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Vasovagal syncope (VVS) or neurogenically induced fainting has resulted in falls,

fractures, and death. Methods to deal with VVS are to use implanted pacemakers

or beta blockers. These are often ineffective because the underlying changes in the

cardiovascular system that lead to the syncope are incompletely understood and

diagnosis of frequent occurrences of VVS is still based on history and a tilt test, in which

subjects are passively tilted from a supine position to 20◦ from the spatial vertical (to a

70◦ position) on the tilt table and maintained in that orientation for 10–15min. Recently, is

has been shown that vasovagal responses (VVRs), which are characterized by transient

drops in blood pressure (BP), heart rate (HR), and increased amplitude of low frequency

oscillations inBP can be induced by sinusoidal galvanic vestibular stimulation (sGVS) and

were similar to the low frequency oscillations that presaged VVS in humans. This transient

drop in BP and HR of 25 mmHg and 25 beats per minute (bpm), respectively, were

considered to be a VVR. Similar thresholds have been used to identify VVR’s in human

studies as well. However, this arbitrary threshold of identifying a VVR does not give a clear

understanding of the identifying features of a VVR nor what triggers a VVR. In this study,

we utilized our model of VVR generation together with a machine learning approach to

learn a separating hyperplane between normal and VVR patterns. This methodology is

proposed as a technique for more broadly identifying the features that trigger a VVR. If

a similar feature identification could be associated with VVRs in humans, it potentially

could be utilized to identify onset of a VVS, i.e, fainting, in real time.

Keywords: rat, vasovagal syncope, relaxation oscillator, baroreflex sensitivity, machine learning, modeling and

simulation, vasovagal response

INTRODUCTION

A neurogenically induced vasodilation and corresponding inappropriate bradycardia can lead to
hypotension and transient loss of body tone and consciousness, that is, fainting. This condition has
been termed neurogenic or vasovagal syncope (VVS) (1–4). Many nerves connect to the heart and
blood vessels, which help control the beat frequency of the heart and the dilation and contraction of
the blood vessels that control blood pressure (BP). Usually, these control signals are coordinated so
that a decrease in BP is compensated by an increase in heart rate (HR) so that proper blood flow to
the brain is maintained through sympathetic outflow (5). If the nerve signals are not coordinated,
it could create a condition where the blood vessels dilate while the heart rate slows causing blood
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to pool in the legs and not enough reaches the brain, resulting
in syncope (5). Although VVS is not considered harmful because
lying down causes a resumption of blood flow to the brain, it can
result in falls, fractures, and in some cases death (1, 2). Thus, a
correct diagnosis of frequent occurrences of VVS is critical for
the management of this disease. Yet, diagnosis of VVS is usually
based on history and a tilt test, in which subjects are passively
tilted from a supine position to 20◦ from the spatial vertical (to
a 70◦ position) on a tilt table and maintained in that orientation
for 10–15min. This maneuver usually brings on the symptoms
of fainting and returning subjects to a reclining position makes
them go away. Treatment of recurrent VVS using implanted
pacemakers or beta blockers is often ineffective (6–10), because
the underlying changes in the cardiovascular system that lead to
the syncope are still incompletely understood (11, 12), although
there has been an acknowledgment that the relative timing of BP
and HR plays an important role in VVS generation (3, 4). The
role of the vestibular system in generating the timing has only
recently been explored and has suggested ways of habituating
VVS as a treatment option (13).

The interest in better managing VVS has seen a concerted
attempt to relate VVS to drops in blood pressure (BP) and
heart rate (HR), which have been termed vasovagal responses
(VVR’s). There have been suggestions that BP oscillations during
tilt testing are a predictive marker for VVS (14). In support of
this idea, multiresolution analysis with wavelets demonstrated
that there was increased power in low frequency modulations
of BP that presage an episode of VVS in a human fainter (15).
Recently, VVRs have been generated in anesthetized rats by
repetitively activating the Vestibulo-Sympathetic Reflex (VSR),
using sinusoidal galvanic vestibular stimulation (sGVS) or with
70◦ head-up tilts and±70◦ oscillation in pitch (16–18). Although
in anesthetized rats there is no concept of fainting, the VVRs are
surprisingly similar to those in humans and we postulated that
they would be a good animal model for VVRs in humans and
their corresponding VVS responses (16).

