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Role of microglial cells in photoreceptor degeneration

Introduction
Inherited photoreceptor degenerations represent a major 
cause of irreversible blindness in the world. There are several 
genotypic and phenotypic forms of these diseases (OMIM; 
http://omim.org/), but the most frequent in humans is 
retinitis pigmentosa (RP). Photoreceptor degeneration is 
caused by diverse mutations in genes expressed mainly 
in photoreceptors or the retinal pigment epithelial cells 
(Hartong et al., 2006; Silverman and Wong, 2018), with 
more than 300 genes and loci identified (RetNet; https://
sph.uth.edu/retnet/), although it is believed that there are 
probably more yet unidentified genes. Typical RP is caused 
by 71 mutations (RetNet; https://sph.uth.edu/retnet/) that 
affect diverse cellular functions, such as phototransduction, 
transcription, metabolism or ciliary structure and function 
among others, and this makes RP a highly variable disorder 
(Hartong et al., 2006; Sullivan et al., 2006; Dias et al., 2018). 
Thus, the age of onset, that can range from early childhood 
to adulthood, and the rate of degeneration, that differs be-
tween the forms of the disease, depend on the mutation and 
are very variable too (Hartong et al., 2006; Dias et al., 2018). 
The worldwide prevalence of RP is about 1 in 4000 indi-
viduals, and this disease is usually limited to the eye and 
characterized by the degeneration, first of rods and later 
of cones (Hartong et al., 2006; Lin et al., 2009). Cones and 
rods, known as classical photoreceptors, are the first order 
neurons of the visual system, hyperpolarize in response to 

light and pass the electrical signal to other neurons in the 
retina, being thus essential for vision. While the term RP 
includes many genotypic and phenotypic variations, most 
RP patients experience, at the beginning, night blindness 
due to the primary loss of rods. However, the most severe 
consequences of RP are caused later by cone loss (Hartong 
et al., 2006), manifested by tunnel vision and, ultimately, 
blindness. It is thus important to understand the events that 
occur at the onset of the disease that influence rod and cone 
degeneration in order to develop targeted therapies to slow 
or halt the degeneration process.

Some of the rodent models of RP share similar features to 
those of the human disease. Particularly noteworthy are the 
P23H and the Royal College of Surgeons (RCS) rats, the ge-
netic mutations suffered by these animals are also observed 
in some forms of the human disease, and the progression of 
the degeneration is similar too. Thus, these models mimic 
faithfully the human disease and have been widely used to 
investigate it (García-Ayuso et al., 2010, 2013, 2014, 2015; 
Di Pierdomenico et al., 2017, 2018; Dias et al., 2018; LaVail 
et al., 2018).There are some differences between these two 
models: while in the P23H rats the rhodopsin gene bears the 
human mutation most commonly observed in RP (Hartong 
et al., 2006), the RCS strain suffers a mutation of the MERKT 
gene that inhibits retinal pigment epithelium phagocytosis 
(Hartong et al., 2006). Also, the onset and chronology of the 
degeneration is different, because in P23H rats the degenera-
tion starts early (post-natal day 21; P21) and causes first rod 
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loss and secondarily cone loss, and in RCS rats the degener-
ation is belated (starts around P45) and there is loss of both 
rods and cones from the beginning. The mechanisms of cone 
and rod degeneration in these models are thus different, but 
the question that remains unanswered is how both these 
mutations cause rod and cone loss, since one of them (P23H 
rat) affects only rods. There are several theories (Narayan 
et al., 2016; Sahel and Léveillard, 2018), and some attribute 
it to the dependency between rods and cones: cones may 
be dependent on trophic factors produced and secreted by 
normal rods (Léveillard et al., 2004; Kolomeyer and Zarbin, 
2014). Another one suggests that cone degeneration is a re-
sult to nutrient deficiency, causing cone starvation (Punzo 
et al., 2009). A role for accumulated oxidative stress in cone 
degeneration has also been suggested (Shen et al., 2005). A 
theory supported by experimental data, is that cone loss is 
caused by toxic substances released by dying rods (Ripps, 
2002). The abovementioned dependence between rods and 
cones may, perhaps, explain the appearance of ring-shaped 
areas lacking both rods and cones during retinal degener-
ation in the P23H rat (García-Ayuso et al., 2014). Finally, 
microglial activation has been suggested to cause photore-
ceptor degeneration (see below).

