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ABSTRACT

Infantile Krabbe disease results in the accumulation of
lipid-raft-associated galactosylsphingosine (psychosine),
demyelination, neurodegeneration and premature death.
Recently, axonopathy has been depicted as a contributing
factor in the progression of neurodegeneration in the Twitcher
mouse, a bona fide mouse model of Krabbe disease. Analysis of
the temporal-expression profile of MBP (myelin basic protein)
isoforms showed unexpected increases of the 14, 17 and 18.5
kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice,
suggesting an abnormal regulation of the myelination
process during early postnatal life in this mutant. Our studies
showed an elevated activation of the pro-apoptotic protease
caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher
mice, in parallel with increasing demyelination. Interestingly,
while active caspase 3 was clearly contained in peripheral
axons at all ages, we found no evidence of caspase accumul-
ation in the soma of corresponding mutant spinal cord
motor neurons. Furthermore, active caspase 3 was found not
only in unmyelinated axons, but also in myelinated axons of
the mutant sciatic nerve. These results suggest that axonal
caspase activation occurs before demyelination and follow-
ing a dying-back pattern. Finally, we showed that psychosine
was sufficient to activate caspase 3 in motor neuronal cells
in vitro in the absence of myelinating glia. Taken together,
these findings indicate that degenerating mechanisms
actively and specifically mediate axonal dysfunction in
Krabbe disease and support the idea that psychosine is a
pathogenic sphingolipid sufficient to cause axonal defects
independently of demyelination.
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INTRODUCTION

Krabbe disease or globoid cell leukodystrophy is a rare auto-

somal recessive disease caused by the deficiency of b-GALC

(galactosylceramidase) which results in the accumulation of

galactosylsphingosine (psychosine) (Igisu and Suzuki, 1984;

Suzuki, 1998; Wenger et al., 2000). Most commonly, Krabbe

disease is an infantile variant form where symptoms include

muscle rigidity and atrophy, hearing and vision defects,

developmental regression and, ultimately, fatality before

2 years of age (Aicardi, 1993). Demyelination is the most

common hallmark of Krabbe disease. However, other neuro-

pathological defects, including axonal dysfunction, have

been shown in the Twitcher mouse, a natural mouse model

of Krabbe disease (Galbiati et al., 2009; Castelvetri et al.,

2011). While new studies are beginning to shed light on the

mechanisms of neurodegeneration in the Twitcher mouse,

the temporal pattern of axonal degeneration and the patho-

genic mechanism mediating axonal dysfunction are largely

uncharacterized.

Axonal loss is considered as the main cause for permanent

neurological handicap in many myelin disorders (Bjartmar et al.,

1999; Dutta and Trapp, 2007). We found that peripheral axons

are abnormally phosphorylated in the Twitcher mouse, with

average diameters decreased to approx. 3 mm (L. Castelvetri

and E. R. Bongarzone, unpublished data). Mutant peripheral

axons also develop swellings and varicosities (Castelvetri et al.,

2011). These structural defects parallel developmental delays in

mutant mice to acquire postural reflexes, limb strength and

maturation of locomotor memory (Olmstead, 1987). All

together, these findings indicate a progressive impairment

of axonal function, which may include axonal instability,

defective axonal transport, deregulated ion channels function

and/or abnormal interaction with myelin sheaths.
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Caspase 3 is a cysteine effector protease that is activated

by upstream proteases during late stages of apoptosis and

cell death (Okouchi et al., 2007). Caspase activation may be

caused by a variety of stimuli, including mitochondrial dys-

function, oxidative stress and irregular calcium homoeostasis

(Chan, 2001, Orrenius et al., 2003; Polster and Fiskum, 2004;

Culmsee and Landshamer, 2006). Caspase 3 activation has

been shown in many neurodegenerative diseases, including:

Alzheimer’s disease, MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine)-induced Parkinsonian syndrome and ALS

