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Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision
making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment
includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental
functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral
properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms
of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition
memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order
relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the
optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning.

1. Introduction

An advanced cognitive agent is required to contain abilities
to interact with a nonstationary environment and to adapt to
a changing situation by understanding the current situation
through previously learned context. In terms of lifelong
experience modeling, one of the essential properties of the
cognitive agents is to incrementally update the new data
without using previously learned information.

For a cognitive agent to update new data from its environ-
ment, the agent judges whether the input situation is known
or unfamiliar compared with its previous experience and
knowledge. If the situation is perceived as a previously faced
event, the agent determines the successive procedure to either
respond to the situation or associate other data related to the
situation. In contrast, if it is confirmed that the current data
are new, the agent selects the next procedure, such as learning
the event or classifying it as a closely related event. This pro-
cedure generallyworks continuously according to the interac-
tions during the lifecycle. In particular, the judgment process
operates within the recognition memory.

In terms of lifelong learning, the cognitive agent requires
both a memory model to encode the experienced data and a
functional process to judge the input data through a com-
parison with the encoded memory. Psychologists and brain
researchers have investigated the functional mechanism of
judging input data through human experiments and anatom-
ical evidence [1–4]. However, studies on a computational
recognition memory model for lifelong learning remain
insufficient. The previous research for computational models
has been limited to static condition.

Lifelong experience has particular properties unlike other
signal data.They are composed of various types of contextual
attributes, which has a format of multivariate and categorical
data. Each attribute has a relationship to other attributes
including high-order relations. Considering the data prop-
erty, in order to deal with the lifelong experience data, the
memory model needs a flexible structure.

In this paper, we suggest a hypergraph-based memory
model that enables contextual modeling and incremental
learning. In order to build a computational recognitionmem-
ory model for lifelong learning, we solve research issues of
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recognitionmemory in nonstationary environment.We show
a human-like recognition performance via the proposed
computational model based on content-addressable memory
mechanism. In addition, the encoding and inference mech-
anisms of the proposed memory model are described, and
the optimal conditions of themodel obtained through empir-
ical simulations are investigated. Through the simulated
experiments, we show that the performance of the recogni-
tion memory model is similar to human and that the model
is applicable to lifelong learning.

2. Recognition Memory

Recognition memory performs two functions, that is, know-
ing and remembering [5]. Knowing, also called familiarity,
is about judging whether a single item has been previously
experienced. Remembering is a process of recollection in
which the associated items from an input are retrieved.
Although there are controversial arguments regarding the
structure and function of recognitionmemory, we developed
a computational model for recognitionmemory based on the
dual process theory [6–8], which differentiates these two
functionalities.

Of these two functionalities, we focus particularly on
familiarity as a fundamental step in implementing recogni-
tionmemory. By considering the relation between familiarity
and recollection, the controversial issues aremainly related to
the functional position of recollection. We suggest a com-
putational model based on a literature review, rather than
proposing strong human behavioral evidence for a theory
related to the role of recollection. Hence, in this paper, both
the proposed model and experimental results are described
based on the characteristics of familiarity.

2.1. Characteristics of Familiarity. Several models that define
the properties of familiarity and recollection have been devel-
oped. In terms of familiarity, we summarize the properties
from dual process theory models. Atkinson et al. described
the signal detection theory (SDT) [9] in which the activation
level between old and new items is controlled [10]. More
specifically, Yonelinas et al. evaluated familiarity as a quanti-
tativememory strength based on the SDT [11, 12].They found
that the activation level has a symmetric curvilinear shape in a
receiver operating characteristic (ROC) graph when only
familiarity operates without recollection. Mandler et al. and
Jacoby et al. hypothesized that familiarity is highly related to
implicitmemory tasks such asword-stem completion [13–15].
Yonelinas et al. also argued that familiarity generally deals
with two items that can be controlled both together and as
single items [16–18].

It has also been debated whether the familiarity in
recognition memory is related to both implicit and explicit
memories [19, 20]. To satisfy the condition as explicit mem-
ory, familiarity is needed to show a regular ROC curve for
the task of recognition judgment based on the SDT.The SDT
supports the argument that input data with noise can be
recognized as old data using similarity values. In contrast, the
implicit property of recognition memory enables pattern

completion such as word-stem completion. In terms of the
SDT, a pattern completion task is construed such that input
data with strong noise are converted to a complete data, and
thus the input is recognized as old or new according to the
completion status. Therefore, to construct a model for famil-
iarity, both old/new judgment as an explicit memory and
pattern completion as an implicit memory are considered
simultaneously.

Another characteristic of familiarity is related to the ROC
curve between true positive (hits) and false positive cases
(false alarms). ROC curves for familiarity and recollection
have different shapes from the viewpoint of the treated items.
The performance of familiarity represents a symmetric curvi-
linear shape in the ROC curves [11]. Such a graph has been
investigated through human behavioral experiments on rec-
ognizing words and images [21]. Although recognition cer-
tainty has been evaluated based on the subject’s own feelings,
many studies have shown similar results regardless of the data
types and experimental setups. In particular, the shape of
the ROC curves was shown to be constant regardless of the
training sizes and intervals between training and recognition
[8]. Both early encoded data and recently trained data con-
tribute similarly to the performance of old/new judgments.

When we design and build a computational model for
recognition memory suitable for lifelong learning, the prop-
erties of familiarity described above need to be considered.
In the following, we survey previous studies on recognition
memory at various computational levels.

2.2. Computational Models for Recognition Judgment. Recog-
nition memory has been considered a special function of the
human brain, rather than a structured type of memory. As a
compositional model for the human brain, research into the
cognitive architecture has tried to arrange special units for
recognition memory. In ACT-R, list memory has an inte-
grated structure that includes recognition memory [22, 23].
In this architecture, recognition memory is depicted as a
simple function occurring in short-term memory and not in
long-termmemory.The model is unconcerned regarding the
SDT or the difference between familiarity and recollection.
Based on the ACT-R, a heuristic recognition test was exe-
cuted for a simple binary judgment [24]. Soar, which is known
to be a progressive architecture, judges familiarity according
to the success of retrieval in episodic memory [25]. If the
retrieval is successful, the input data are regarded as familiar.
In this architecture, old/new judgment is not involved. This
process considers the recollection process between two items
as recognition memory.