In the studies on the rat, vasovagal oscillations were induced
by sinusoidal galvanic vestibular stimulation (sGVS) with low
frequency oscillations (16–18) in each of six rats. These low
frequency modulations in BP and HR were referred to as
vasovagal oscillations (18). In some instances, sGVS induced a
substantial fall in BP and HR, that is, the transient VVR, which
recovered over several minutes. We identified this transient
component as a VVR, if there was a drop in BP and HR of
25 mmHg and 25 beats per minute (bpm), respectively. Similar
thresholds have been used to identify VVR’s in human studies
as well (14, 15). These data have shown that VVRs may be an
outcome of an aberrant type of vestibular stimulation of the
vestibulosympathetic reflex and not a disease (17). The data also
show that the rat may be a useful animal model for understanding
how human VVRs may be generated and studied. However, this
arbitrary threshold of identifying a VVR from BP drops does not
give a clear understanding of the identifying features of a VVR

nor what triggers a vasovagal response. The purpose of this study
is to utilize our model of VVR generation (19) together with a
machine learning approach to identify a separating hyperplane
(20) between a normal and VVR, based on simultaneous BP

and HR changes. This technique would more broadly identify
the features that trigger VVRs. If a similar feature identification
could be associated withVVRs in humans, it potentially could be
utilized to identify VVS onset of fainting in real time.

METHODS

Experimental Methods
Adult, male Long-Evan rats (Harlan Laboratories, MA) weighing
300–400 g were used in these studies. All experiments were
approved by the Institutional Care and Use Committee of the
Mount Sinai School of Medicine. In this study, the data were
taken from previous studies (16, 17, 21).We give a brief summary
of the surgical and sGVS procedures.

Surgical Procedures
The implantation of a blood pressure measurement device and a
head fixation mount were accomplished during the same aseptic
surgical session. Throughout the surgery, rats were kept on a
heating-pad controlled by the feedback of a rectal temperature
probe. The surgery and testing were conducted under isoflurane
anesthesia (4% induction, 2% maintenance).

Implantation of Bolts to Allow Painless
Fixation of the Head During Experiments
Bolts were secured with dental acrylic cement, and two nuts
were encased semisoft acrylic. A telemetric blood pressure sensor
(DSI, St Paul, MN) was implanted in the abdominal aorta. These
animals were utilized in a series of experiments performed over
the next 2 months [see (16) for details].

Sinusoidal Galvanic Vestibular Stimulation
for Inducing VVR
During testing, the heads of the rats were immobilized using the
head mounts attached to a cylindrical holder for the animal’s
body. Sinusoidal currents generated by a computer-controlled
stimulator (22) were delivered via two Ag/AgCl needle electrodes
inserted into the skin over the mastoids, behind the external
auditory meati. sGVS was given binaurally with currents of 1–
4mA and frequencies of 0.008 to 0.5Hz. Current and frequencies
were randomized, and 15–30min were allowed to elapse between
stimuli to reduce possible effects of habituation.

Tilt Protocol to Initiate VVR
The rats were statically tilted 70◦ and held in this position until
they developed a vasovagal response. If a vasovagal response
developed or if there was no response after several minutes, they
were then brought back to the prone position.

Data Collection and Analysis
BP in response to sGVS was recorded continuously using
customized A/D conversion hardware (Grass Technologies,West
Warwick, RI) and Polyview software (Grass technologies) and
stored at a rate of 1 KHz. BP data from the telemetric sensors
were collected via a wand receiver (DSI, St Paul, MN) at 1 KHz
with 12 bit resolution (Data Translation, Inc.) using our data
collection program. The data were converted for analysis into
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what we have referred to as Virtual Memory File (VMF) format.
The data format is comprised of channels that represent stimuli
and responses and can be representations of analog data, that are
acquired via an A/D converter or event channels that associate an
event with a time of occurrence. The VMF application software
that we developed contains modules, which operate on the
data and perform a wide range of transformations, such as a
correlation analysis, power spectral analysis, timing of events, etc.
The program also has visualization capabilities so that data can
be displayed as time functions. The transformed data can also
be displayed in the frequency domain or as one variable against
another [See (23) for a more thorough description].

BP was utilized to obtain heart rate (HR) off-line. HR was
identified from the peaks in BP. Stored pulses were converted
to instantaneous frequency (beats·s−1) and stored in a separate
channel for further analysis. Mean square sinusoidal fits to the
data were used to estimate variations of BP and HR to the
sinusoidal oscillations.