(amyotrophic lateral sclerosis) (Martin, 1999; Turmel et al.,

2001; Rohn et al., 2002). Oligodendrocyte precursor cells and

neurons treated exogenously with psychosine also showed

higher levels of active caspase-3, suggesting that this

sphingolipid facilitates apoptosis (Giri et al., 2006; Castelvetri

et al., 2011). Interestingly, the protease activity of caspase 3

seems to play a role in axonal dysfunction in trophic depriva-

tion and dendritic pruning (Nikolaev et al., 2009; Schoenmann

et al., 2010), axonal degeneration in experimental allergic

encephalomyelitis (Ahmed et al., 2002), trauma (Chen et al.,

2004), proteolysis of spectrin (Reeves et al., 2010) and

retrograde fast axonal transport (Morfini et al., 2007).

In the present study, we examined the temporal activation

of caspase 3 in the Twitcher spinal cord and sciatic nerve in

the context of demyelination.

MATERIALS AND METHODS

Animals
Twitcher heterozygous (C57Bl/6J) and WT (wild-type) (C57Bl/

6J) mice (Jackson Laboratory) were maintained under

standard housing conditions. The Animal Care and Use Com-

mittee at the University of Illinois, Chicago approved all

animal experiments. Twitcher mice were identified by PCR as

previously described (Dolcetta et al., 2006).

Antibodies and chemicals
Antibodies used were: total caspase 3 (Cell Signaling), Active

aspase 3 (Cell Signaling), Actin (Sigma), MBP (myelin basic

protein) (a gift from Dr Anthony Campagnoni, University of

California, Los Angeles), APC (adenomatous polyposis coli;

Millipore), NF-H (neurofilament heavy chain; Cell Signaling),

and neurofilament light chain DA2 (Cell Signaling). Isolectin

IB4-Alexa FluorH 488 was from Invitrogen.

Electrophysiology
Sciatic nerve MCV (motor conduction velocity) was assessed

according to previously described techniques (Dolcetta et al.,

2005). Briefly, CMAP (compound motor action potential) was

obtained by stimulating the nerve at the ankle and ischiatic

notch with a pair of needle electrodes and recording in distal

hind-limb muscles. The active electrode was placed in the

middle of plantar muscles, whereas the reference was inserted

subcutaneously in the second digit. MCV was measured by

dividing the distance between the two points of stimulation

by the difference between proximal and distal CMAP latencies.

F-waves were recorded from proximal nerve segments and

motor roots with the same montage as described for MCV

(Toyoshima et al., 1986). cMEPs (cortical motor evoked

potentials) were elicited with a pair of needle monopolar

electrodes through the mouse primary motor area (Chiba et al.,

2003). CCT (central conduction time), an index of the pro-

pagation time of stimulus-related volleys descending along

corticospinal tracts, was calculated as the difference between

the latency of the sMEP (spinal motor evoked potential), i.e.

latency of muscle responses to stimulate lumbar motor roots

electrically minus that of the cMEP.

Western blotting
Spinal cord and sciatic nerves were removed from WT and

Twitcher mice at postnatal days 7, 14–15 and 30. Tissues were

homogenized in protein lysis buffer containing: 20 mM Tris/

HCl, pH 7.4, 1% Triton X-100, 150 mM NaCl, 5 mM MgCl2,

1 mM PMSF, 2 mM sodium orthovanadate, 1 mM NaF and 300

nM okadaic acid. Samples were sonicated on ice and spun

down at 5000 rev./min for 5 min at 4 C̊. The supernatant was

quantified using BCA Bradford assay (Bio-Rad). SDS/PAGE

was performed using 4–12% Bis-Tris gels (Invitrogen). Proteins

were transferred on to nitrocellulose membranes, blocked in

5% (w/v) non-fat dried skimmed milk powder, 1% BSA, 0.05%

Tween 20 in Tris/Glycine buffer and incubated in primary

antibodies at 4 C̊ overnight. Membranes were incubated

in secondary peroxidase-conjugated antibodies at room

temperature for 1 h. Proteins were visualized using enhanced

luminescence (Thermo Scientific) and quantified using ImageJ

software (NIH).