In the above cognitive architectures, the recognition
memory operates as an intelligent function working concur-
rently with implicit memory and association. However, an
independentmodule for recognitionmemory is not involved.
Recent research has tried to combine the recognition func-
tion on Soar. In particular, Li et al. proposed a mathematical
approach to reduce the computational cost for searching
through long-term memory [26]. This study contributed to
the interactional functionality between the recognitionmem-
ory and the existing cognitive architectures.
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Mathematical and computational models for recognition
memory have also been studied using the global matching
algorithm. SAM [27], MINERVA2 [28], Matrix [29], and
TODAM [30] are global matching models that judge famil-
iarity by considering the relationship between a test item and
memory [31]. In these models, judgment decision is made
quickly, and the SDT is applied to evaluate the performance.
The REM model judges the old and new using a Bayesian
computation [32]. It computes a scalar value indicating the
global matching between the test data and stored memory
traces. Cox and Shiffrin advanced the issue of recognition
memory by considering the dynamics [33]. According to the
data type treated in recognitionmemory, the criteria for deci-
sion of judgment vary in acquiring a constant performance.

2.3. Our Approach. Previous computational models includ-
ing cognitive architectures for implementing a cognitive
agent have excluded the importance of incremental learning
in memory. If we build a cognitive agent that works in a
nonstationary dynamic environment, the agent needs to con-
sider the ability to encode and update everyday experiences
and recall or expect the exact data from memory. Moreover,
lifelong experiences are composed of various types of contex-
tual information and activities. Each attribute has a special
relationship to other attributes. Sometimes, more than three
attributes are synchronized to composite a situation. There-
fore, we consider that the experience data need to bemodeled
in a temporal relationship between input events and even in
a causal relationship between contextual values.

From the previous theories on familiarity, a computa-
tional model for recognition memory is required to satisfy
the human-like performance of old/new judgments. So far,
however, the exact mechanism of human brain is not fully
investigated. The relationship between familiarity and recol-
lection is still controversial. Some important issues of recog-
nition memory such as aging, forgetting, and context depen-
dency are unsolved yet. To approach the human-like cogni-
tive model, the model may follow a neural mechanism like
human or it may show a similar performance to human. In
this paper, we try to show a similar performance of familiarity
judgment while dealing with lifelong experience data to
evaluate the model. If the suggested model reveals a human-
like performance by comparing the ROC curves, we can fur-
ther investigate the undisclosed characteristics of recognition
memory from the memory model.

To enable lifelong learning in recognition memory, we
apply a flexible structure to implement the computational
memory model. Particularly for the role of familiarity judg-
ment in recognition memory, we suggest a computational
memory model that enables lifelong learning by applying a
hypergraph structure.Themodel is built based on the concept
of content-addressable memory. It records the data into the
model without filtering or modifying. The hypergraph also
supports a high-order relationship between nodes. By build-
ing a layered hypergraph structure, temporal events can be
integrated into a network.

Through the memory model, in this paper, we try to
answer the following questions.

(i) Does the proposed memory model show a human-
like ROC performance of familiarity judgment?

(ii) What is the remarkable characteristic of the proposed
recognitionmemorymodel for treating lifelong expe-
rience data?

(iii) Does the memory model maintain the performance
of both familiarity judgment and pattern completion
under nonstationary encoding conditions?

In the following sections, we introduce the hypergraph-based
memory mechanism and evaluate the memory model, which
shows a similar performance to the human tasks of recog-
nition judgment. Furthermore, in terms of lifelong learning,
we investigate the characteristics of the proposed recognition
memory model under various hypergraph configurations. By
considering temporal properties including the study dura-
tion, we validate the consistency of the performance. In
addition, the memory model is compared with conventional
probabilistic model to evaluate the performance of expecta-
tion in nonstationary environment.

3. Hypergraph-Based Memory Model

We propose a hypergraph-based memory model that enables
incrementally encoding nonstationary contextual data and
operating recognition judgment from the encoded memory
model. In this section, we describe the memory mechanism,
including encoding and judgment, from the concept of a
hypergraph structure. The basic concept of the memory
model follows the principles of a cognitive agent suggested by
Zhang [34]. The hypergraph structure mimics brain mecha-
nism related to memory encoding and retrieving. For mem-
ory encoding, input data are disassembled into subsets and
distributed for storage in memory. To retrieve the data, seg-
mented subsets are composited to generate the complete data.
The primary processes of memory encoding and judgment
from thememory are partitioning and combining. To support
these memory mechanisms based on a subset combination,
we apply a hypergraph structure and modify the structure by
constructing a layered hypergraphs.

3.1. Hypergraph-Based Memory Structure. A hypergraph is a
graphical model composed of edges, which are combinations
of nodes [35]. When an event instance𝑋 is {𝑥

1
, 𝑥
2
, . . . , 𝑥

6
}, a

hypergraph can be represented as shown in Figure 1(a). In a
hypergraph, a complete instance is divided into several sub-
sets, which share a commonproperty. Each node is allowed to
be included in distinguished subsets according to the endo-
wed parameter conditions. A single subset, combination of
nodes, is assigned as a hyperedge with 𝑘 nodes, where 𝑘 is a
variable indicating the size of the nodes in a subset.

The structure of a hypergraph has the advantage of build-
ing high-order relationships. Using the flexible combinatorial
structure of a hypergraph, several research domains have
applied such characteristics as a spatial relationship in image
processing and a temporal relationship in formal language
analysis [36–38]. A hypergraph structure is adaptable to build
relations of contextual data and serial data.
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Figure 1: Graphical diagram of a hypergraph-based structure. (a) A hypergraph with six nodes and six edges. (b) A hypergraph structure
constructs circular connections inside the network when the data comes from contextual events.

(a) (b)

Figure 2: Hypernetwork structure generated by accumulating hypergraphs.The solid rectangles indicate edges with different node sizes.The
dotted lines indicate the links between two edges acquired from the input data. According to the property of instances, a hypernetwork is
shaped like a ring (a) or a line (b).

To make a dense connection inside the data, a hyperedge
includes links with each weight between adjacent edges such
that the hyperedges are fully connected. For example, if a
hypergraph tries to model contextual event instances which
are composed of six attributes, each edge is composed of 𝑘
nodes including the node in the order of dimensions. In this
case, the hypergraph structure is modified into the shape of
a circular network, as shown in Figure 1(b). The connection
of links is dependent on the characteristic of encoding data.
The contextual data composed of categorical values has no
prior order between nodes. In comparison, if words are
encoded into a hypergraph structure, each letter has a serial
order so that the link connection has a linear network (see
Figure 2(b)).

Inside the hyperedges, links with weights are created.
In terms of nodes, an edge structure represents a strong
relationship between nodes in the edge. On the other hand, a
link structure indicates a weak relationship. Therefore, a sin-
gle node comes to have various relations with the whole event
instance. This means that a high-order relationship can be
accomplished according to the circular or linear configura-
tion of the edges and links.