Microglial cells are the major resident immune cells in the 
retina, but their role and function in RP progression is not 
yet fully understood. The retina, as an extension of the cen-
tral nervous system is an easily accessible tissue to study the 
dynamics of the activation and migration of the microglial 
cells in different diseases (Silverman and Wong, 2018). In 
various animal models of retinal degeneration (i.e., RP and 
age-related macular degeneration), it has been shown that 
retinal microglial cells change their morphology, become 
activated and travel within the retina (Langmann, 2007; 
Sobrado-Calvo et al., 2007; Galindo-Romero et al., 2013; Di 
Pierdomenico et al., 2016, 2017; Dannhausen et al., 2018; 
Silverman and Wong, 2018). Activated microglial cells have 
been shown to perform multiple functions that can be either 
neuroprotective or neurodestructive. Indeed, microglia and 
neuroinflammation have been implicated in the pathology 
of many neurodegenerative diseases (Glass et al., 2010; Sil-
verman and Wong, 2018). However, it is not clear whether 
activated microglial cells may increase or decrease photore-
ceptor loss in inherited retinal degeneration. If this was the 
case, their inhibition could slow down photoreceptor death. 
Here we will review the pathogenic role of microglial cells in 
inherited photoreceptor degenerations, based on previous 
work conducted in our laboratory. We have performed a 
literature search of articles published on microglia and mi-
nocycline in retinal degeneration.

Microglial Cell Behavior in P23H-1 and Royal 
College of Surgeons Rats 
To investigate the role of microglial cells in inherited pho-
toreceptor degenerations we used two animal models with 
different genetic and pathogenic mechanisms of retinal 
degeneration: the P23H and the RCS rats (see above; Di 

Pierdomenico et al., 2017, 2018). Using antibodies against 
microglial and cone cell antigens and nuclear stainings, we 
studied the microglial cell reaction and the course of photo-
receptor degeneration in retinal cross-sections. 

In  both  a lb ino and pigmented control  animals 
(Sprague-Dawley and PVG rats for P23H and RCS rats, re-
spectively), we found that the mean numbers of microglial 
cells per animal (three sections) were similar (Figures 1A, 
1I, 2A and 2I). The microglial cells were found in four dis-
tinct retinal layers, but no microglial cells were found in the 
outer nuclear layer or in the photoreceptor outer segments 
layer (Figures 1A and 2A).

In the P23H-1 (Figure 1) and RCS (Figure 2) rats, we ob-
served that starting at P15 in the P23H-1 rat and at P21 in 
the RCS rat, the microglial cells changed their morphology 
and became activated (Figures 1B and 2B; Di Pierdomenico 
et al., 2017). At these ages, there was an increase of microg-
lial cells in the retina and the microglial cells invaded the 
outer retinal layers in both strains (Figures 1B, 1I, 2B and 
2I; Di Pierdomenico et al., 2017). Microglial cell migration 
to the outer retinal layers continued because at P21 and P45 
in the P23H-1 and RCS strain, respectively, the mean num-
bers of microglial cells in the outer nuclear layer and outer 
segments layer was significantly increased compared to the 
observed at the earlier ages (Figures 1B, 1I, 2B and 2I; Di 
Pierdomenico et al., 2017). In dystrophic animals, we also 
observed that cones showed shortened outer segments, be-
tween P15 and P21 in the P23H-1 rat (Figure 2F and G; Di 
Pierdomenico et al., 2017) and between P33 and P45 in the 
RCS strain (Figure 2F and G; Di Pierdomenico et al., 2017). 
However, at these time points, we also found a significant 
decrease in the mean number of nuclei rows in the outer 
nuclear layer in both strains, from 8–10 nuclei to 4–5 (43.5% 
decrease) in the P23H-1 (P21) and 3–4 (40.6% decrease) in 
RCS (P45) rats (Figures 1J and 2J; Di Pierdomenico et al., 
2017) indicating rod loss during that period (the outer nu-
clear layer is rod-dominated in the rat retina). Furthermore, 
we found that the increase of the mean number of microglial 
cells found in degenerate retinas, and particularly in the RCS 
rat, could not be explained only by intraretinal migration 
because the numbers of microglial cells in all the retinal lay-
ers outnumbered the numbers found in control animals and 
thus, could be the result of monocyte infiltration or cell pro-
liferation. So, we studied cellular proliferation using immu-
nodetection of the proliferating cell nuclear antigen and we 
showed that at P21 in P23H-1 and at P45 in RCS rats there 
was microglial cell proliferation, so the observed increase 
is also due to, at least in part, cellular division of microglial 
cells (Di Pierdomenico et al., 2017).