Immunohistochemistry
Mice were anaesthetized and perfused with saline followed by

4% (w/v) PFA (paraformaldehyde). Spinal cords and sciatic

nerves were extracted and further fixed in 4% PFA for 24 h.

Tissue was transferred to 20% sucrose for 24 h then embedded

and quickly frozen in OCT (optimal cutting temperature). Cryo-

sections (20 mm) were mounted on super-frost slides and

stored at 220 C̊. Sections were dried at room temperature and

washed in PBS. DAB (diaminobenzidine) staining was per-

formed by first quenching sections for 10 min at room

temperature using 10% methanol and 10% H2O2 in PBS. ABC

secondary antibodies and substrate solution (Vectastain Elite)

was employed using manufacturer’s guidelines. DAB solution

(1%) was used for visualization. Sections were dehydrated

using a gradient series of alcohol and xylene and mounted with

Permount (Fisher). Sections for immunofluorescence were

dried at room temperature, washed in 16PBS, and blocked in
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4% BSA, 0.1% Triton X-100/PBS at room temperature for 1 h.

Sections were incubated with primary antibodies in blocking

solution for 48 h and secondary antibodies (Alexa FluorH 488

and 555) for 2 h. Sections were mounted using Vectashield

mounting medium (Vector) and visualized using a Zeiss Meta

510 confocal microscope.

Cell culture
Motorneuronal NSC34 cells were grown in DMEM (Dulbecco’s

modified Eagle’s medium) supplemented with 5% FBS (fetal

bovine serum), penicillin/streptomycin (Gibco) and L-glutamine

(Gibco). Psychosine (Sigma), C6-ceramide (Sigma), and D-sphingosine

(Sigma) were resuspended in 0.001% ethanol.

Immunocytochemistry
Cells were grown on MatrigelTM-treated coverslips. Cells were

fixed in 4% PFA/PBS, permeabilized in 0.1% Triton X-100 and

blocked with 4% BSA/PBS. Coverslips were incubated with

primary antibodies diluted in 1% BSA/PBS overnight at 4 C̊.

Cells were incubated with secondary antibodies Alexa FluorH
488 and Alexa FluorH 555 in 1% BSA/PBS and mounted.

DNA fragmentation assay
NSC34 cells were collected by spinning down at 7000 rev./min for

5 min and washed with sterile PBS. DNA lysis buffer (0.5 mg/ml of

proteinase K in 1 M Tris, pH 7.9, 2 M NaCl, 500 mM EDTA and

20% SDS) was added to the pellet and incubated at 56 C̊

overnight. After RNAse treatment, phenol purification of DNA

was performed and 0.8 mg of DNA was run on a 2% agarose gel.

Ethidium bromide-stained gels were visualized using a Bio-Rad

Chemi-Doc XRS with Quantity One 1D gel visualizing software.

Statistical analysis
Data were analysed using Student’s t test. P,0.05 was considered

significant. Results are means of independent measurements

¡S.E.M.

RESULTS

Temporal analysis of MBP expression in the
Twitcher mouse
The Twitcher mouse is a natural occurring demyelinating

mouse model of KD where psychosine accumulates in the CNS

(central nervous system) and PNS (peripheral nervous system)

(Shinoda et al., 1987; Galbiati et al., 2009). Demyelination has

previously been shown to begin during the third and fourth

weeks in the Twitcher mouse (Nagara et al., 1982). At

postnatal day 30, the Twitcher spinal cord has abundant

microgliosis and reduction of MBP compared with age-

matched controls (Figures 1a and 1d). This is also observed in

the Twitcher sciatic nerve at the same age (Figures 1b, 1e, 1c

and 1f). Demyelination and the concurrent loss of MBPs and

axon insulation become compounding factors that likely lead

to slowed nerve conduction seen in the Twitcher mouse. Here,

we show a strong decrease in MCVs of the sciatic nerve and

an increase in spinal cord conduction latency (Figure 1g).