A hypergraph structure is suitable for modeling nonsta-
tionary contextual relationships. A hypergraph allows incre-
mental learning by accumulating other hypergraphs into the

previous structure. When an event instance is entered, it is
replaced with a hypergraph. If other event instances with the
same dimensional properties are entered, that is, the same
attributes with different values, hyperedges can be shared
to represent their hypergraph. Temporal event instances are
accumulated in a hypergraph structure. Hyperedges have
various links with adjacent hyperedges based on the input
instance. The layered hypergraphs become a network, which
we therefore call a hypernetwork. Figure 2 shows the shape of
a hypernetwork. The network shape is determined according
to the dimensions of the instances and the configuration of
the hyperedges as well as the property of instances.

The proposed hypernetwork enables incremental learn-
ing. Edges from a hypergraph can be accumulated into a
hypernetwork according to alignment of their structure. It
needs not previously encoded event data. To update the
hypernetwork, an input instance goes through sampling, con-
necting, and weighting steps. At first, an instance is sampled
into hyperedges with order 𝑘. After investigating the duplica-
tions between the new hyperedges and the edges in themem-
ory, the matched or created edges are connected with each
other. A number of connections is accumulated such that
the weight of each connection changes.

A higher count indicates a strong relationship. The accu-
mulated number of connections between two hyperedges is
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represented as a positive number. To emphasize the initial
connection between two associated edges and to normalize
the weights, the weight of links forms a half sigmoid function.
The maximum value of the weight is given to 1.0. The graph
for the weight follows a monotonous slope. Equation (1)
represents the sigmoid function for weights:

𝜑
𝑖𝑗
= 𝑓{(1 + exp(−

𝑙
𝑖𝑗

𝐶
))

−1

} . (1)

Here, 𝜑
𝑖𝑗
indicates the link weight between hyperedges 𝑖 and 𝑗

fromdifferent edge sets, 𝑙
𝑖𝑗
is the accumulated number of con-

nections, and 𝐶 is a constant for modulating the slope of the
sigmoid function. A larger 𝐶 slows the grade, where 𝐶 is
empirically determined to avoid early convergence.

3.1.1. Model Parameters. Thehypernetwork has a data-driven
structure. From the input data, the fixed dimensions of the
data determine the structure of a network. Inside the network,
several edge configurations can be applied. Edge configu-
ration depends on both the order size of edges 𝑘 and the
combination of edge types. Outside the network, the learning
procedure, such as the number of repeated encodings, can be
modulated.

Tomodulate the structure, the hyperedge configuration is
essential. Generally, a 𝑘-hypergraph is composed of 𝑘 uni-
form hyperedges, where the length of the hyperedges is
assigned as 𝑘. If 𝑘 is fixed, we find an optimal configuration by
modulating the magnitude of 𝑘. If 𝑘 is variable, a hypernet-
work is built with the mixed properties of different order
sizes.

Another parameter of the hyperedges is the combina-
tional type used to compose a hyperedge. One hyperedge
includes the serially adjacent nodes in the data. However, the
serial order of the data does not assure a close relationship
among the data attributes. Furthermore, when knowledge of
the causal relation of the attributes is absent, the serial order
will influence the encoded model inadequately. Hence, a way
to combine edges from the attributes is important for building
a memory model with high-order relationships.

The last parameter that affects the structure of a hypernet-
work is the repetition of data encoding into thememory.After
an instance is encoded once, what happens if the instance
is encoded again? Repeated encodings are interpreted as the
study duration in recognition memory [39–41]. For a single
instance, multiple encodings can affect the performance and
structure of the memory model. According to the durational
study, a hypernetwork can be a dense or coarse network.
Consequently, the parameters that influence the memory
structure are the relation between attributes, the size of edge
order, the combinational order of the edges, and the repeti-
tion of the encoding and retrieval.

3.1.2. Scalability. The proposed hypernetwork stacks input
data into memory as the data accumulates. For lifelong
experience, the length of the incoming data is temporally
unlimited.Thus, our concern regarding thememorymodel is
the capacity of the patterns covered. The main characteristic

of the memory structure is reflecting on the partitioning and
combining of the data.

When we define the number of values of each contextual
attribute as 𝐶

𝑖
, where 𝑖 ranges from 1 to 𝑑 (dimension of

attributes), the possible combinations of instances are∏𝑑
𝑖=1
𝐶
𝑖
.

If we set the fixed order size, 𝑘, the possible combinations of
edges are represented as follows:

𝑘

∏

𝑖=1

𝐶
𝑖
+

𝑘+1

∏

𝑖=2

𝐶
𝑖
+ ⋅ ⋅ ⋅ +

𝑘+𝑑−1

∏

𝑖=𝑑

𝐶
𝑖
=

𝑑

∑

𝑡=1

(

𝑘+𝑡−1

∏

𝑖=𝑡

𝐶
𝑖
) . (2)

If we assume 𝐶
1
= 𝐶
2
= ⋅ ⋅ ⋅ = 𝐶

𝑑
= 𝐶, the ratio of possible

edges over possible instances is 𝑑𝐶𝑘−𝑑. Usually, 𝑘 is smaller
than 𝑑 and 𝐶 is larger than 𝑑. Accordingly, 𝑑𝐶𝑘−𝑑 is less than
1, and thus the numbers of created edges and links can more
quickly converge than those of the instances. By using smaller
number of edges, our proposed hypergraph structure can
represent the entire instance combinations.

3.2. Inference Mechanism. In summary, the proposed mem-
orymodel is a layered hypergraph-based network. To operate
as a recognition memory model, the model needs to facil-
itate both familiarity judgment and pattern completion. In
this section, we deal with the judgment mechanism of
hypergraph-based memory.

In terms of the memory mechanism, there are two types
of memory, activation-based and weight-based memory
mechanisms [42]. A weight-based mechanism uses the
weights in the networks. A summation of all relatedweights is
used to judge the classification of the input instance and
categorize the output [43]. Previous global matching algo-
rithms were built on the weight-based mechanism [31]. On
the other hand, an activation-based mechanism adopts the
shape of activation patterns as a judgment criterion. Previous
researches on memory models have approached the func-
tionality using a distinctive mechanism rather than mixing
these two different mechanisms together [42, 44]. However,
a hypernetwork has a particular connectivity in its structure
and an individual weight for each connection, and thus the
model represents two memory mechanisms together. As an
activation-based mechanism, the model uses the shape of
the activated edges and their connections. A weight-based
mechanism enables measuring the intensity of the connec-
tions using the link weights. From the encoded memory, we
describe the judgment mechanism of recognition memory
through the two memory mechanisms.

