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Abstract: This review presents current achievements in peptidyl diaryl phosphonates as covalent,
specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates
have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases.
Such an impact has been promoted by advantageous features that characterize the phosphonate
compounds and their use. First, the synthesis is versatile and allows comprehensive structural
modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules
can be easily controlled by appropriate adjustments of the side chains and the leaving groups.
Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur
nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties
make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates
continuously increases and involves novel enzymatic targets and innovative aspects of application.
For example, conjugation of the structures of specific inhibitors with reporter groups has become
a convenient approach to construct activity-based molecular probes capable of monitoring location
and distribution of serine proteases.

Keywords: phosphonate esters; phosphorus peptide analogs; covalent inhibitors; enzyme
activity imaging

1. Introduction

Diaryl α-aminoalkylphosphonates and their peptidyl extensions (in short, peptidyl diaryl
phosphonates) are well-recognized, potent and selective mechanism-based inhibitors of serine
proteases [1]. Because of the steric and electronic resemblance of the phosphorus moiety to substrates
in the transition state of peptide bond hydrolysis, diaryl phosphonate esters are classified as transition
state analogues. However, their mode of action is more complex than that exhibited by other
phosphorus-containing pseudopeptides, and involves irreversible transesterification with the hydroxyl
group of the active site serine, and formation of a covalent enzyme–inhibitor bonding which is
accompanied by release of a phenol molecule [2]. Upon aging, the second phenol residue is also
hydrolyzed to produce the final form of phosphorylated and thus inactivated enzyme (Scheme 1).
Diaryl phosphonates do not inhibit proteases sharing similar modes of catalysis (cysteine, threonine),
nor react with low-molecular nucleophiles, therefore they are stable in physiological media and
nontoxic. Accordingly, they are used to study function and distribution of serine proteases, frequently
those important in the context of human health [1,3]. The achievements in preparation of the active
compounds over the period of last 6–7 years, together with their medical and diagnostic potential,
are outlined in this paper.
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Scheme 1. Structural features of peptidyl diaryl phosphonate inhibitors of serine proteases 
and the general mechanism of enzyme inactivation by transesterification with the active 
site serine hydroxyl functionality. 

2. Synthetic and Mechanistic Considerations 

The potency, selectivity and specificity of peptidyl diaryl phosphonates can be conveniently 
regulated by three complementary adjustments of their structural features (Scheme 1) [3]. 
Fundamentally, the structure and configuration of the P1 side-chain substituent should fit to 
preferences of the S1 binding pocket of the targeted enzyme. At an early stage of phosphonate 
development, it was stated that for effective binding the absolute configuration of the α-carbon of the 
aminophoshonate fragment is preferentially (R) what corresponds to the (S) configuration of L-amino 
acid counterparts. Oleksyszyn and Powers used 31P NMR to show that one diastereomer of a peptidyl 
diphenyl phosphonate reacted faster [2]. This was confirmed by resolving of the crystal structures of 
serine protease–phosphonate complexes, e.g., [4], and obtaining enantiomeric phosphonates that 
show higher activity of the (R) configuration [5]. Secondly, the structure and reactivity of the leaving 
groups can be modified by appropriate substitution of the phenyl rings. These modifications 
modulate the electrophilic properties of the phosphorus atom by the electron withdrawing/donating 
effects [6]. As the substitution influences also specificity of the inhibitors, it is assumed that added 
groups or functionalities, e.g., p-SMe, improve contacts within the active sites upon initial binding 
[7]. Finally, to tighten interactions within the Sn-S2 region, the N-terminus of the basic 
aminophosphonate structure can be elongated by amino acids or peptides to provide extended 
derivatives. These diastereomeric peptidyl products are easily separated chromatographically. The 
(R) configuration of the aminophosphonate portion is typically assigned to the epimer that is more 
reactive with its enzymatic target. The assignment can be further supported by molecular docking 
and the chemical shift of 31P NMR resonances (for exemplified clarification see [8,9]). 