MCVs were ,30 m/s in the P30 WT sciatic nerve, compared

with ,5 m/s in the Twitcher. CCT increased from ,3 ms in

the wild-type to ,7 ms in the Twitcher cord.

To determine the temporal pattern of MBP isoform loss

in the Twitcher mouse, spinal cord and sciatic nerves from

WT and Twitcher mice at ages P7, P15 and P30 were extracted

and homogenized for immunoblot analysis. We show a

decrease in all four isoforms (21, 18, 17 and 14 kDa) of MBP

in the P30 Twitcher spinal cord (Figures 2a and 2c) but not at

P7 and P15. Peripherally, there is a significant decrease in all

four MBP isoforms starting at P15 in the sciatic nerve of the

Twitcher mouse and continuing to P30 (Figures 2b and 2c).

Interestingly, the 14, 17 and 18 kDa MBP isoforms were

found significantly increased in the Twitcher mouse com-

pared with WT at 7 days of age (Figure 2C).

Active caspase 3 in the Twitcher spinal cord
Activation of caspase 3 has been shown to increase in

oligodendrocytes exposed to psychosine and in the brain of

Figure 1 Analysis of Twitcher P30 spinal cord and sciatic nerve
Confocal analysis of MBP and Isolectin-IB4 (IB4) immunostaining in the Twitcher (TWI) (a) and wild-type (WT) (d) spinal cord.
Magnification 6100. Double labelling in the TWI sciatic nerve (b, c, magnification 6200) reveals MBP loss and microglia activation
compared with WT littermate controls (e, f, magnification 6630). Sciatic nerve MCVs and CNS CCTs of the TWI mouse are compared
with WT controls (g).

Caspase activation in Twitcher
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sick Twitcher mice (Giri et al., 2006; Galbiati et al., 2007b).

However, caspase 3 activation has not been reported in the

spinal cord and nerves of the Twitcher mouse. Caspase 3

activation is a natural process to eliminate unnecessary cells

during embryonic development. Interestingly, increased

numbers of neurons containing active caspase 3 were found

in the Twitcher spinal cord as early at birth (Figures 3a–3c

and 3e). Importantly, while active caspase 3 was observed

in cell bodies, it was also found in cell processes and axons in

the Twitcher spinal cord (Figure 3c and arrowheads

in Figure 3b).

Next, we examined the level of active caspase 3 in the

spinal cord at later stages of the disease. Figure 4 shows

positive staining of caspase 3 in longitudinal sections of the

Twitcher spinal cord compared with controls (Figures 4a and

4b). Interestingly, the strongest staining was localized to the

ventral funiculus region, which contains the anterior

corticospinal and lateral vestibulospinal tracts, better seen

in cross-sections in Figures 4(c) and 4(d). Active caspase 3

was observed clearly localized in axons (arrows in Figures 4e

and 4g). Finally, the relative abundance of active caspase 3 in

the cord was determined by quantitative immunoblotting

(Figure 5a). This analysis confirmed that active caspase 3 is

significantly increased in the Twitcher mouse spinal cord at

P30 (Figure 5b) but not at earlier time points.

Finally, we examined what cell types had active caspase

3 levels in the spinal cord. Immunohistochemical analyses

showed that active caspase 3 was localized primarily to neuronal

Figure 2 MBP in the TWI and WT nervous system
Immunoblotting analysis of MBP isoforms (21, 18, 17 and 14 kDa) at P7, 14 and 30 of the TWI spinal cord (a) and sciatic nerve (b)
compared with WT controls. Quantifications of results show significant loss of all MBP isoforms at later stages in the disease, while
MBP isoforms 18, 17 and 14 are increased at P7 (c).