3.2.1. Familiarity Judgment. A constructed memory encodes
all data into a hypergraph structure.When the new input data
enter the memory, a recognition judgment begins. According
to the completeness of the input data, the process for the
judgment is separated (see Figure 3). When an input has no
missing value, the result of the judgment is whether the input
is old or new. On the other hand, a partial input to be judged
requires distinctive processes related to the pattern comple-
tion. Inside the memory, the data commonly pass through
the steps of edge sampling, activation, and finding fully
activated connection.
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Figure 3: The recognition judgment procedure according to the type of input data. The upper arrows (dot lines) represent a process of
familiarity judgment from complete input data. In contrast, the lower arrows (solid lines) show pattern completion from partial input data.
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Figure 4: Conditions of edge activation: (a) successful and (b) failed activations.The top and bottom rows are for the input edges and encoded
memory edges, respectively. Arrows with a cross indicate mismatches of the edges between the input and memory.

The recognition judgmentmechanism is divided into two
steps: activation and judgment. The first, activation, is a step
for finding the matched hyperedges from the input data. For
an input probe, only few edges are matched and activated.
The memory model infers the recognition from these small
portions of the entirememory.When input data are observed,
edges based on the data are extracted with regard to the edge
configuration of the model. In the activation step, the extra-
cted edge, 𝐸

𝑖
, and previously encoded edge, 𝐸

𝑚
, are com-

pared.
To check the correspondence between two edges, the

inclusion relation is applied for a comparison measure. As a
condition of the activation between two edges, at least one
value should be matched, and no mismatched values should
exist. The activation function can be represented as follows:

𝛿 (𝐸
𝑖
, 𝐸
𝑚
) =

{{

{{

{

1, if (# of matched value > Nm,
# of mismatched value = 0)

0, otherwise.
(3)

If one value of an edge is missing because of different edge
lengths, we do not count this case as a mismatched value.
Figure 4 shows the success and failure of activation.

The secondary step of the recognitionmechanism is judg-
ment. To judge the familiarity, an activation-based memory
mechanism is involved. The model investigates whether the
activated edges construct a fully connected links. After the
edges are selected in the memory, the connected links are
activated consecutively. If two adjacent edges are activated
simultaneously by the input, the connected link is finally
assigned as an activated link. If edges are activated and
connectedwith each other in every dimension of the network,
the input data are judged as old (see (4)):

∏

𝑖

𝛿 (𝐸
𝑖
, 𝐸
𝑚
) = 1. (4)

If the activated edges are fully connected in the memory
network, it means that the combination of edges was pre-
viously encoded. The reason for this is that all of the
encoded instances make a closed link set in the network
model. Figure 5 shows ring-type and line-type networks that
have been judged as old or new. As shown in Figure 5,
different edges are activated simultaneously. The number
of closed loops changes according to the input data and
network connectivity. However, the number of loops does not
indicate certainty of the recognition judgment. The criterion
is whether a fully connected link exists or not.

3.2.2. Performance Measure. As a performance measure, we
use a confusion matrix. In a hypernetwork, an old input is
always judged as old if we assume that there is no removal of
edges or links in thememory.Thismeans that a false negative
does not occur. Likewise, results judged as new are constantly
made from new inputs. Our concern is false-positive cases,
where a new input is judged as old.The subsampled structure
allows various combinations of edges and thus the high con-
nectivity enlarges the number of false positive cases.Themain
problem here is related to the connectivity. In the model, the
connectivity indicates the complexity of network, which is the
ratio of the average number of links per edge. According to
the edge configurations, the connectivity varies, and the scale
of the structure then changes along with the performance as
recognition memory. Hence, to make an optimal structure
for particular data, we need a rule to determine whether the
performance in a certain configuration is suitable.

As above described, the activation-based memory mech-
anism provides a fast judgment on familiarity. However, there
is a binary result of judgment: old and new. To measure the
certainty of recognition of the input data, we additionally
apply the weight-based mechanism. Each link between two
edges has a weight. The activated edges and corresponding
links are extracted from the input data. If there is a closed
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Figure 5: Network diagrams built using activated edges and links. Top graphs ((a)–(d)) represent ring-type networks and bottom graphs
((e)–(h)) represent line-type networks. Among the graphs, (a), (b), (e), and (f) contain a fully connected links, which are judged as old or
familiar. On the other hand, other graphs ((c), (d), (g), and (h)) are judged as new or unfamiliar.

link connection, the summation of weights for activated links
is assigned as a similarity using (5) as follows:

𝑆 = ∑

𝑖,𝑗

𝜑
𝑖𝑗
. (5)

We next consider two additional cases for calculating a
similarity. For example, an open connection between acti-
vated edges excludes weights of inactivated dimension (see
Figures 5(c), 5(d), 5(g), and 5(h)). In terms of activation-
based mechanism, the memory judges the shape as being
new. Regardless of the judgment, the input data elicit the
similarity by giving a weight of zero. Another consideration
is related to multiple extractions of closed connections. All
extracted routes have their own similarity. The maximum
similarity is selected for the input data.

The calculated similarity is used to draw ROC (receiver
operating characteristic) curves. Even though the proposed
mechanism judges the familiarity based on the activation
patterns, a similarity further provides a precise performance
based on the certainty of the input data from the ROC curve.
The result may be evidence validating whether the proposed
memory satisfies the human performance of recognition
tasks. We investigate the optimal configuration of hyper-
graphs to resemble a human-like recognition memory model
in Section 4.

3.2.3. Pattern Completion. Another function of recognition
memory is completing data from a partial input data. The
proposedmemorymodel allows the same functionality along
with a judgment mechanism.The discriminative aspect com-
pared with a recognition judgment is related to both the
activation rule and the judgment rule. Unlike a familiarity
judgment, input data for a pattern completion contains

missing values. Extracted edges from the input also include
the missing part. From the activation rule, two conditions are
considered (see (3)). First, no mismatched value is allowed.
Second, the number of matched values between two edges
should be more than 0. Some edges involving missing values
do not guarantee matched values even if there is no mis-
matched value.