Formation of the covalent enzyme–phosphonate complex was found to be slowly reversible [2]. 
The phosphonate cleavage could be visibly accelerated in the presence of specific reagents; thus, the 
activity of a serine protease is restored. Recently, Ono et al. studied pyridinium oxime 2-pyridine 
aldoxime methiodide, an effective acetylcholinesterase reactivator used as an antidote against nerve 
agent poisoning, to reactivate chymotrypsin after transesterification with diphenyl phosphonate 
derivatives [10–12]. Dephosphonylation readily occurred prior to aging of the complex and was 
applied for enzyme purification and labeling. Gly3-PheP(OPh)2 (Gly-Gly-Gly-Phe tetrapeptide 
phosphonate analog) immobilized on a Sepharose gel, served to capture chymotrypsin-like proteases 
in covalent chromatography [10]. The highly purified enzymes were then released under the action 
of the oxime in a rapid and versatile procedure. 

In continuation, bifunctional (containing additional reactive O-succinimide ester group) 
peptidyl phosphonates were found to modify effectively Lys175 in chymotrypsin [11]. The whole 
binding-and-release cascade involved Ser195 transesterification, subsequent conjugation of O-
succinimide ester with the Lys175 residue and ultimate pyridinium oxime 2-pyridine aldoxime 
methiodide-mediated cleavage of the P-terminus (Scheme 2). Bioconjugation proceeded 
stereoselectively as evidenced by application of diastereoisomers that were resolved 
chromatographically [11]. The LLL-configured epimer reacted much more readily than the LLD-
configured one. To explain these observations the authors speculated that binding of the more 

Scheme 1. Structural features of peptidyl diaryl phosphonate inhibitors of serine proteases and
the general mechanism of enzyme inactivation by transesterification with the active site serine
hydroxyl functionality.

2. Synthetic and Mechanistic Considerations

The potency, selectivity and specificity of peptidyl diaryl phosphonates can be conveniently
regulated by three complementary adjustments of their structural features (Scheme 1) [3].
Fundamentally, the structure and configuration of the P1 side-chain substituent should fit to preferences
of the S1 binding pocket of the targeted enzyme. At an early stage of phosphonate development, it was
stated that for effective binding the absolute configuration of the α-carbon of the aminophoshonate
fragment is preferentially (R) what corresponds to the (S) configuration of l-amino acid counterparts.
Oleksyszyn and Powers used 31P NMR to show that one diastereomer of a peptidyl diphenyl
phosphonate reacted faster [2]. This was confirmed by resolving of the crystal structures of serine
protease–phosphonate complexes, e.g., [4], and obtaining enantiomeric phosphonates that show higher
activity of the (R) configuration [5]. Secondly, the structure and reactivity of the leaving groups can be
modified by appropriate substitution of the phenyl rings. These modifications modulate the electrophilic
properties of the phosphorus atom by the electron withdrawing/donating effects [6]. As the substitution
influences also specificity of the inhibitors, it is assumed that added groups or functionalities, e.g.,
p-SMe, improve contacts within the active sites upon initial binding [7]. Finally, to tighten interactions
within the Sn-S2 region, the N-terminus of the basic aminophosphonate structure can be elongated
by amino acids or peptides to provide extended derivatives. These diastereomeric peptidyl products
are easily separated chromatographically. The (R) configuration of the aminophosphonate portion
is typically assigned to the epimer that is more reactive with its enzymatic target. The assignment
can be further supported by molecular docking and the chemical shift of 31P NMR resonances (for
exemplified clarification see [8,9]).

Formation of the covalent enzyme–phosphonate complex was found to be slowly reversible [2].
The phosphonate cleavage could be visibly accelerated in the presence of specific reagents; thus,
the activity of a serine protease is restored. Recently, Ono et al. studied pyridinium oxime 2-pyridine
aldoxime methiodide, an effective acetylcholinesterase reactivator used as an antidote against nerve
agent poisoning, to reactivate chymotrypsin after transesterification with diphenyl phosphonate
derivatives [10–12]. Dephosphonylation readily occurred prior to aging of the complex and was
applied for enzyme purification and labeling. Gly3-PheP(OPh)2 (Gly-Gly-Gly-Phe tetrapeptide
phosphonate analog) immobilized on a Sepharose gel, served to capture chymotrypsin-like proteases
in covalent chromatography [10]. The highly purified enzymes were then released under the action of
the oxime in a rapid and versatile procedure.