RESULTS

Data Underpinnings of Modeling Vasovagal
Responses
There were two characteristics of typical data that characterized
a VVR during sGVS and tilts in anesthetized rats that were used
to model the response (Figure 1). At a 2 s time scale, there were
triangular type oscillations corresponding to the rapid transition
(systole) and the slower transitions (diastole) (Figure 1A, inset).
At a 1,000 s time scale, there was a coordinated drop in the in
BP oscillations (Figure 1A) as well as in HR (Figure 1B) during

sGVS (Figure 1C). Similar kinds of drops in BP (Figure 1C) and
HR (Figure 1E) occurred during head up tilts of 70◦ (Figure 1F).
The responses of BP and HR are similar to that observed during
head up tilts when testing for fainting (15) and strategies for
stopping VVS by leg-crossing and muscle tensing (24). The
model therefore encompassed the systolic-diastolic oscillations
and a central control structure to predict the drops in BP and
HR over the longer time scale (19). The modeling approach in
this paper considers what features of the model can be used
to better identify the drops in BP and HR using the data and
machine learning.

Modeling Approach
The basis of the model (Figure 2) that generates the triangular
systolic-diastolic oscillations is a relaxation oscillator (19, 25).
There is a signal Desired Blood Pressure (BPd), which acts as
input that maintains the relaxation oscillations and is dependent
on metabolic needs of the muscles and cells (26). This model
not only simulates the basic diastolic and systolic behavior of
BP as monitored by an intra-aortic sensor, but also predicts
their variations in response to vestibular stimuli. The model also
showed that alterations in BPd changed the oscillation amplitude
and its frequency, which compared favorably with data on
systolic BP, pulse pressure, and Baroreflex Sensitivity (BRS) (19).
It also predicts that as the BP drops, the period of the systolic-
diastolic oscillations increases, and therefore HR drops (19). It
is this relationship that is explored in this paper to elucidate the
features that best describe a VVR and by extrapolation to predict
a VVS.

Briefly, the relaxation oscillator model, which is of second
order, has two states, x1 and x2, which are generated by delays

FIGURE 1 | Typical data that initiated a VVR in an anesthetized rat obtained from sGVS (A–C) and head up tilts of 70◦. The inset in (A) shows a 2 s time scale. There

were triangular type oscillations corresponding to the rapid transition (systole) and the slower transitions (diastole). (A) At a 1,000 s time scale, there was a coordinated

drop in the in BP oscillations (A) as well as in HR (B) during sGVS (C). Similar drops in BP (D) and HR (E) occurred during head up tilts of 70◦ (F).
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1t with feedback elements that are discrete representations
of leaky integrators (dashed rectangles) in continuous system
models (27). The non-linear element (f1, Figure 1), was
modeled as piecewise linear with threshold, T, and saturation,

S. This nonlinear feedback is responsible for making the
system oscillate, mimics the non-linear feedback present in the
baroreflex (28, 29) and is a minimal structure for inducing
relaxation oscillations (25). The realization of these integrators

FIGURE 2 | Non-linear relaxation oscillator model that generates the systoles and diastoles seen in the blood pressure signal together with the central mechanisms

that control the BP and HR variations and adaptations. See text for details. This figure has been modified and extended from (19).
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by central circuits is not known, but may be accomplished
through functional commissural connections between neurons
in the rostral ventrolateral medulla (RVLM) and those in the
nucleus tractus solitarius NTS) (30, 31). The vestibular system
affects the oscillator in two ways: First, by adding an input
in the feedback loop from the otolith orientation signal V0

through gv. Second it affects the parameter modification of the
VVR trigger, which causes a drop in Bpd , initiating a VVR

(Figure 2).
In order to fit the data better on both systole-diastole

transition and its derivative, a non-linear function (NL, f2)

of the derivative of the integrator state (x2) was implemented
as an enhancement of the model developed in Raphan et al.
(19) (Figure 2). The output of this non-linearity was processed
by a high pass filter with a cut-in frequency of 0.1Hz and
then processed by an integrator, whose output has been
labeled x2p. We postulate that this output combined with
BPd through parameters h6 and g2, which is offset by a bias
(Bias) generates the signal z2 that controls BP and presumably
the Volumetric Flow rate by constricting and dilating the
muscle beds (32, 33). The purpose of the high pass filter
was to prevent drifts at the output of the integrator due to
any level component (DC) generated by the non-linearity, f2.
The oscillator maintained the systolic to diastolic transitions
and the non-linearity shaped and constrained the BP and its
derivative, which fit the data. The equations below the model
(Figure 2) were implemented in Matlab and used to simulate
model predictions.