Inference from partial data aims to generate a missing
part using previously encoded memory. According to the
memory structure, the generated data are recognized as
familiar. Hence, the generation process involves reconstruct-
ing the missing data and extracting the complete data. The
activated edges in the memory from partial input data build
a full connection in the network, which represent completed
data. After completion, the performance is estimated in two
ways. One is the status of completeness, that is, whether the
memory finds a full connection. The other is an expectation
of whether one of the completed data points reconstructs
the original data point exposing missing values. Similar to
a familiarity judgment, the configuration of the hyperedge
influences the performance of both completeness and expec-
tation. A high connectivity to the memory has the potential
to create a high completeness and expectation performance.

4. Experiment

A hypergraph-based recognition memory model was des-
igned to build a recognition memory in lifelong experience.
According to the data of experience, a distinguished type
of hypernetworks is constructed. If we consider human
activities in lifelong learning, our experiments can be set up
to evaluate the performance of incremental learning for con-
textual data. In the experiment, we search the optimal edge
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Table 1: Attributes and values of applied Reality Mining data.

Attributes Number of value categories Value examples
Time 24 Hours (from 0 to 23)
Location (cell tower ID) Over 30 Cell tower IDs
Place 4 Home, work, elsewhere, no signal
Phone application Over 20 Phone, logs, menu, screensaver, and so forth
Contact ID Over 40 IDs in phone address book
Call direction 2 Outgoing, incoming
Call type 3 Voice call, short message, packet data
Duration 10 Categorized duration in seconds

configuration of the proposed memory model to resemble
human performance on familiarity judgment. Then, we eval-
uate the performance of both old/new judgment and pattern
completion in a nonstationary environment.

4.1. Experimental Design. In order to evaluate the model,
we applied the Reality Mining dataset, which is composed
of categorical and multivariate phone usage logs [45, 46].
We reorganized the Reality Mining data to contain eight
attributes having contextual information and phone usages.
Table 1 shows the included attributes and their values. A total
of 106 subjects participated in the dataset, and the logs were
recorded automatically using the cell phones provided. In
our experiments, the logs were converted into a sequential
event stream with eight dimensions. According to the sub-
jects, the number of events accumulated over a 9-month
period reached around 7,000. For the experiment related to
lifelong learning, we selected several subjects with large event
instances.

The serial event streams were encoded one by one. Since
the hypernetworks enable incremental learning, the model is
able to update new incoming event data on the previously
encoded hypernetworks without relearning. To investigate
the performance of the recognition memory related to famil-
iarity, the input data were divided into two types: complete
and partial data. As shown in Figure 3, for complete data,
the judgment is whether the input data are old or new. On
the other hand, partial data go through the same procedure
as complete data but the judgment considers whether partial
data can be completed to the original data.

In the Reality Mining data, each instance has eight
attributes and the values change according to logging time.
The combination of eight attributes composes an individual
instance. If a new instance is equal to one of the previous
events, the instance is regarded as old.Otherwise it is assigned
as new. For the whole data, the ratio of old events changes
and is represented in Figure 6. As shown in Figure 6, the
ratio of old events gradually increases up to 32.8%. Kim and
Park found the regularity in human behaviors from Reality
Mining data [46]. In lifelong experience, we postulated that
the human behaviors are repeated so that old/new judgment
from the event stream is an important task to determine the
next process such as updating themodel or expecting the next
situation.
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Figure 6: The ratio of old instances among total encoded instances
during incremental learning. The overall ratio of old instance is
about 32.8%.

We also found that the distribution of attributes changes
by time. When we divide the whole data into seven sections
with the same instances, each section has different distribu-
tions of attributes. Figure 7 shows a change of distribution for
one of attributes, location. Among over 30 values for location,
four specific locations are dominant in the distribution. How-
ever, the distribution is changes by the logging time. If the
attributes aremodeled by probabilistic approach, each section
needs a particular probability distribution table. Therefore,
in human behavior modeling, we need to consider both the
regularity of the overall event stream and the irregularity of
local fluctuation inside the attribute.

The primary goal of the experiment is to evaluate the
proposed memory model that represents the properties of
human-like recognitionmemory.Whenever the RealityMin-
ing data are encoded, the results of the recognition judgment
were compared with human behavioral performance. In
addition, the dataset contains contextual information so that
when a partial data with missing attributes appears, the
recognition memory completes the missing part and expects
the next context from the previous experience. In the follow-
ing experiments, we investigate the structural configuration
of the proposed memory model to reveal the most similar
human performance. Furthermore, we figure out the char-
acteristics of the model in nonstationary environment and
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Figure 7: The distribution of an attributes, location, among eight
attributes in Reality Mining dataset. The distribution changes
according to the logging time.

evaluate the performance of expectation in comparison with
conventional probabilistic model, Bayesian networks.

4.2. Experiment 1: Find Optimal Edge Configuration. In the
first experiment, we find the optimal hyperedge condition
to derive acceptable results for judgment. Based on the
hypergraph theory, the experimental dataset could be con-
structed into various hyperedge structures. Since the number
of attribute is fixed as eight and each attribute can have
a distinctive relationship, we apply a ring-type hypergraph
structure. We classified three types of edge configurations.
The first edge has a fixed order size within the range of 2 to 𝑑−
1, where𝑑 is the number of dimension.The second configura-
tion sets random order 𝑘, which is determined to be between
𝑟
1
and 𝑟
2
, where 𝑟

1
and 𝑟
2
are in the range of 2 to 𝑑 − 1. In

the above two edge configurations, the node combination is
sequential in order of the number of attributes. Under the
assumption of a random edge order, the third type of edge
randomly selects order combinations. We applied a total of
13 edge categories, which include fixed-order edges, random-
order edges, and random-edge combinations.

Next, we investigated the incremental trend of recogni-
tionmemory according to the amount of encoded data. Eight
categories of edge configurations were compared. Figure 8
shows comparison of the encoded memories in terms of the
number of edges and links. Additionally, the ratio of links
over edges, which is defined as connectivity, indicates the
degree of memory density. For a recognition judgment, we
expected the connectivity to play a critical role. When fixed-
order edges are applied, the scale of the encoded memory
increases, and the connectivity decreases. Both random-
order edges and random-edge combination also showed this
same tendency. However, the average connectivity achieved
the maximum value in the case of random-order edges.
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Figure 8: Scale of encoded memory and the memory connectivity
according to the edge configuration.