In continuation, bifunctional (containing additional reactive O-succinimide ester group)
peptidyl phosphonates were found to modify effectively Lys175 in chymotrypsin [11]. The whole
binding-and-release cascade involved Ser195 transesterification, subsequent conjugation of
O-succinimide ester with the Lys175 residue and ultimate pyridinium oxime 2-pyridine aldoxime
methiodide-mediated cleavage of the P-terminus (Scheme 2). Bioconjugation proceeded stereoselectively
as evidenced by application of diastereoisomers that were resolved chromatographically [11].
The lll-configured epimer reacted much more readily than the lld-configured one. To explain
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these observations the authors speculated that binding of the more reactive stereoisomer gave the
covalent complex fixed in a favorable orientation, stabilized by interactions similar to those formed
by a substrate of natural configuration [12]. Consequently, orientation in the oxyanion hole and the
proximity of His57 with its base–acid catalytic properties facilitated not only P–O bond formation and
breaking, but also the reaction at the N-terminus.
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Scheme 2. Selective labeling of Lys175 of chymotrypsin with Ala-Ala-PheP(OPh)2 proceeding via
enzyme phosphonylation and reactivation induced by the oxime reagent.

Oligopeptidyl diaryl phosphonates are currently of major interest for their improved recognition
by the Sn-S2 binding sites of targeted hydrolases. The classical approach to obtain such derivatives
involves synthesis of diaryl α-(N-benzyloxycarbonyl)aminoalkylphosphonates in the three-component
Birum–Oleksyszyn condensation of triaryl phosphite, benzyl carbamate and an aldehyde [13],
N-deprotection of the product, and chain extension with amino acid or peptides, with the use of typical
activators, such as: EDC/HOBt, HBTU, HATU etc. The couplings are required to be performed in
solution and for oligopeptide derivatives are more effective when accomplished in a single step. For
example, the total yields for the synthesis of Ac-Val-Phe-Leu-Leu-LeuP(OPh)2 increased by five-fold
from less than 5% for sequential step-by-step amino acid incorporation to 25% for coupling of the
tetrapeptide (presynthesized on the solid phase) with H-LeuP(OPh)2 (Scheme 3, pathway a) [14]. The
approach based on the ultimate P–C-forming amidoalkylation of the whole sequence peptidyl amide
with triaryl phosphite and an aldehyde gave comparable yield (26%) (Scheme 3, pathway b). In this
method copper(II) triflate was used as a Lewis acid catalyst in milder conditions than those demanded
in the case of the acetic acid-mediated condensation [14].
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Diaryl α-aminoalkylphosphonates are hardly adapted to the classical C-terminus-immobilized
solid phase peptide synthesis. To perform this, one needs to change “the direction” of elongation in
a certain sequence point. In Verhelst groups such an approach, based on “click” chemistry, was suggested
to explore the selectivity of diphenyl phosphonate activity-based probes for serine proteases [15].
The N-termini of solid phase-immobilized specific tripeptides were transformed into azide by triflyl
azide and then clicked with diphenyl N-acetylenecarbamidoalkylphosphonates (Scheme 4). Thus,
the C- and P-termini were linked together by central triazine system. The phosphonate worked as
a warhead while C-terminal propargylglycine residue enabled visualization, also by “click” chemistry
with a dye azide, after labeling of a target protease.
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3. Inhibition of Serine Proteases

Two main directions can be distinguished in the current research on biological activity of peptidyl
diaryl phosphonates. A quest for more potent and selective inhibitors that could control the action of
serine protease in the therapeutic context is the first one. Secondly, new covalent ligands are studied as
convenient tools to monitor the role, function and distribution of these enzymes as activity-based probes.
The most comprehensive recent studies on these issues concern elaboration of active site-directed
diaryl phosphonates targeted to serine protease secreted by neutrophils. Being a part of the innate
immune system neutrophils release hydrolases, e.g., cathepsin G, neutrophil elastase and proteinase 3,
that are associated with a response to invading pathogens [16]. Because of the roles in host defense
and disease, they are of interest as potential therapeutic targets [17].

