fibrosis and plays a role in liver injury, tumors,

and organ failure (Kostyusheva et al., 2021). Imam h et al.

mapped the m6A site in HBV RNA (Qu et al., 2021; Cheng

et al., 2022; Kim et al., 2022; Kim and Siddiqui, 2022; Zhao et al.,

2022). m6A modification is necessary for efficient reverse

transcription of the viral genome and can also regulate the

stability of HBV RNA (Kim and Siddiqui, 2021a). Chronic

infection with HBV and hepatitis C virus is the main cause of

hepatocellular carcinoma (Xiao et al., 2016; Xu et al., 2017).

There is increasing evidence that hepatocellular carcinoma

oncoproteins induced by both virus are controlled by m6A

modification. Recent works found that m6A modification

involves the regulation of hepatocellular carcinoma through

METTL3 and METTL14. First, Chen et al. (2018) observed

the expression of METTL3 increased abnormally in liver

cancer and increased cell proliferation in vitro, resulting in

promoted tumorigenicity in vivo (Xu et al., 2017). METTL3 is

significantly upregulated in hepatocellular carcinoma and

promotes tumor progression. It inhibits SOCS2 expression

and promotes cancer cell proliferation and metastasis through

the m6A-YTHDF2 mechanism. Chen et al. (2018) found

interference with METTL3 reduce the expression of

SOCS2 mRNA. Second, it was reported that METTL14 is

downregulated in liver cancer, and thereby regulates the

development of liver cancer (Bartosovic et al., 2017; Ma et al.,

2017). Together these evidences suggest that m6A modification

has a key role in liver-related diseases through various

m6A-related proteins (Wu et al., 2019; Wu et al., 2020; Kim

and Siddiqui, 2021b; Wang and Zhou, 2022). Modification of

m6A methylation is involved in the pathogenesis of liver injury,

organ failure, and fibrosis. However, it is unclear whether it is

involved in the development of CHB.

Here, we investigated the expression of m6A regulator in

different stages of CHB, examined the relationship between m6A

and CHB-associated genes, and checked the change in m6A and

expression of gene loci with CHB-associated SNPs.
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Materials and methods

Patients

The ethical approval was approved by the ethics committee

of Mengchao Hepatobiliary Hospital of Fujian Medical

University and all study participants obtained informed

consent. Clinical data were collected from patients with

CHB diagnosed by liver biopsy in our hospital in 2019 or

2020. The diagnostic criteria were in accordance with the

guidelines for the prevention and treatment of CHB

(2019 Edition), and study subjects provided informed

consent before enrollment. Inclusion criteria were 1) being

HBsAg positive for more than 6 months and HBsAb negative

and 2) being between 18 and 60 years old. Exclusion criteria

were 1) the presence of acute hepatitis B, liver failure, or

primary liver cancer, in combination with drug liver, alcoholic

liver, or fatty liver, in combination with any other viral

infection and other serious disease; 2) use of antiviral drugs

up to 3 months before enrollment; 3) receipt of

immunosuppressant and immunomodulator treatment up

to 6 months before enrollment; 4) autoimmune liver disease

and systemic autoimmune disease; and 5) pregnancy.

Specimens

A BARD puncture biopsy gun (with a sampling length of

2.2 cm) and 16 g disposable cutting biopsy needle were used for

the liver puncture biopsy. One tissue specimen was stained with

he, Masson, and reticular fibers, and a single pathologist read the

film uniformly according to the pathological diagnostic criteria.

The other specimen was kept in the refrigerator at −80°C.

Tandem mass spectrometry (LC/MS)

After total RNA is extracted with Trizol, mRNA can be

enriched with Oligo (dT) magnetic beads. RNA was digested

from a single strand into a single base with nuclease P1. Alkaline

phosphatase and ammonium bicarbonate were added, the

sample was allowed to incubate for several hours, and then

the sample was injected into a liquid chromatograph. Finally,

the overall degree of m6A methylation on mRNA was calculated

according to the ratio of m6A to total adenine.

Real-time fluorescence quantitative PCR

Tissues or cells were digested and lysed by Trizol reagent.