4.2.1. Familiarity Judgment. In the experiments, we were
mainly concerned with finding the evidence indicating that
the proposed model has a similar recognition judgment
performance as a human being.The Reality Mining dataset is
appropriate to represent human behavior because it contains
repeated similar events and changes the data distribution by
time. We know that an optimal ROC curve has a high hit
rate and low false alarm rate. However, human behavior has
uncertainty with false alarms and false negatives. According
to the various edge configurations, in this experiment, we
drew ROC curves and investigated their properties to search
for a human-like configuration. To draw a ROC curve, a
similaritymeasure was applied. Evenwhen a familiarity judg-
ment is executed using the activation-based mechanism, we
can acquire a similarity of the activated link using the weight-
based mechanism. When the recognition memory uses only
the activation-based mechanism, an input instance with a
high similarity value can be judged as new. On the other
hand, an input with a low similarity value is judged as old if
all of the activated edges are connected with each other. For
a familiarity judgment, we ignore this situation because we
need to obtain quantified data for the ROC curve.

ROC curves for the three edge configurations with an
order range between 2 and 6 are shown in Figure 9. For
a fixed order of edges (see Figure 9(a)), higher-order edges
derive more precise judgment. If the order size is over 5, the
judgment is perfect. Lower-order edges have asymmetric
ROC curves, unlike in human beings. Fixed-order edges do
not guarantee regular ROC shapes despite the order size.
However, when the edges are composed of various edge sizes,
we can see curved symmetric ROC graphs, as shown in
Figure 9(b). The order composition differs from 2 to 6, and
the curves appear to be regular. High-order edges increase the
hit rate, and low-order edges affect the false alarms.The point
of interest here is that the curves were regular even though
the false positive cases were changed according to the range
of random orders. The third edge configuration contains
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Figure 9: ROC curves for familiarity judgment according to the edge configuration: (a) fixed-order edges, (b) random-order edges, and (c)
random-order edges with random combinations.

randomly combined edge orders. The overall performance is
better than the second edge configuration (see Figure 9(c)).
The hit rate converges early when the edge order range is
larger. However, like the fixed order edges, the curves show
asymmetric shapes. Through the judgment experiment, we
validated that a random edge configuration is most adaptable
to the human-like recognition memory model.

4.2.2. Pattern Completion. Another functionality of familiar-
ity in recognition memory is pattern completion. From the
connectivity graph, we can see an inversely proportional
relation between familiarity judgment and network con-
nectivity. A high connectivity between edges hinders the
memory from judging new instances. Likewise, the property
of network connectivity also influences the performance
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Figure 10: Performance of pattern completion according to the edge configuration: (a) fixed-order edges, (b) random-order edges, and (c)
random-order edges with random combinations.

of pattern completion. We predicted that the number of
activated edges and links enables a whole instance to be
completed from partial input data.

Among the eight attributes in the RealityMining data, we
randomly selected three attributes to assign missing values in
the input data.We then tested whether thememory generates
the missing values. Furthermore, we evaluated whether the
generated values are identical to the original input data. The
former result was assigned as the completeness rate and
the latter was the expectation. We drew the change in perfor-
mance for both the completeness and expectation according
to the edge configuration.

Figure 10 shows the pattern completion performance.
Similar to our assumption, the overall performancewas aided
by the network connectivity. In case of two fixed-order edges,
the completeness and expectation rates were the highest.
However, the performance decreased drastically as the order
size increased. Random-order edges with a random combi-
nation also showed a similar trend.The network connectivity
directly affected the performance. When the memory was
composed of random-order edges, the pattern completion
performance slowly changed according to the change in
connectivity.

From these two experiments, we evaluated the optimal
human-like edge configuration for both a familiarity judg-
ment andpattern completion. For these two tasks, fixed-order
edges showed a trade-off with the order sizes. Random-order
edgeswith a randomcombination also showed a similar trend
as fixed-order edges. In comparison, random-order edges
showed regular ROCcurves and a reasonable pattern comple-
tion performance regardless of the range of random orders.
Hence, in the next experiment, we investigated the temporal
properties of the proposed recognitionmemory model based
on a random-order edge configuration.

4.3. Experiment 2: Investigate Temporal Encoding. For the
second experiment, we considered the properties of lifelong
learning. We investigated the memory model in terms of
the study duration and scale of encoded memory. Based
on the first experiment, we evaluated whether the proposed
recognition memory model resembles human performance
through a comparison of the ROC curves. Later in the experi-
ment, we investigatedwhether the scale ofmemory affects the
familiarity judgment performance. Human familiarity capa-
bility was expected to be consistent regardless of the scale
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Figure 11: ROC curves with different scales of memory. Each curve
is calculated using different scales of encoded memories and the
same number of data to judge familiarity.

of information. However, previous computational models on
recognition memory have ignored this condition. Hence, we
proved that our model is superior for lifelong learning by
showing the performance consistency at different scales of
encoded memory.

4.3.1. Temporal Encoding with Different Scale of Memory. As
the edge configuration, we assigned random-order edgeswith
a range of (2, 5), which include as many various edge orders
as possible.The dataset has about 7,000 instances in temporal
order. In the samemanner of evaluation, an instance is judged
as old or new before the input instance is encoded. The
performance was recalculated for every 1,000 instances that
were encoded.The dataset was divided into seven subdataset.
In the first subdataset, there are no previously encoded data.
In the second subdataset, 1,000 instances are tested in
memory where previous 1,000 instances were encoded. In the
seventh subset, 6,000 instances have been encoded intomem-
ory, and the remaining instances are judged for evaluating the
ROC curve.

Figure 11 shows the ROC curves with different scales
of memory. Overall, the shapes of the curves are constant
except for the first and last sections. In the first section, the
judgment performance was the highest. In contrast, the last
section showed the lowest performance. However, the other
middle sections were indistinguishable. Our proposedmodel
produces a rather regular trend for temporal encoding.

4.3.2. Study Duration. Another property of lifelong learning
is related to study duration. The study duration reveals
how the repeated encodings and observations influence the
memory performance. The assumption of the study duration

is related to the hyperedge configuration. If a single event
instance is regularly subsampled into a certain number of
hyperedges with a fixed order, repeated samplings can be
ignored. Otherwise, in a random hyperedge structure, the
edge sampling procedure generates and encodes different
hyperedges in memory. According to the sampling counts for
an event, the encodedmemory varies under the structure of a
random hypergraph. In this experiment, we observed the
change in results according to the different study durations.

We repeatedly encoded the same instances at a certain
edge configuration with a random order. As an optimal
edge condition, the edge orders varied from 2 to 3. The
familiarity judgment performance changed according to the
number of encodings, as shown in Figure 12(a).When a single
encoding was applied, the shape of the ROC curves was
symmetric. However, repeated encoding made the memory
reveal large false alarms. Five memory encodings showed a
similar curve as memory with a low fixed-edge configuration
(see Figure 9(a)).