Studies on inhibition of human neutrophil elastase by peptidyl phosphonates provided extremely
reactive and specific compounds. The enzyme under physiological conditions is dedicated to
defense against bacterial infection but it also has an ability to cleave the majority of extracellular
matrix components and activate metalloproteinases, therefore its activity is rigorously endogenously
controlled by serpin inhibitors. Upregulation of human neutrophil elastase activity causes chronic
obstructive pulmonary disease and other pulmonary respiratory syndromes. Improving the potency of
Cbz-ValP(OPh)2 against the elastase, Winiarski et al. designed a series of tripeptide analogs bearing the
optimized P2 and P3 residues and the leaving groups [8]. Furthermore, to overcome hydrophobicity of
the sequence, the N-termini of active structures were modified with heteroatom-rich hydroquinone,
thymine or uracil derivatives. As the result, the most potent inhibitors of human neutrophil elastase,
soluble in aqueous media and selective versus porcine pancreatic elastase, chymotrypsin and trypsin,
were obtained (Table 1, Entry 1).
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Peptidyl di(p-chlorophenyl) phosphonates enabled selective inhibition of human neutrophil
proteinase 3, thus, its differentiation from the structural homolog, neutrophil elastase. Functions of
neutrophil proteinase 3 are much poorly recognized than elastase and can be partially clarified by
a small extent of exposition of the enzyme on the outer surface of circulating neutrophils, which
could suggest a role as an autoantibody target in vasculitides, and its likely involvement in cell
apoptosis [18]. The structure of the inhibitors was based on a privileged sequence obtained from
studies on cleavage of FRET substrates. In particular, P2 aspartate and P4 proline residues were found
favorable (Table 1, Entry 2) [19]. The N-terminus of the compound was biotinylated to play a role of
the reporter in activity based-probes. The subsequent kinetic studies, aided with molecular modelling,
brought further optimization of the elaborated structure. Accordingly, the length of the P1 residue was
extended, and P4 Pro was conveniently replaced with Val. These changes gave rise to an increase of the
second-order inhibition constant by more than an order of magnitude (7 × 105 M−1s−1) as compared to
the lead tetrapeptide [20].

Two guanidinophenyl residues were applied as arginine mimetics in construction of dipeptide
diaryl phosphonate analog inhibitors of matriptases [21,22]. Matriptase activates several substrates,
which play critical roles in tumorigenesis, while matriptase-2 is a transmembrane serine protease
involved in regulation of iron homeostasis though a signaling pathway. Matriptase-2 inhibits activation
of systemic regulatory hormone hepcidin by cleaving membrane hemojuvelin, a phosphorylating
coreceptor. The structure of the matriptase-2 inhibitors was supported with the sequence of a privileged
substrate (Ile-Arg-Ala-Arg) and docking analysis [22]. The para position of the guanidine groups,
the natural configuration (S,R), and para-(methylthio)phenoxy leaving groups appeared to be favorable
structural features to produce the most reactive inhibitor (Table 1, Entry 3). Two guanidinophenyl-based
diaryl phosphonates were inactive towards human thrombin and bovine factor Xa, yet they inhibited
bovine trypsin.

The nonproteinogenic secondary amino acid indoline-2-carboxylic acid (Table 1, Entry 4) was
used to develop a diaryl phosphonate inhibitor of tripeptidyl peptidase II, which shed light
on unknown mechanism of the enzyme participation in various biological processes, among
others, in cell growth, DNA repair and signaling. Irreversible action of N-(l-2-aminobutyryl)-
l-indoline-2-carboxyl-LeuP(OPh)2 rapidly decreased the levels of active signal-regulated kinase 1 and
2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and
mitogenic stimuli [23].

Table 1. A selection of recent achievements in the development of peptidyl diaryl phosphonate
inhibitors of serine proteases.