Figure 3 Immunohistochemistry of TWI spinal cord at P0
Active caspase 3 is visible in the TWI spinal cord (a). Caspase 3 is visible in neuronal processes (b) and cell bodies (c). This is compared
with normal caspase 3 activity observed in the P0 WT mice (d). Quantifications show elevated caspase 3 levels at birth (e).
Magnifications (a, d) 650; (b, c) 6400.
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processes at P30 (Supplementary Figure S1 available at http://

www.asnneuro.org/an/003/an003e066add.htm). Co-localization

with NF-H further showed that caspase 3 was affecting

neuronal axons (Supplementary Figure S1, arrows). We did

not find significant levels of active caspase 3 staining in

oligodendrocytes, which were identified by reaction with the

antibody against APC, a marker for mature oligodendrocytes

(Supplementary Figure S2, white arrows; available at http://

www.asnneuro.org/an/003/an003e066add.htm). Active cas-

pase 3 was observed to co-localize sporadically with GFAP

(glial fibrillary acidic protein)-positive astroglial cells (Supple-

mentary Figure S2, blue arrow).

Active caspase 3 in the Twitcher sciatic nerve
To determine whether apoptotic pathways are activated in the

PNS of the Twitcher, mouse sciatic nerves were also analysed for

active caspase 3 levels. Confocal microscopy showed positive

caspase 3 staining at all three time points in the Twitcher nerves;

however, reactivity became stronger only in P15 and P30 nerves

of the Twitcher mice (Figures 6a and 6c, compared with

littermate controls in Figures 6b and 6d). Interestingly, active

caspase 3 was strongly localized to axons (myelin sheaths were

marked by immunostaining against MBP, in red; Figure 6a).

Immunoblot analysis of nerve extracts (Figure 7a) confirmed a

significant increase in active caspase 3 levels in the sciatic nerve

starting at P14 and continuing throughout the disease

(Figure 7b). Interestingly, active caspase 3 was significantly

lower in mutant nerves at P7 (Figure 7b). Altogether, these

results suggest that, while the time points of significant increase

in active caspase 3 levels correlate with the loss of myelin

integrity in the sciatic nerve, activation of caspase 3 in axons

may also occur independently of demyelination.

Psychosine is sufficient to activate caspase 3 in
cultures of a motor neuronal cell line in the
absence of myelinating glia
Finally, to test if psychosine is a pathogenic molecule sufficient

to activate caspase 3 in neurons, we cultured differentiated

motor neuronal NSC34 cells in the presence or absence of

psychosine and in the absence of myelinating glial cells.

Incubation with 1 mM psychosine (Whitfield et al., 2001) for

24 h led to significant activation of caspase 3 (Figures 8a and

8b). Increasing psychosine levels to 5 mM further elevated

caspase levels, showing a dose-dependent response. This level

of caspase activation was similar that obtained when NSC34

cells were incubated with 30 mM C6-ceramide, a strong

activator of caspases (Spinedi et al., 1998; Ravid et al., 2003).

Immunocytochemical detection of active caspase 3 in NSC34

cells (in green, Figure 8c) was observed in the cytoplasm and

neuronal processes of NSC34 cells (identified with antibodies

against neurofilament light chain, in red) 2 h after treatment

with 5 mM psychosine (Figure 8c). Exposing NSC34 cells to

psychosine for 2 h led to DNA fragmentation (Figure 8e).

Figure 4 Active caspase 3 in the TWI spinal cord
Active caspase 3 (aCasp3) (green) in longitudinal sections of the P30 TWI
spinal cord (a) compared with WT (b). Magnification 6200. Active caspase 3
in transverse sections of the ventral funiculus region of the spinal cord
shows caspase 3 in the TWI (c) and WT (d). Magnification 6400. Active
caspase 3 is localized to some axons ensheathed with MBP (red). Magnifi-
cation 61000.

Figure 5 Immunoblot analysis of active caspase 3 in the spinal cord
Inactive (iCaspase 3) and active caspase 3 (aCaspase 3) levels are shown in
WT and TWI spinal cord tissue at P7, 14 and 30 (a). Quantifications of fold
change in active/inactive caspase 3 levels are shown (b). n53.