On the other hand, repeated observations were applied to
investigate the familiarity judgment performance. If an input
instance is judged as old, the instance is repeatedly judged
again until the assigned count. In this experiment, we set
the count to five. If the input instance is old, the judgment
will always be old regardless of the number. However, a new
instance can be judged as new andnot old, through a random-
edge configuration. The study duration can judge exactly
whether the input data are old or new by several observations
using memory. We predicted that repeated observations
would enable false alarms to be corrected. Figure 12(b) shows
the resulting ROC curves. Although the number of false
alarms decreased by the repeated number of observations, the
shapes of the ROC curves were almost the same.

The pattern completion performance was also influenced
by the study duration. To evaluate the effect, repeated
encodings and observations were applied to the memory
process. Figure 13 shows four results from the different edge
configurations. Overall, the expectation and completeness
increased according to the number of encodings. In contrast,
repeated observations had no effect on the pattern com-
pletion performance. Repeated encodings allow the pattern
completion performance to increase. With a random-order
edge configuration, each hyperedge sample will have a differ-
ent combination of values. Hence, repeated encodings make
thememorymodel richer and have a high connectivity. In the
evaluation of the relationship between the connectivity and
performance, the repeated encodings influenced the con-
nectivity. However, repeated observations do not have a
relationship with the connectivity, and thus the performance
showed no change.

4.3.3. Performance of Context Expectation. As a role of
pattern completion, the recognition memory can be used to
expect the next context in experience event stream. When a
partial input enters, thememory completesmissing values via
the memory connectivity and generates the complete output.
In this experiment, we compare the effect of online incremen-
tal learning of hypernetworks. Furthermore, the expectation
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Figure 12: ROC curves for the study duration in random-order edges of (2, 3): repeated (a) encodings and (b) observations.
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Figure 13: Pattern completion performance based on the study duration. (a) shows the changes in completeness and expectation for a
random-order edge configuration of (2, 3). (b) shows these changes for a random-order edge configuration of (2, 6).



14 Computational Intelligence and Neuroscience

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1 1001 2001 3001 4001 5001 6001 7001

Ra
tio

 o
f e

xp
ec

ta
tio

n

Number of instances
Online hypernetworks
Offline hypernetworks
Offline Bayesian networks

Figure 14:The ratio of expectation performance among online (blue
solid line) hypernetworks, offline (red dot line) hypernetworks, and
Bayesian networks (green solid line).

performance of conventional probabilistic model, Bayesian
networks, is compared.

To keep up the event stream in the model, the model
needs to encode all of previous data. If a model is intractable
to update the new data in real time, the model has to judge
and infer based on the old model. As an offline incremen-
tal hypernetwork, we set updating sections for every 1000
instances. After building a model 𝐻off

1
which is an offline

hypernetwork encoded 1000 instances, the next 1000 inst-
ances are judged through the𝐻off

1
. The tested 1000 instances

are updated to𝐻off
1

so that a new model𝐻off
2

is constructed.
With this updating approach, the offline incremental hyper-
network is evaluated to calculate the performance of context
expectation.As a controlledmodel, online incremental hyper-
networks is compared. The model updates every instance
after judging the new input data.

In the experiment, three attributes are randomly selected
to be a missing value. Then, the remained partial data are
used as a cue to complete the missing parts via the encoded
recognition memory. Figure 14 shows the change of the total
ratio of context expectation. The blue solid line shows the
trend of expectation ratio of incremental memory model
along with the updated instances. In the graph, there is
an interesting part around 3000th instance, where the ratio
decreases. It is caused by the new values in several attributes.
If new values in an attribute appear in the event instance,
the memory cannot expect the data because there is no same
value in the memory. We figure out this trend from Figures
6 and 7 related to the data characteristics. The red dot line
that represents offline recognition memory shows a lower
performance. The final performances were 29% for online
model and 21% for offline model.

Additionally, in order to compare the performance of
pattern completion of the recognition memory model, we
designed an experiment which represents an expectation of
probabilistic model in lifelong experience. We selected
Bayesian networks (BN) to infer the missing part from the
partial data. If the contextual data is built with probabilistic

distribution table, the model can expect the related event
from partial instance. The Bayesian network was also tested
using the Reality Mining data. To infer an event through
the BNmodel, structure learning and parameter learning are
required. Each value in the data is composed of categorical
data, so that we used an algorithm from Auton Lab [47]. The
parameter learning was executed by using commercial BN
product.

Similar to offline hypernetworks, every 1000 instances are
used to update the BN model. Then the next 1000 instances
are tested whether the model expects the missing values well.
Hence, the expectation starts at 1000th instance. At first, the
expectationwas higher than othermemorymodels.However,
the performance decreases by time and the final performance
was 13%. The probabilistic model is hard to keep the less
probable events. The probabilistic distribution table extracts
the most probable values from the conditional probability.
This experiment shows that that online hypernetwork is
more adaptable than the probabilistic approaches for pattern
completion and expectation in lifelong experience.

5. Discussion

5.1. Tradeoff in Performance Based on the Connectivity. We
evaluated the proposed recognition memory model in terms
of familiarity. We investigated two functionalities of recogni-
tionmemory, old/new judgment as explicit memory, and pat-
tern completion as implicit memory. From the various edge
configurations, we found a tradeoff in the two functionalities.
For old/new judgment, we searched the optimal conditions
for a hypergraph structure that resembles the recognition
memory based on human behavior. If the memory model
merely acts as a judgment model, the memory model should
separate old and new instances perfectly. When we model
the memory with a high number of fixed-order edges, we
can reach the memory goal. However, old/new judgment is
an explicit function of recognition memory and only works
for complete input data without missing values. Additionally,
we focused on another characteristic of recognition memory,
that is, the implicit function. When partial data with missing
values are assigned as an input value to the encodedmemory,
the performance is not indicated by the ROC curves, which
deals with true and false positives, but by the possibility to
generate the original complete data. We found that the
explicit and implicit functions have a tradeoff relationship,
and thus we need to select the optimal conditions for those
two distinguishable processes.

Themain criterion for the performance was network con-
nectivity in the memory model.Thememory model revealed
a different connectivity according to the edge configuration.
A model with a large number of fixed-order edges has a
tradeoff relationship with a model with a small number of
fixed-order edges.Thememory model with high-order edges
performswell in terms of familiarity judgment but is weak for
pattern completion because it constructs a low connectivity.
Therefore, when diverse types of edge orders are mixed
into the memory model, this tradeoff relationship can be
resolved.
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5.2. Meaning in Lifelong Learning. The proposed model was
developed to imitate the functionality of the human brain.
During lifelong experience, humans occasionally become
confused whether their current situation is familiar and may
recognize new situations as old. This phenomenon happens
when the person has already experienced a subset of the par-
tial context. Since our hypergraph-based memory model is
also constructed by aggregating the subsets of the context, it
shows a similar effect in the familiarity judgment.