Entry Inhibitor Structure Targeted Enzyme, Activity
and Reference

1
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Serine proteases of human pathogens, which are indispensable for growth and virulence, are attractive
drug targets [28,29]. These proteases have been also studied with peptidyl aryl phosphonates. For example,
inhibition of the bifunctional activity (serine protease and NTPase/RNA helicase) of hepatitis C virus
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nonstructural protein 3, which is fundamental for viral polyprotein processing, RNA replication virion
formation and blocking innate immune pathways [30], was recognized as an effective antiviral therapy [31].
Following this assumption Skoreński et al. constructed a potent irreversible phosphonate inhibitor of
two genotypes and four mutants of NS3/4A protease (Table 1, Entry 5) [24]. The most active structures
contained, crucial for their potency, constrained bicyclic proline analogs, utilized previously to develop
approved drugs Boceprevir (VICTRELIS™) [32] and Telaprevir (INCIVEK/INCIVIO™) [33]. Interestingly,
the newly obtained compounds did not shown any cytotoxicity up to the concentration determined by
their solubility in water (1–10 mM).

The West Nile virus serine protease NS2B/NS3 was also targeted with diaryl
α-aminoalkylphosphonates by the same group [34]. A set of lysine/arginine mimetics were preliminarily
evaluated to recognize the preferences of the S1 binding pocket. para-Guanidino substituted phenylglycine
and phenylalanine analogs were found the most potent inhibitors. N-Termini elongation to
Cbz-Lys-Arg-(4-guanidino)PheP(OPh)2 yielded a compound which displayed Ki = 0.4 µM and
k2/Ki = 28,265 M−1s−1.

Extensive screening of diaryl α-aminoalkylphosphonates and their elongation to oligopeptide
derivatives allowed finding inhibitors of serine protease infection factors of Staphylococcus aureus.
A range of these proteases is indispensable for virulence to cleave extracellular components, distract
host defense and immune system functioning, however, their specific roles are not fully recognized
yet. Tripeptide phosphonate analog inhibitors of endoproteinase GluC (V8 protease), and SpIA
and SpIB proteases are listed in Table 1 (Entries 6–8). Their structures mostly evolved from
enzyme substrate preferences at the P1 position followed by optimization of P2 and P3 residues
and substitution of the aromatic leaving group. Accordingly, the Phe-Leu-Glu sequence appeared
favorable for endoproteinase GluC (Table 1, Entry 6), which was inhibited selectively versus SpIB
protease [25]. In turn, the last-mentioned enzyme was inactivated by Glu-Leu-Gln phosphonate
that demanded appropriate adjustment of structure and reactivity of the leaving phenyl group
(Table 1, Entry 8). 4-Methoxy substitution was found optimal, however, this compound was also
potent towards subtilisin [27]. For SpIA protease, N-protected hydrophobic tripeptide derivatives
(Val-Pro-Leu and Val-Pro-Phe, Table 1, Entry 7) typically appeared more potent than nonextended
α-aminoalkylphosphonates [26]. Selected inhibitors served for cocrystallization with this enzyme
and provided high resolution structures of the ligand–protein complexes. Surprisingly, the evidenced
binding mode was noncanonical as SpIA protease was phosphonylated with an epimer of non-natural
(S)/d configuration at the P1 position, which was selected from the stereomeric mixture. The overall
conformation of the tripeptide chain was also distorted. The chain was flexible and did not form
typical antiparallel arrangement with the enzyme backbone in the Pn region [26].

Tripeptide analog Boc-Val-Pro-ValP(OPh)2 was recently reported to alter virulence of another
species of pathogenic bacteria. Significant loss of Chlamydia trachomatis infectious progeny was observed
when the cell culture was treated with 10 µM of the phosphonate in the mid-replicative phase [35].
Antichlamydial activity was measured to be 100-fold higher for the lll diastereoisomer compared to
the epimer bearing the d-ValP(OPh)2 fragment. Plausible inactivation of Chlamydia high temperature
requirement A protease, a multimeric and multidomain serine protease that is indispensable for the
pathogen virulence, was postulated as the reason of the activity. This suggestion was indirectly proven
by submicromolar inhibition of human neutrophil elastase, a protease of similar substrate specificity.