Caspase activation in Twitcher
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DISCUSSION

Structural defects in axons of the Twitcher mouse suggest-

ing a dying-back neuropathy were previously observed by

our group (Castelvetri et al., 2011). We report here for the

first time that activation of pro-apoptotic protease caspase

3 is highly increased in central and peripheral mutant axons

before any sign of activation of the protease in neurons

or even glial bodies, providing further support to the

hypothesis of a dying-back mechanism. Our study also found

unprecedented early increases of some MBP isoforms,

suggesting abnormal myelination in peripheral nerves early

after birth.

Early increases in MBP expression suggest
abnormal myelination in the young sciatic nerve
Ever since Knud H. Krabbe described the first five cases of

this lysosomal storage disease in 1916 (Krabbe, 1916)

much work has been done to determine the underlying

pathogenic mechanism of this fatal disease. A central role

in pathogenesis has been attributed to psychosine (Suzuki,

1998), a galactosylsphingolipid that rapidly accumulates in

lipid rafts (White et al., 2009) and interferes in multiple

signalling pathways (Giri et al., 2006, 2008; White et al.,

2011). The Twitcher mouse, a natural mutant murine model

of Krabbe disease, has been an invaluable resource to

understand these processes, including demyelination and

other gliotic responses (Kobayashi et al., 1980; Takahashi and

Suzuki, 1984; Mikoshiba et al., 1985). From these pioneering

studies, it was concluded that myelination in the Twitcher

mouse is normal for the first 2–3 weeks of life, and

demyelination strikes later, between P20 and P25 (spinal

cord) and ,P20 (peripheral nerves).

In order to understand the correlation between demyelina-

tion, axonal damage and neuronal death, we first studied the

effects of disease on the abundance of each MBP isoform.

Products of the MBP gene are fundamental components of

peripheral and central myelin (Barbarese et al., 1978; de Ferra

et al., 1985; Boggs, 2006; Harauz et al., 2009). MBP loss

accompanies myelin degeneration in demyelinating diseases

such as multiple sclerosis and metachromatic leukodystrophy

diseases (Gendelman et al., 1985; Ramakrishnan et al., 2007).

Loss of function of the MBP gene in the Shiverer mouse also

causes a myelin formation defect (Bird et al., 1978). Because

of the functional impact of MBPs on myelin function and

their specificity to mark myelin sheaths, the abundance of

MBPs has been a very useful biochemical endpoint to study

myelin loss (Takahashi and Suzuki, 1984). Albeit the loss of

MBPs as a general marker of myelin has been evaluated

in sick Twitcher mice (Mikoshiba et al., 1985), individual

measurement of MBP isoforms has not been reported for the

Twitcher. Our studies showed significant decreases for each

Figure 6 Active caspase 3 in the TWI sciatic nerve
Caspase 3 (green) is localized to nerve fibres with different stages of MBP
loss (red) in the P15 TWI mouse (a, inset) compared with P15 WT mice (b).
This continues in the P30 TWI (c) compared with controls (d). Background
levels for TWI (A-488) (e) and TWI (A-546) (f) animals are also shown.
Magnification 6200.

Figure 7 Immunoblot analysis of active caspase 3 in the sciatic nerve
Inactive (iCaspase 3) and active caspase 3 (aCaspase 3) levels are shown in
WT and TWI sciatic nerve tissue at P7, 14 and 30 (a). Quantifications of fold
change in active/inactive caspase 3 levels are shown (b). n53.
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MBP isoform in the lower spinal cord only in 30-day-old