Model Predictions of Data and Defining the
Features for Identifying a VVR
The simulations presented here are only those that have a direct
bearing on the VVR. A more complete analysis of the model
performance and the testing of the model against a wide range
of data is given in (19). When activated by a constant BPd ,
the output of the model, z2, oscillated at a fixed frequency and
the systolic and diastolic phases compared favorably with those
from an anesthetized rat when there was no external vestibular
stimulus (Figure 3, BPd = 50). When BPd was dropped at t =
5 s from 50 to 40 (Figure 3), due to the peak to peak amplitude
of each simulated systole was reduced (Figure 3), and BP had
the same properties as the experimental data (18, 19). Thus, the
model had the flexibility to simulate experimental data not only
in the normal state, but also during a VVR. Altering parameters,
such as the threshold, or other parameters did not produce a
VVRwith these characteristics (19). Thus, a key prediction of the
model is that it is a drop in BPd that triggers a VVR.

From the above findings, we hypothesize that in non-
susceptible animals, or in animals that are habituated, the internal
signal, BPd, is prevented from dropping (13). We have also
postulated that the BPd signal originated in specific circuits that
reconstruct this signal from states of the relaxation oscillator.
We have further postulated that there is a specific trigger circuit
that monitors the states and output variables of the relaxation
oscillator in the brainstem as well as vestibular inputs to the
baroreflex feedback, correlates these signals and determines

FIGURE 3 | Model simulation showing the effects of dropping BPd from 50 to

40 mmHG. The threshold, T, in the feedback loop, responsible for the

transition from diastole to systole was held constant at −100. BPd is the only

parameter that effectively mimics a VVR when it is dropped from its stable

value. This figure was adapted from (19).

whether to initiate a VVR. In order to determine the signals
that activate this mechanism, we propose a new method for
identifying VVRs, which utilizes a metric that combines features
associated with both BP andHR.

These features were derived as follows: we incorporated
stochastic variations in threshold of the baroreflex feedback, T.
When this was done, the model predicted what has commonly
been referred to as baroreflex sensitivity (BRS) (Figure 4), which
has been defined as the slope of the regression when R-R
interval is plotted as a function of previous systolic pressure
(34, 35). When the threshold, T, was varied randomly, the
model output achieved varying systolic levels and intersystolic
intervals (Figure 4A). This was the approximate behavior of
the systolic levels and intersystolic intervals in the alert rat
(Figure 4B). When the intersystolic interval was plotted as a
function of Systolic Pressure (BRS), the model predicted a
positive correlation for the BRS for vestibular input V0 =0
in the model (Figure 4C, Shaded dotted line, slope = 0.31).
This compared favorably with the data obtained in the alert rat
(Figure 4D) as well as habituated anesthetized rats (13). It also
predicted the BRS of anesthetized rats (Figure 4C, slope = 0).
For a constant input V0 = 10, the slope was increased to 0.6,
which was the range of the baroreceptor in humans (34). The
slopes could be altered by changes in sinusoidal vestibular input.
(Figure 4C, slope −0.78), showing the wide range of baroreflex
sensitivities that could be obtained from the model.

It has been noted that both BP and HR drops characterize a
VVR (18, 36, 37). We have identified a signal BPd that when it
drops, both BP and the inverse of intersystolic interval drop. It
is therefore of interest that baroreflex sensitivity is a parameter
that is determined from a ratio of intersystolic interval and
systolic BP. Thus, the BRS parameter has information about
instantaneous HR and BP, rather than BP alone and could be
the important trigger signal for VVR initiation. In this study, we
therefore examined the temporal variations in BRS to determine
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FIGURE 4 | Comparison of Model Predictions (A,C) and Experimental Data (B,D) of Baroreceptor Sensitivity (BRS). The model predicted the experimental data (A,B)

and had the flexibility to predict the Baroreflex Sensitivity (C,D). This figure was taken from (19).

FIGURE 5 | Machine learning approach to finding a linear discriminant

function that seperates a known VVR from normal. The blue circles are not

VVRs while the others are VVRs. The features that are being plotted are the

maximum drop in BP (BPMaxdrop) vs. maximum change in the new metric

1BRS (See Text). Using a threshold on BPMaxdrop alone (horizontal lines)

misclassifies a significant greater VVRs than does the learned linear

discriminant function, which utilizes a combination of BPMaxdrop and 1BRS.

the normal variation in anesthetized and alert states and the
threshold that needs to be reached to generate a VVR.