The purpose of recognition memory of lifelong experi-
ence is to recall and predict the user experience based on
the previously encoded memory. The role of the recognition
memory is determined according to the properties of the
input data. When complete data are entered, the memory
judges whether the event is old or new. For this function, the
memory should perform the recall task well. On the other
hand, partial data requires a different procedure based on the
recognition memory. The partial data are generated into
complete data through the encoded memory, and the com-
pleted data contain various combinations including the exact
original data. In terms of prediction, our recognitionmemory
model suggests possible data from a partial input. It is
assumed that the memory has experienced the possible data
before. Similar tomemory with false alarms, humans can also
be confused regarding their experiences. Furthermore, the
new property of our computational model, that is, incre-
mental recognition memory, can explain many unresolved
phenomena in human behaviors.

5.3. Comparison with Other Models. In order to build a
computational recognition memory, previous researches on
global matching algorithms [31] have also shown the human-
like ROC performance on familiarity judgment. In compar-
ison with the previous models, our proposed hypergraph-
basedmemorymodel solves new issues related to recognition
memory. First, the memory model is tractable to encode
categorical data. The recognition memory is highly related to
episodic memory and the dominant values of episodic mem-
ory are a sort of categorical data. Hypernetworks encode the
input data itself into the memory with special connection so
that it can include any type of values as they are. Second, our
model enables incremental learning without requiring the
previously encoded data. In contrary, the global matching
algorithms ignored the incremental learning issue and the
structure of the models is fixed. Hence, if the model needs to
be updated, it has to rebuild itself from all data. Third issue
is that our memory model has high memory capacity. In life-
long experience, the detail values of contextual attributes are
unlimited. According to human behaviors, new values
appear. The recognition memory model should manage the
new values. However, the global matching algorithms are
hard to handle these issues because of its inflexible structure.
In our experimental data, every instance is composed of
categorical values and it is sequentially acquired. New values
frequently appear in the event stream. Because of these
characteristics of Reality Mining data, it is hard to compare
our model with the previous global matching algorithms.

In terms of pattern completion, the process is necessary
to use in decision making in lifelong learning. Convention-
ally, the decision making process has used a probabilistic

approach. In our experiment, we evaluated the expectation
performance with BN and showed that the proposed model
outperforms BN. One of the reasons is the memory model
which uses hypergraph, which allows high-order relationship
between attributes. While BN connects two attributes, our
model combines local values rather than attributes. In order
to extract the previous data, the combination of attributes
needs to bemaintained in themodel. Hypernetworks contain
the individual connection between attributes and it can
judge by activation-basedmemorymechanism.However, BN
accumulates all the event relationship to calculate the total
probability distribution table and ignores the less probable
events. That is why the hypernetworks showed better perfor-
mance on pattern completion than BN.

5.4. Limitation and Applicability. In this model, we assumed
that the recognition memory has a crucial role at the early
stage of decision making process, similar to that in human
beings. However, the proposed memory model covers only
low-dimensional categorical data. For application in numer-
ical data, the edge extraction and activation mechanisms
should be adapted. For high-dimensional data, a ring-type
or line-type network makes a weak correlation between two
edges that have a long dimensional distance. Even though
high-dimensional data can be encoded, the advantage of a
hypergraph structure is ambiguous. For only lifelong experi-
encemodeling, a preprocessing step is necessary to categorize
signals that can be acquired by the sensing devices. The
contextual and behavioral attributes for explaining the expe-
rience are recommended to have low dimensionality.

In familiarity judgment, we evaluated the performance
using false alarms and hits. The opposite of a false alarm is a
false negative case, inwhich an old event is recognized as new.
Through the hypergraph structure, if thememorymodel uses
an activation-based mechanism, the model allows no false-
negative cases. To generate false-negative cases in this mem-
ory model, the edges and links that are created by the input
data should be deleted. In lifelong experience, this is under-
stood as a situation of memory decay, that is, forgetting or
aging. If some edges and links that are rarely activated by the
next instances are removed, memory decay may be imple-
mented in this memory model. However, we do not deal
with the issue of memory decay herein.Therefore, the overall
performance of a familiarity judgment in this model is better
than that of actual humans.

Another limitation of the proposed model is that it
excludes the recollection function. Based on the dual process
theory, we postulated that the process for familiarity is dif-
ferent from that for recollection. We assumed that familiarity
operates in each single domain and that recollection requires
at least two different domains. To implement a recollection,
two familiarity memories with different data types are
required. Accordingly, the memories are associated with
lifelong experiences.

As future work, we need to expand the familiarity mem-
ory to recollection memory. Different sensory data such as
images and sounds are candidates for recollection memory.
After preprocessing to reduce the number of dimensions,
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multivariate data can be encoded into the memory so that it
has the same role as recognition memory, that is, familiarity
judgment and pattern completion. Translation between lan-
guages and visual information are other possible domains.
For language memory, we will attempt word learning. By
using the flexible structure of hypergraphs, those various
kinds of data can be modeled and be used as a general
recognition memory.

6. Conclusion

In this paper, we introduced the mechanisms of a hyper-
graph-based recognition memory model and described the
characteristics and considerations of the model for adaption
to the functionalities of recognition memory. For mem-
ory encoding, we focused on incremental learning and
constructing a high-order relationship between nodes. A
hypergraph-based model can apply these considerations.
From the proposed memory model, we investigated the
optimal conditions of the structure to mimic the behavioral
performance of humans. When memory assigns random-
order edges, the ROC curves for a familiarity judgment show
symmetric curvilinear shapes most similar to humans. Fur-
thermore, the memory model was validated to achieve a
regular performance even for temporal encoding and the
study duration for lifelong learning.

Our model showed a tradeoff in performance with
recognition memory because of the connectivity level of the
memory structure. A high achievement in familiarity judg-
ment requires a low connectivity, while pattern completion
shows a better performance at a high connectivity. The order
sizes of the hyperedges showed the opposite correlation with
the connectivity. According to the data domain and purpose
of the memory model, the connectivity can be manipulated
by modulating the model parameters. Based on this com-
putational model on recognition memory, we will try to
expand thememorymodel to enable recollection and apply it
to other multimedia domains. We presume that the main
problem in accomplishing this will be related to the way
the hypergraph structure, which contains the temporal and
spatial information, is built.
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