Lastly, screening of focused libraries of diaryl phosphonate-based serine protease inhibitors led
to identification of several potent inactivators of the Escherichia coli caseinolytic protease subunit P
(ClpP) [36]. ClpP is widely conserved in bacteria, modulates virulence factor expression and thus
regulates virulence and stress response [37]. N-Cbz-protected diphenyl phosphonate analogs of
phenylglycin, substituted in meta position with either amino or guanidino groups, appeared to be the
most potent, with IC50 = 0.5 µM.
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4. Activity-Based Probes

Peptidyl diaryl phosphonates are a perfect platform to develop activity-based probes, molecules
that enable monitoring active forms of recombinant and native serine proteases, in analytical techniques
and in vivo [38,39]. Phosphonate inhibitors fulfill essential demands for activity-based probes—they
are irreversible and active site-oriented, moreover, their structure can be easily refined to achieve high
reactivity and selective binding. The structure demands only decoration with a reporter fragment,
typically at the N-terminus. Two main approaches to envisage a probe–protein complex are based
on introduction of either an intrinsic fluorescent fragment or a moiety that can be fluorescently
labelled/recognized in a subsequent step [40–43]. In fact, recent studies on diaryl phosphonate
inhibitors of serine proteases are frequently accompanied by elaboration of fluorescent activity-based
probes. Some examples of application of fluorophore-tagged phosphonates have been mentioned
in the preceding chapter, e.g., the use of propargylglycine to be clicked with an azide rhodamine
derivative for detection of chymotrypsin and related enzymes [15]. Gütschow and coworkers
also modified the structure of a potent irreversible phosphonate inhibitor to provide the first
activity-based probe of matriptase-2 [22]. The developed bisbenzguanidines chemotype contained
7-diethylaminocoumarin as a fluorescent dye. The coumarin acetaminomethyl reporter tag replaced
the benzyl residue in the P2 position of the parent inhibitor molecule (for the structure see Table 1,
Entry 3). The probe allowed for direct matriptase-2 detection in a complex protein mixture separated
by gel electrophoresis. In continuation, a similar coumarin-based probe of matriptase was developed
by the corresponding design and synthesis approach (Figure 1, compound a) [44]. To label the
inhibitor, 6,7-dimethoxycoumarin-3-carboxylic was coupled with ω-amino group of the P2 lysine
residue. The utility of the final compound was evaluated by in-gel fluorescence and, for the first time
for proteases, in fluorescence HPLC.
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Figure 1. A selection of fluorescently labelled phosphonylating inhibitors for detection of serine
protease: a coumarin-based probe for matriptase (a), a BODIPY probe for human neutrophil elastase
(b), and a cyanine-modified peptidyl diphenyl phosphonate specific for trypsin-like proteases (c).

The same group developed a fluorescent activity-based probe for human leukocyte elastase on the
basis of Val-Pro-ValP(OPh-p-SMe)2 inhibitor sequence and a boron-dipyrromethene (BODIPY) label
(Figure 1, compound b) [9]. The fundamental phosphonate tripeptide was synthesized and resolved
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chromatographically to yield pure diastereoisomers. Subsequent incorporation of azidoacetic acid to
the more reactive stereoisomer (kinac/Ki = 399,000 M−1s−1, 400-fold higher compared to the less reactive
epimer) allowed for copper catalyzed 1,3-dipolar cycloaddition with the ethinyl group of a label.
The probe maintained high potency against human leukocyte elastase and good selectivity versus
porcine pancreatic elastase. SDS-PAGE and fluorescence analysis showed a selective elastase imaging.

Edgington-Mitchell et al. synthesized and characterized two activity-based probes containing Cy5,
a near-infrared fluorophore suitable for in vivo imaging [45]. The cyanine building block was coupled
either with ValP(OPh)2 to target elastase-like proteases or Pro-LysP(OPh)2 to target trypsin-like enzyme
(Figure 1, compound c). The probes efficiently labelled purified protease, also in complex mixtures.
With these tools an elevated level of trypsin-like proteases was evidenced in two models of inflammation.
Low elastase activity suggested upregulation of endogenous inhibitors or degrading proteases.

Mixed alkyl aryl phosphonate esters were designed as quenched fluorescent activity-based
probes [46]. This type of probe contains a fluorescence quencher that is released upon binding as a part
of a leaving group, which makes a free molecule appear dark while making an enzyme-bound one
fluorescent. To obtain the compound, tetramethylrhodamine fluorophore was conjugated by the azide
group with a triple bond of presynthesized phosphonate system by “click” chemistry, similarly to the
method shown in Scheme 4. The product (Figure 2) was evaluated for labeling of trypsin, urokinase
plasminogen activator, cathepsin G, chymotrypsin and elastases.
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Figure 2. The structure of an internally-quenched fluorescent activity-based probe for labeling of
arginine-specific serine proteases.