We then considered an instantaneous Baroreflex Sensitivity
function (1BRS) to determine whether this feature is a better

prognosticator of VVRs and determine how the states of the
model are related to 1BRS. The computation of 1BRS was
implemented as a moving average window of instantaneous
ratios of changes in intersystolic interval (related to HR) to
changes in systolic BP. When a VVR occurred, the peak drop
in systolic BP, BPmaxdrop, was plotted vs. the maximum of

1BRS (1BRSmax). This plot had a considerable overlap in

classifying a VVR according to a criterion based on maximal

drops in BP alone (Figure 5). If the threshold for BPmaxdrop is

chosen at 25 mmHG, then there are many VVRs that are missed

(Figure 4, orange circles below 25 mmHG). If the threshold for
classifying a VVR is 18 mmHG, many non-VVRs are classified
as VVRs (Figure 5, blue circles). This shows that choosing a
threshold for BPMaxdrop alone for identifying a VVR is an
insufficient metric. A “Machine Learning” algorithm was used to
find the discriminant function between what we termed normal

vs. VVR (Figure 5 Separating Linear function of orange from
blue circles). First a small “test set” of what had been identified as
VVRs using large values of BPmaxdrop was clasiified (Figure 5,
purple star). The remaining data points were classified using
the learned discriminant function based on the test set. There
was improved identification and separation of a VVR from a
non-VVR (Figure 5). This shows that a linear combination of
BPMaxdrop and 1BRS was a more appropriate metric.

Because 1BRS is an important part of classifying a VVR, we

then considered whether the time series 1BRS (Figure 6B) or its

derivative (Figure 6D) could be used (Figure 6A) to predict the

Frontiers in Neurology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 631409

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Raphan and Yakushin Learning to Predict a VVR

FIGURE 6 | (A) Systolic BP as a function of time during a VVR. (B) Using the

instantaneous baroreflex sensitivity, 1BRS, allows for the polynomial fitting (C)

and determining the derivative where a threshold (Tvvr) (D) aligns and is a

predictor of the drop in systolic pressure at the beginning of a VVR.

triggering of a VVR. The polynomial fit to 1BRS (Figure 6C) is
an intermediate step in finding the derivative and suggests that
the derivative of 1BRS reaches a threshold, Tvvr (Figure 6D),
before there is a drop in systolic level of BP (Figure 6, Dotted

Vertical Line). This threshold metric, Tvvr, which is derived
from the temporal characteristics of the derivative of 1BRS,
is consistent with the idea that 1BRS is an important part
of the discriminant function that separates a VVR from a
non-VVR. Therefore, this newly defined 1BRS function and
its derivative are better predictors of a VVR and could be a
metric that combines both BP and HR as determinants of an
impending VVR and associated VVS in humans if a large data
set were utilized.

DISCUSSION

This study has shown that this newly defined function, 1BRS,

and its derivative are predictive of a VVR and potentially could
be important in predicting VVS in humans. This is consistent

with the finding that a better discriminant for identifying a VVR
is when BPmax is combined with 1BRSMax. This new metric
takes into account a critical feature of VVRs in humans and
rats as the simultaneous occurrence of both bradycardia and
hypotension at the onset of the VVR (38). It is supported by the
idea that it is the loss of baroreflex function that triggers a VVS
(17, 36, 39). Consistent with this, there is also an immediate loss
of the baroreflex-generated Muscle Sympathetic Nerve Activity
(MSNA) at the onset of syncope (40–42). The pathophysiological
mechanism and significance of the baroreflex disengagement in
producing bradycardia and hypotension have been conjectured
to be the basis for VVS (3, 4), but no specific mechanism has
been identified that could produce these changes. As such, despite
being relatively common (1, 12, 43), the origin and neural basis
of VVRs, which are related to VVS are not known (2, 36, 38)
and there are no physical signs of neurogenically mediated VVR.
Therefore, identifying the features that could be correlated with
triggering the a VVR that underlies VVS, could be important in
predicting their onset and managing the condition.