After Trizol was added to cells or tissues, total RNAwas extracted

with chloroform isopropanol extraction. cDNA was synthesized

by reverse transcription with a one-step PrimeScript cDNA

synthesis kit. Quantitative PCR was performed with a one-

step SYBR PrimeScript RT-PCR kit. GAPDH was used as the

internal reference gene, and the quantitative results were 2−ΔΔCT

indicates. The primer information was in (Supplemental

Table S1).

meIP-PCR

The combination of immunoprecipitation (ChIP) and PCR

technology can be utilized to efficiently determine the interaction

in vivo. RNA was isolated and broken into small fragments by

ultrasounication. An specific antibody was added, and the antibody

formed an immune binding complex with the target protein. De

crosslinking, RNA purification and qPCR were further processed.

FIGURE 1
Illustration of GWAS studies in CHB. (A)Manhattan plot of CHB associated SNP reviewed from published literature. Note that most SNPs located
in the chromosome 6. (B)Distribution of SNP in gene different regions. Note that intron is hot regions where CHB associated SNP frequently located.
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Statistical analysis

SPSS 20.0 was used for statistical the analysis. The

measurement data conforming to normal distribution adopts

mean ± standard deviation (±s). t tests were used for pairwise

comparisons of normally distributed data. Single-factor analysis

of variance was used for multigroup comparisons. Spearman

correlation analysis was used to analyze correlations between

various factors and the occurrence and degree of liver fibrosis in

patients with CHB.

FIGURE 2
Pathological analysis of patients with different levels of liver fibrosis. According to Ishak scoring (A,B) s1, (C,D) s2, (E,F) s4, (G,H) s5. (A,C,E,G)HE,
(B,D,F,H) Masson.
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Results

SNPs associated with susceptibility to CHB
are located in different genes

GWAS has identified 102 SNP sites related to susceptibility to

or progression of CHB (Figure 1A and Supplemental Table S2).

We discovered that only three SNPs were distributed in the exon

region of the gene, nearly 26 were distributed in the intron region

of the gene, and the rest were distributed in the 3′ and 5′
untranslated regions (Figure 1B).

Patients show different levels of liver
fibrosis

A BARD puncture biopsy gun (with a sampling length of

2.2 cm) and 16 g disposable cutting biopsy needle were used for

FIGURE 3
Comparison of expression level ofm6A regulator inmild and severe fibrosis groups. (A)writers, (B) erasers. Note that METTL16 is significantly up-
regulated in severe fibrosis group.
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the liver puncture biopsy. Two complete liver tissues with a

length of about 1.5–2.0 cm were taken. One tissue sample was

sectioned consecutively into five pieces; and stained with

conventional HE staining, Masson staining, and reticular

fibers. A single pathologist read the film uniformly according

to the pathological diagnostic criteria and divided the films into a

mild fibrosis group (s1–s2) and a severe fibrosis group (s4–s5)

according to Ishak scoring criteria (Figure 2).

METTL16 is differentially expressed in the
mild and severe fibrosis groups

Quantitative PCR was carried out to detect the expression

level of a series of m6A methyltransferase regulator genes.

METTL16 expression was significantly higher in the severe

group than in the mild group (Figure 3A). The expression of

other m6A demethyl regulators were also checked, and there was

no statistically significant differences. Then we detected the m6A

modification level of total RNA in the two groups by LC/MS and

found that it was significantly (more than 2 times) higher in the

severe group than in the mild group (Figure 3B).

HLA-DPB1 is differentially expressed in
fibrosis groups

Asmentioned earlier, SNPs related toCHBare located in different

genes in the genome according to GWAS. The expression of 15 genes

was detected in each sample by quantitative RT-PCR. A total of eight

genes were significantly differentially expressed in the two groups of

samples. That is, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQB2,

ITPR3, and NUP205 were upregulated in the severe group. In

contrast, HSD17B8, RING1, and SKIV2L were downregulated in

the severe group (Figure 4A).

The relationships between these differentially expressed

genes and the expression of m6A regulators were analyzed by

Pearson correlation analysis. mettl16 was significantly

positively correlated with HLA-DPB1 and HLA-DPA1

(Figures 4B,C).

FIGURE 4
CHB GWAS genes differentially expressed between mild and severe fibrosis groups. (A) expression level of CHB GWAS genes. Note that HLA-
DPB1 is up-regulated in severe fibrosis group. (B,C) METTL16 is co-expressed with HLA-DPB1 and HLA-DPA1.
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There are different levels of m6A on HLA-
DPB1 in the mild and severe fibrosis
groups

It was suggesting that the expression of HLA-DPB1 is related

to the level of RNA m6A. The m6A level of HLA-DPB1 in each

sample was detected by MeIP qPCR. The level of m6A on HLA-

DPB1mRNAwas significantly increased in the severe group than

in the mild group (Figure 5A).