Drag and Salvesen laboratories developed a general toolbox of fluorescent diaryl phosphonate
probes for parallel imaging of all four active neutrophil serine proteases [47]. To ensure a high selectivity
ratio, the optimized P1–P4 recognition sequences were established by using mostly nonproteinogenic
amino acids (Figure 3) and the Hybrid Combinatorial Substrate Library (HyCoSuL) [48]. For elastase
and proteinase 3 the probes appeared highly efficient, while for cathepsin G and proteinase 4 the activity
was less striking, nevertheless, a high discrimination between human neutrophil serine proteases was
achieved. The only cross reactivity was observed for proteinase 3 inhibitor with elastase. The intelligent
application of fluorescent reporter groups with minimal wavelength overlap allowed for simultaneous
observation and detection of all individual proteases by fluorescence microscopy. A non-overlapping
distribution of four different neutrophil serine proteases in the azurophil granules was unprecedentedly
demonstrated [47].

Urokinase-type plasminogen activator which facilitates tumor cell invasion and metastasis
by the degradation of the basement membrane and the extracellular matrix was targeted with
radiolabelled activity-based probes and positron emission tomography [49] or single photon emission
computed tomography imaging [50]. The synthesis of probes involved coupling of specific inhibitor
p-guanidino-PheP(OPh)2 with either [18F]-4-fluorobenzoyl group or a DOTA chelator using the “click”
chemistry methods and a polyethylene glycol linker (the structures depicted in Figure 4).
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Figure 4. Radiolabelled activity-based probes for imaging in positron emission tomography or single
photon emission computed tomography, based on the structure of p-guanidino-PheP(OPh)2, an inhibitor
of urokinase-type plasminogen activator.

Subsequently, the tetraza macrocycle was complexed with 111In radioisotope. The fluorine
compound was found to be slightly more potent inhibitor of human urokinase (kapp = 6800 M−1s−1,
IC50 = 19 nM) than the DOTA complex (kapp = 4800 M−1s−1, IC50 = 22 nM), however, it showed low



Pharmaceuticals 2019, 12, 86 11 of 16

tumor uptake because of unfavorable stability and poor pharmacokinetic properties. Moderate uptake
of indium complex was found in two tumor models as clearly detected in single photon emission
tomography 4 days post injection.

N-Biotinylation of the inhibitors and recognition with an extravidin/streptavidin system is
an alternative indirect method for fluorescent visualization of serine proteases [42]. This approach has
been mentioned in the preceding chapter for the development of biotinyl-Val-Tyr-Asp-nValP(OPh-p-Cl)2,
a probe for the human neutrophil proteinase 3 [19,20]. In continuation, biotin conjugated with
Val-Pro-Phe phosphonate via an appropriate linker yielded also a highly sensitive probe for detection
of cathepsin G in western blot and 96-well-based high-throughput assays (Figure 5, compound
a) [51]. This and other biotin-modified inhibitors were also used to study inhibition and detection of
neutrophil serine proteases in spleen lysates [52]. In kinetic test they were found potent and selective,
e.g., phosphonate a depicted in Figure 5 reacted with cathepsin G (kobs/[I] = 3800 M−1s−1), but not with
human neutrophil elastase, nor proteinase 3. In a contrary, N-biotinyl-Val-Pro-ValP(OPhe-p-MeS)2

inactivated elastase with kobs/[I] = 550,000 M−1s−1, proteinase 3 with kobs/[I] = 16,000 M−1s−1, while it
was inactive toward cathepsin G [52]. The high activity corresponded to the low limits of detection,
for example nanograms and even lower amount of cathepsin G could be visualized by western blotting
with the use of the most potent probes what outscored immunostaining with specific antibodies.
The active enzyme could be also simply detected in biological samples as tested on peripheral
blood mononuclear cells (accumulation on the cell surface) and spleen extracts. In a complementary
study biotinyl-[PEG]66-Pro-Tyr-Asp-AlaP(p-Cl-Ph)2, an extended version of inhibitor of neutrophil
protease 3 depicted in Table 1 (Entry 2), served to show distribution of the enzyme in permeabilized
neutrophils [19]. The cytoplasm was intensively labeled but not the perinuclear environment as
observed for human neutrophil elastase.