mutant but not in younger animals. Instead, reductions

of all MBP isoforms in the sciatic nerve were significant

at P15, earlier than previously described (Takahashi and

Suzuki, 1984). These data confirm that demyelination in

the Twitcher mutant begins as a peripheral insult ,10 days

before central damage. Unexpectedly, the abundance of

the 14, 17 and 18.5 kDa isoforms of MBP was significantly

increased in mutant sciatic nerves at P7. In the cord, the 14

and 17 kDa MBP isoforms were slightly increased as well, but

in a non-significant manner. This finding suggests either an

increase in Schwann cell proliferation or in the synthesis of

peripheral myelin. Previous studies using in vivo [3H]thymidine

metabolic labelling showed a dysfunction in Twitcher Schwann

cells, which continued to proliferate in mutant nerves even

after demyelination (Komiyama and Suzuki, 1994). The reason

for this defect has never been clarified. We have previously

shown that psychosine accumulates in lipid rafts of the

mutant brain and sciatic nerve, disrupting raft architecture

(White et al., 2009). Accumulation of psychosine in P7 mutant

sciatic nerves is low in comparison with late stages of the

disease but significantly higher than age-matched WT nerves

(L. Castelvetri and E. R. Bongarzone, unpublished data). One

possible interpretation is that psychosine may exhibit dual

effects in a concentration-dependent manner: at low

concentrations, psychosine may facilitate myelination and/or

Schwann cells proliferation, likely facilitating raft-mediated

trophic signalling such as the PDGF (platelet-derived growth

factor) pathway, relevant for Schwann cell proliferation

(Yamada et al., 1996). As disease progresses and psychosine

accumulates, it becomes a neurotoxic sphingolipid, activating

death pathways in mature Schwann cells and causing

demyelination.

Caspase 3 is activated in mutant axons
independently of neuronal cell death
Various studies have shown evidence of an ongoing axonal and

neuronal dysfunction during demyelination in Krabbe disease

(Hogan et al., 1969; Jacobs et al., 1982; Dolcetta et al., 2006;

Galbiati et al., 2007a, 2007b, 2009; Escolar et al., 2009; Hofling

et al., 2009, Castelvetri et al., 2011). Interestingly, axonal

counting performed on cross-sections of Twitcher sciatic

nerves, perhaps the best region in this mutant where to study

axonal and myelin damage, showed the absence of axonal ‘loss’

(Jacobs et al., 1982). However, a recent re-evaluation of this

issue using longitudinal sections of mutant nerves clearly

showed the presence of structural alterations, including

swellings and breaks at early postnatal stages (Castelvetri

et al., 2011). This last study also showed absence of significant

levels of neuronal cell death in the spinal cord of the mutant,

at least until very late in the disease. In all, one possible

interpretation is that a dying back neuropathy affects this

mutant, with caspase 3 activation and damage to some axons

occurring before neuronal death.

To examine this possibility in more detail, immunoblotting

analyses for measuring changes in caspase activation were

performed and showed elevated levels of active caspase 3 in

mutant sciatic nerves as early as P15. This was coincident

with the sharp decrease in MCV (Dolcetta et al., 2006) the

infiltration of macrophages (Ohno et al., 1993; Taniike and

Suzuki, 1994) and demyelination. Furthermore, our analyses

demonstrated that in P15 mutant sciatic nerves active caspase

3 was mostly localized within axons. Active caspase 3 was

marginal or absent in neuronal bodies in the cord or Schwann

cell bodies in the nerve at P15. In fact, apoptotic cell bodies

were observed only at later stages using TUNEL (terminal

deoxynucleotidyl transferase-mediated dUTP nick-end

Figure 8 Caspase 3 in vitro
Immunoblot analysis of inactive and active caspase 3 levels in NSC34 cells treated with 1 and 5 mM psychosine (PSY) where 30 mM
C6-ceramide (C6-C) serves as the positive control (a). Quantifications of fold change in active/inactive caspase 3 levels are shown (b)
(n52). Active caspase 3 (aCasp3, green) is visible in 5 mM 24 PSY treated cells for 2 h (c) compared with vehicle controls also labelled
with neurofilament light chain (NF-L, red). Magnification 6200. (d). DNA fragmentation assay shows an increase in DNA fragments
when cells are treated with 1 and 5 mM PSY compared with untreated (UT), vehicle (VH) and 1 mM D-sphingosine (Sph) negative
controls where C6-C serves as a positive control (e).
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labelling) and therefore would not co-localize with active