METTL16 interacts with HLA-DPB1 mRNA

The m6A level of HLA-DPB1 mRNA was consistent with its

expression in each group and was also related to the expression of

mettl16. This implies that mettl16 may be one of the causes of the

difference in m6A level and expression of HLA-DPB1. First

RNAip experiments showed that mettl16 could bind to HLA-

DPB1 mRNA (Figure 5B).

Then we silenced the expression of METTL16 in hepatic

stellate cells and detected the expression of HLA-DPB1 and the

degree of m6A modification. In the METTL16 silencing group,

the m6A level of HLA-DPB1 mRNA was significantly

downregulated by more than 2 times (Figures 5C,D).

Discussion

Molecular genetics research on CHB has revealed a large

amount of genetic information that is of great value for

obtaining a complete understanding of the pathogenesis of

CHB and the development of innovative treatments. Especially

in the past 2 decades of population genetics research, a large

number of SNPs related to susceptibility to and progression of

CHB have been found through GWAS. Most of these studies

have been conducted in Asian populations, and their

conclusions are well targeted. The high prevalence of CHB

in Asia can be further understood from these research results.

The SNPs found in these GWASs are mainly concentrated in

HLA loci, including HLA-DPA1, -DPB1, -DQB2, and -DPB2.

As an important gene group that regulates the body’s immune

response, the HLA complex participates in the anti-HBV

immune response, affects the chronicity of HBV infection

and the strength of the immune response, and participates

in the progression of CHB to cirrhosis and liver cancer.

Therefore, the expression of these genes is likely closely

related to CHB. In our study, we found that HLA-DPA1

and HLA-DPB1 differed significantly in groups with

different degrees of liver fibrosis. This result suggests that

the expression of these two genes may be involved in

FIGURE 5
METTL16 control HLA-DPB1 expression through regulating m6A level. (A) m6A level of HLA-DPB1 mRNA between mild and severe fibrosis
groups. (B) METTL16 interact with HLA-DPB1 mRNA. (C,D) knock-down METTL16 reduced m6A and mRNA of HLA-DPB1 in hepatic stellate cells.
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mediating the progression of CHB. In addition, we found that

other CHB-related loci, such as HSD17b8, ITPR3, NUP205,

RING1, and SKIV2l, were upregulated or downregulated in

different ways in the groups with different degrees of liver

fibrosis. This shows that controlling the expression of CHB-

related genes at the transcriptional level is of great significance

for regulating the progression of CHB. However, we found a

large number of CHB-associated SNPs found in GWAS were

located in the noncoding region of the locus, which suggests

that these genes may be involved in regulating CHB at the

transcriptional level rather than the function of the encoded

protein. In conclusion, our data show that genes with CHB-

associated SNPs can participate in the mechanism of CHB

through transcriptional regulation.

m6A modification plays an vital role in transcriptional

regulation in eukaryotes. The stability, transportation, splicing,

and translation efficiency of mRNA are closely related to the

degree of m6Amodification. This modification is regulated by the

complex. METTL3, METTL14, WTAP, and KIAA1429 form the

“writer,” whereas alkbh4 and FTO form the “eraser.” These

usually regulate the modification of mRNA in the coding

region and the 3′ or 5′ end. Recent studies have found that

RNA has m6A modifications in the intron region, which affects

the splicing of mRNA. Mettl16 is a key methyltransferase whose

precursor mrnam6a modification affects intron cleavage. In our

study, key regulatory factors of m6A, especially mettl16, were

differentially expressed in tissues with different degrees of liver

fibrosis, although other m6A regulators did not differ

significantly. This shows that m6A participates in the

regulation of CHB mainly through mett16. However, the

GWASs summarized above found that SNPs associated with

CHB are mainly located in the noncoding region of the gene. This

is consistent with the function of mettl16. We further found that

mettl16 could bind to HLA-DPB1 mRNA and change its m6A

modification level and expression. In clinical samples, the

expression of METTL16 was also correlated with HLA-DPB1.

All these findings suggest that mettl16 may affect CHB by

regulating the expression of these CHB-associated loci, a new

mechanism in the process of CHB that needs to be analyzed

further.
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