Kasperkiewicz et al. [53] reported a very potent, active and selective biotin-based probe for human
neutrophil serine protease 4, the newly discovered fourth member of the neutrophil serine proteases
family [54]. To obtain a privileged sequence that would match with the subsite preferences, the authors
screened a range of natural and unnatural amino acids. Identification of the optimal substrate sequence
was followed by its translation into the inhibitor structure (Figure 5, compound b). The more active
diastereoisomer (presumably of the (R)/l configuration at the P1) displayed 40-fold higher potency
(kobs/[I] = 3,800,000 M−1s−1) than its less potent epimer.

An excellent diphenyl phosphonate activity-based probe for the Zika virus NS2B-NS3 protease,
based on tetrapeptide d-Arg-Lys-Orn-Arg motif, was also constructed (Figure 5, compound c) [55].
Apparent second-order rate constant for inhibition under pseudo first-order conditions was measured
at 2,940,000 M−1s−1. The compound bound immediately to the protease which allowed effective
labeling in one minute of incubation.

Construction of a furin inhibitor, palmitoyl-Lys(N-biotinyl-6-aminohexanoyl)-Arg-Val-Lys-
ArgP(OPh)2, was also based on the specific substrate core which was equipped with C-terminal
reactive warhead and N-terminal biotin reporter fragment for visualization (Figure 5, compound
d) [56]. Furin is a serine protease, the member of mammalian proprotein convertases, which may
activate viral and bacterial pathogenic proteins in addition to its physiological role of trimming
a number of enzymes, hormones, signaling molecules, transcription and growth factors to their active
forms [57]. The compound inhibited the enzyme with Ki = 0.93 µM and k3/Ki = 20,500 M−1min−1

with a great selectivity as it appeared inactive towards chymotrypsin, trypsin-like proteases and
neutrophil serine proteases up to 10 µM concentration. This contrasted to the behavior of the reference
chloromethyketone of the corresponding consensus sequence.

The electrophilic diphenyl phosphonate warhead served to design and develop an activity-based
probe for antibodies capable of hydrolysis of amyloid β peptide by serine protease-like mechanism [58].
The eleven amino acid long sequence was determined by the lysine-specific cleavage sites (Figure 5,
compound e). As evidenced by electrophoresis and western blotting the probe was specifically and



Pharmaceuticals 2019, 12, 86 12 of 16

covalently bound to the antibodies to form a stable complex. It also reacted with the target proteins in
serum, thus, allowing effective identification and isolation of amyloidβ peptide-hydrolyzing antibodies.
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NS2B-NS3 protease (c), furin (d), and amyloid β peptide-hydrolyzing antibodies (e).

5. Conclusions

Peptidyl diaryl phosphonates have been validated as an expedient framework for the development
of potent and selective inhibitors of serine proteases. These inhibitors exhibit not only potency but
also favorable physicochemical and pharmacokinetic properties. The ester phosphonate functionality
ensures their resistance to unspecific proteolysis and good stability in buffer and plasma. They reveal
specific reactivity in an exactly targeted location, including intracellular destinations. Thus, several
diaryl phosphonate compounds of optimized structure have been investigated as drug candidates
against proteases involved in the development of human diseases, such as urokinase-type plasminogen
activator which facilitates tumor cell invasion and metastasis by the degradation of the basement
membrane and the extracellular matrix, or dipeptidyl peptidase IV, of which inhibition stimulates
insulin secretion and reduces the blood glucose level in the treatment of type 2 diabetes [3,59,60].
Following these achievements we have presented the current state of development in this area.
First, the utility of diaryl phosphonate has been confirmed for viral and microbial serine proteases,
the enzymes indispensable for growth or virulence of human pathogens. As a consequence these
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proteases and their inhibitors have been pointed out as molecular targets and specific drugs of
antibacterial/antiviral activity. Secondly, peptidyl diaryl phosphonates conjugated with a suitable
reporter group are extensively explored for intelligent detection of the enzymes in vitro and in vivo in
simple and highly sensitive tests.
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