The pressure and flow dynamics are not easily modeled
from a biophysical perspective. We have therefore taken a
system theoretic approach to this problem to model the neural
control of the cardiovascular oscillations as an internal model
that entrains the natural cardiovascular oscillations (19). This
approach encompasses not only the physical volumetric flow rate
and pressure dynamics, but also how the BP and HR system is
controlled by sensory-motor neural mechanisms that constrain
the shape of the systolic-diastolic oscillatory waves (19). It had
been suggested that the systolic-diastolic oscillations in BP had
characteristics of a relaxation oscillator (44, 45). Recently, we
demonstrated how relaxation oscillations could be embedded in a
control system that could regulate its performance. In this model,
the shape of the systolic/diastolic waveform is not determined
strictly by the heart, but by a neural network, which mimics the
oscillation features of the heart, referred to as the internal model.
The feedback mechanisms implement closed loop control and
drive actuators through non-linear mechanisms that can rapidly
control the constriction of the arteries and vascular beds (33),
regulating volumetric blood flow rate and BP (19). This kind
of control is referred to as Model Reference Adaptive Control
(MRAC) (46–48). The output of the internal model is compared
to a feedback signal from baro-receptors that codeBP, generating
an error signal whose control parameters are updated based
on this error signal. The control parameters then converge to
ideal values that cause the actual BP and HR to ∼match the
response of the reference model.We have simulated the reference
model behavior as a function of alteration of specific parameters
and tested the predictions against data. This kind of control
is different from eye movement control or leg control. These
systems are stationary and need to be activated to have them
move. The blood pressure and heart rate control requires the
maintenance of oscillations by an already oscillating system.
Therefore, it is reasonable that the control strategies would
be different.

The model was implemented as a state determined second
order relaxation oscillator, whose oscillation characteristics are
governed essentially by a threshold and saturation mechanism
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in the feedback loop and a driving signal that maintains
the oscillations. The threshold non-linearity, which has been
observed in the baroreflex feedback (28, 29, 49), puts the system
into systolic or diastolicmode. Themodel was adapted fromwork
done on modeling oculomotor oscillations during nystagmus
(25) and repetitive motion of the legs during locomotion (50, 51)
where there are also oscillating fast and slow components of
the stepping. An important enhancement to the model above
over that presented previously (19), is a component, which we
have labeled Mechanism for Generating BPd and habituation.
We propose that this component generates BPd to maintain
the relaxation oscillations. We also postulate that it correlates
the signals arising from the states of the relaxation oscillator
that is responsible for activating the VVR trigger, which inhibits
BPd Generation and initiates a VVR. Finally, it is responsible
for activating the Par Mod component during habituation that
adapts the parameters of BPd Generation, which raises the
threshold for triggering a VVR as habituation is ongoing (13).

There is some evidence that mechanism for generating BPd

and the parameter modification for maintaining BP oscillations
or initiating a VVR is performed in the uvula. Optogenetic
inhibition of Purkinje cell activity in the uvula modulates BP

when anesthetized rats are tilted (52). There are also afferent
(53) and efferent (54) connections to autonomic nuclei in
the rabbit. These findings together with the fact that neural
activity in the caudal medial, lateral and descending VN (55–
58) are critical for VSR (59, 60) may contain a mediator that
modulates BP (61–63) is consistent with the model structure that
is being proposed.

In conclusion, much of the efforts in identifying the onset
of a VVR has been focused on BP (14, 15, 18). The VVRs in
rats were associated with increased power in the low frequency
band (0.025–0.05Hz) with synchronous oscillations in BP and
HR, which have been termed vasovagal Oscillations; higher
frequencies of sGVS rarely induced a VVR (18). The approach
in this study was to base our criteria for predicting a VVR

on a model that (1) predicted the approximate triangular
shape of systolic/diastolic oscillations. (2) identified parameters,
which could modify the oscillations. (3) Encompassed a theory
for how amplitudes and frequencies of these systolic/diastolic
oscillations could be controlled by vestibular input (4). Better
Identified the features that could be used to separate a VVR

from the normal systolic/diastolic oscillations using a machine
learning technique.

Themethod developed was based on small data set, yet proved
valuable in finding a separation between the systolic-diastolic
beats during VVR and normal beats. Finding discriminant
functions using a “Big Data” set for each animal should give
us a better understanding of how BP and HR are processed
to generate a VVR and how it is reflected in our newly
defined 1BRS function and its derivative. If a similar feature
identification could be associated with VVRs in humans, it
potentially could be utilized to identify onset of fainting in
real time.
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