caspase 3 at these ages (Castelvetri et al., 2011). Some staining

of caspase 3 was localized to GFAP positive astrocytes. This

likely represents sporadic apoptotic astroglial death. Its

contribution to the phenotype observed in the Twitcher mouse

is unknown. While the expectation was to find oligodendroglia

also expressing active caspase 3, our results showed very little

if any of this caspase active in this cell type. At late stages of

disease, oligodendrocytes may die of apoptosis (Bjartmar et al.,

1999; Taniike et al., 1999; Castelvetri et al., 2011). These results

may indicate that the death of oligodendrocytes in the Twitcher

mouse may be a late event in the disease, involving other

apoptotic/degenerative pathways. Active caspase 3 seemed to

accumulate in myelinated and demyelinated axons (axons with

strong punctate MBP immunostaining pattern), suggesting

that myelin is not a primary trigger for activation of the

caspase pathway in axons. Unmyelinated sciatic nerve C-fibres

(Kobayashi et al., 1988; Tanaka et al., 1989) may be undergoing

dying-back death in the Twitcher mouse along with fibres that

have undergone demyelination or even before demyelination

begins. Intriguingly, not all axons showed active caspase 3,

which also indicates that activation of the protease is selective

to a subset of fibres. An area of growing interest in axonal

degeneration is the role that microgliosis plays in regulating

axonal–myelin interactions. Our studies show uneven distri-

bution of macrophages (detected by binding of IB4 lectin)

throughout the nervous system. The reason for this distribution

is not fully understood, although it may be caused by localized

cross-talk between macrophages and the damaged tissue.

Macrophages may well exert differential distress/trophic

signalling cascades, executing death pathways in some cell

types (Burguillos et al., 2011) while aiding in debris removal

and repair in others (Kondo et al., 2011). Further studies need

to address whether infiltrating macrophages in the Twitcher

nerve regulate the activation of caspase 3 in axons.

In the spinal cord, active caspase 3 staining was localized in

axons of the ventral funiculus region of the spinal cord, the

area containing the anterior corticospinal tract and the lateral

vestibulospinal tract. These tracts are descending motor path-

ways responsible for maintaining motor control of the lower

limbs (Ludolph et al., 1987; Ugawa et al., 1991). The presence of

active caspase 3 in these axons suggests axonal distress, which

may be partly responsible for the defects seen in the hind limbs

in the Twitcher mouse. The molecular mechanism by which

caspase may exert a pathogenic effect in the Twitcher axon

is the current object of studies in our laboratory. Caspase

3-mediated axonopathy may involve axonal transport deregula-

tion, proteolysis of cytoskeletal components such as spectrin

and microtubule-associated Tau and/or deregulation of down-

stream proteases (Gamblin et al., 2003; Reeves et al., 2010;

Westphal et al., 2010). Immunostaining for caspase in the cord

of newborn mutant detected also increased levels of caspase 3

positive axons in the neonatal cord, indicating a premature

level of axonal stress in neonates. The relevance of this finding

is unclear, but it may ‘prime’ or ‘mark’ axons for further

structural damage seen at later stages. As psychosine builds up

and accumulates to toxic levels, neurons appear to activate

caspase 3, which eventually trigger an apoptotic-death

programme.

In conclusion, the work presented here shows activation of

axonal death in the form of active caspase 3 in the Twitcher

PNS (peripheral nervous system) and CNS. Our study

demonstrates that psychosine is sufficient to cause activation

of this protease in the absence of myelinating glia, strongly

underlining the potential role of this toxin in triggering this

pathogenic mechanism. The link between psychosine and the

defect described in this study could also involve other

partners such as ER (endoplasmic reticulum) stress, imbalance

of calcium or abnormal levels of ion channels (Orrenius et al.,

2003; Kurnellas et al., 2005). Mitochondrial dysfunction and

sequential cytochrome c release also can increase caspase 3

activation (Polster and Fiskum, 2004). Taken together, our

observations suggest a form of ‘dying back’ neuropathy in the

nervous system of the Twitcher mouse, likely regulated by the

levels of toxic psychosine, in parallel with abnormal myelination

during early stages of the disease.
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