We have concluded from these studies that microglial cell 
activation and migration occurs simultaneously with the 
beginning of photoreceptor degeneration, as shown also in 
other studies (Noailles et al., 2014; Zhao et al., 2015; Dann-
hausen et al., 2018), but before the loss of the vast majority 
of photoreceptors and that there is also microglial cell pro-
liferation in both models (Di Pierdomenico et al., 2017). In 
dystrophic animals, and in contrast with healthy animals, 
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microglial cells reached the outer nuclear and outer segment 
layers. The signals initiating early microglial responses and 
attracting microglial cells to the outer retinal layers, is still 
unclear (Silverman and Wong, 2018). But because in our 
studies microglial cell migration occurs at the same time as 
the photoreceptor death is initiated, our results suggest that 
photoreceptor death triggers microglial cell activation and 
migration to the outer retinal layers to phagocytose dying 
photoreceptors and eliminate cellular debris (Sobrado-Calvo 
et al., 2007; Galindo-Romero et al., 2013; Zhao et al., 2015; 
Nadal-Nicolás et al., 2017, 2019). In performing these func-
tions, retinal microglial cells may perhaps influence pho-
toreceptor survival or death, by eventually phagocytizing 
stressed but still viable photoreceptors (Zhao et al., 2015; 
Silverman and Wong, 2018; Nadal-Nicolás et al., 2019). 

Microglial Cell Inhibition with Minocycline 
Improves Photoreceptor Survival
We wondered whether the inhibition of microglial cells 

could improve photoreceptor survival in both models of ret-
inal degeneration. For this purpose, we treated the animals 
with minocycline, a broad-spectrum tetracycline derivative 
antibiotic, with known antiapoptotic, antimicrobial, anti-in-
flammatory and neuroprotective properties (Scholz et al., 
2015; Silverman and Wong, 2018), that has been used clin-
ically for the treatment of various diseases (Silverman and 
Wong, 2018). Minocycline was administered intraperitone-
ally, twice the first day and daily for the remaining days (Di 
Pierdomenico et al., 2018), starting before the onset of pho-
toreceptor degeneration (at P9 in the P23H-1 rat and at P32 
in the RCS rat) (Di Pierdomenico et al., 2018). In these ex-
periments, we observed that minocycline treatment caused a 
significative reduction in the number of migrated microglial 
cells in the outer retinal layers in both strains (Figures 1D, 
1I, 2D and 2I; Di Pierdomenico et al., 2018) and thus, an in-
crease in the numbers of microglial cells in the inner retinal 
layers (Figures 1D, 1I, 2D and 2I; Di Pierdomenico et al., 
2018). Also, in mynocicline treated animals, the cone outer 
segments appeared healthier, straighter, longer and more 

Figure 1 Microglial cell activation and photoreceptor degeneration in P23H-1 rats.
(A–H) Photomicrographs of representative retinal cross sections taken from control SD rats (A, E), post-natal day (P)15 and P21 P23H-1 rats 
(B, C, F, G) and P21 P23H-1 rats treated with minocycline (D, H). (A, E) In control rats, microglial cells are mainly found quiescent in the inner 
retinal layers, and cone outer segments show their typical elongated shape. (B, C, F, G) In P23H rats, microglial cells show signs of activation and 
migrated from the inner to the outer retinal layers (B, C), and cone outer segments showed morphological signs of degeneration (F, G). (D, H) 
Treatment with minocycline reduced microglial activation and migration (D), and improved the cone outer segments morphology (H). (I) Graph 
showing the mean ± SD of Iba-1 labelled microglial cells counted in different retinal layers in control, P23H-1 rats and in P23H-1 rats treated with 
minocycline. The mean numbers of microglial cells in the outer retinal layers were significantly lower in the P23H-1 rats treated with minocycline 
than in non-treated P23H-1 rats. (J) Graphs showing mean number of nuclei rows in the outer nuclear layer (ONL) of control, P23H-1 rats and 
P23H-1 rats treated with minocycline. The numbers of nuclei rows decrease significantly in dystrophic animals. Minocycline treatment increased 
significantly the number of nuclei rows in the ONL. *P < 0.001. Data in Figure 1 are from Di Pierdomenico et al. (2017).
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strongly labelled with arrestin in both strains (Figures 1H 
and 2H; Di Pierdomenico et al., 2018). In addition, minocy-
cline treatment increased significantly the numbers of nuclei 
rows in the outer nuclear layer by approximately + 22% in 
P23H-1 rats and + 17% in RCS rats (Figures 1G and 2G; Di 
Pierdomenico et al., 2018).

Our results suggest that minocycline treatment inhibited 
microglial cell activation and migration during photorecep-
tor degeneration (Di Pierdomenico et al., 2018) resulting in 
improved cone outer segment morphology and increased 
photoreceptor survival (Di Pierdomenico et al., 2018).

Because photoreceptor death in inherited retinal degen-
erations is due to apoptosis (Di Pierdomenico et al., 2017), 
and may be increased by neuroinflammation (Zhao et al., 
2015; Di Pierdomenico et al., 2018), there could be two main 
potential mechanisms through which minocycline neuro-
protects the dying photoreceptors: through its anti-apop-
totic properties (Scholz et al., 2015; Di Pierdomenico et al., 

2018), and or through its anti-inflammatory (anti-phagocyt-
ic) effect (Scholz et al., 2015; Di Pierdomenico et al., 2018). 
In our opinion, because in both models of RP used, microg-
lial cell activation and migration occurs at the initiation of 
the degeneration and minocycline inhibits them both, the 
neuroprotection observed is most probably due to an an-
ti-inflammatory effect. However, further experiments will be 
needed to clarify this fact.

As a final conclusion, we would like to remark that mi-
croglial cell involvement in the two animal models was sim-
ilar but took place with distinct timelines. However, in both 
models, microglial cell activation and migration occurred si-
multaneously with the initiation of photoreceptor cell death, 
although this occurred at different age in the two models. 
Finally, we showed that there was microglial cell prolifera-
tion in both models and that administration of minocycline 
decreased microglial activation and migration and enhanced 
photoreceptor survival in both models. Thus, we propose 

Figure 2 Microglial cell activation and photoreceptor degeneration in Royal College of Surgeons (RCS) rats.
(A–H) Photomicrographs of representative retinal cross sections taken from control PVG rats (A, E), post-natal day (P)33 and P45 RCS rats (B, C, 
F, G) and P45 RCS rats treated with minocycline (D, H). (A, E) In control rats, microglial cells are mainly found quiescent in the inner retinal lay-
ers, and cone outer segments showed their typical elongated shape. (B, C, F, G) In RCS rats, microglial cells show signs of activation and migrated 
from the inner to the outer retinal layers (B, C), and cone outer segments showed morphological signs of degeneration (F, G). (D, H) Treatment 
with minocycline reduced microglial activation and migration (D) and improved the cone outer segments morphology (H). (I) Graph showing 
the mean ± SD of Iba-1 labelled microglial cells counted in different retinal layers in control, RCS rats and in RCS rats treated with minocycline. 
The mean number of microglial cells in the outer retinal layers were significantly lower in the RCS rats treated with minocycline compared to 
non-treated RCS rats. (J) Graphs showing the mean numbers of nuclei rows in the outer nuclear layer (ONL) of control (PVG), RCS and RCS rats 
treated with minocycline. The number of nuclei rows decrease significantly in dystrophic animals. Minocycline treatment increased significantly 
the number of nuclei rows in the ONL. *P < 0.001. Data in Figure 2 are from Di Pierdomenico et al. (2018).
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that anti-inflammatory drugs that modulate microglial reac-
tivity may be used in the early stages of retinal degenerations 
to prevent or slow photoreceptor death.
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