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a b s t r a c t

Classical inbred mice are extensively used for virus research. However, we recently found that some
wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus.
Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus
(CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice,
whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live
bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and
CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence
increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent
manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was
similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies.

Published by Elsevier Inc.

Introduction

The mouse is widely used for infectious disease research because of
its many advantages including the availability of highly inbred strains
(Beck et al., 2000). Inbred mice can be divided into classical and wild-
derived groups. Commonly used laboratory mice belong to the classical
group, which are genetically similar to each other and are derived from
a small number of progenitors (Goios et al., 2007; Ideraabdullah et al.,
2004). In contrast, wild-derived strains are genetically diverse, having
been trapped at different locations and times prior to inbreeding.
We recently screened a large number of inbred strains of mice for
susceptibility to monkeypox virus (MPXV) infection (Americo et al.,
2010). Of these, 32 were classical inbred strains and 6 were wild-
derived. Remarkably, all the classical inbred strains were highly resistant
to intranasal MPXV infection, whereas three of the wild-derived strains
were susceptible. The most susceptible was CAST/Ei (abbreviated CAST),
derived from a wild population of the subspecies Mus musculus
castaneous trapped in a grain warehouse in Thailand. The vulnerability
of CAST mice to MPXV correlated with a low interferon-γ response
following intranasal infection (Earl et al., 2012). However, CAST mice are
not immunodeficient, as vaccination provided complete protection
against MPXV (Americo et al., 2010). In addition, the CAST mouse has

been reported to be resistant to infection with flaviviruses (Sangster
et al., 1993). We are unaware of CAST mouse studies with other
infectious agents, although resistance to influenza virus is predicted
based on the presence of the interferon regulated Mx gene (Staeheli
et al., 1988) and this mouse strain is susceptible to Bacillus anthracus
lethal toxin (Moayeri et al., 2004).

We were interested in determining whether the susceptibility of
CAST mice to MPXV would extend to other members of the ortho-
poxvirus genus of the chordopoxvirus subfamily of the Poxviridae
(Damon, 2013; Moss, 2013). Vaccinia virus (VACV) and cowpox virus
(CPXV) were chosen for this investigation as they are extensively used
for pathogenesis, vaccine and anti-viral drug studies in mice (Bray
et al., 2000; Smee et al., 2000, 2001). Here we report that that the
LD50 values for VACV and CPXV are two logs lower in CAST mice than
in BALB/c mice, providing an advantage as a model system. However,
there was no significant difference in the susceptibility of CAST and
BALB/c mice to herpes simplex virus 1 (HSV-1), an unrelated double-
stranded DNA virus. Virus titration and bioluminescence imaging
were used to track the spread of phenotypically different strains of
VACV and CPXV in the CAST mouse.

Results

Susceptibility of CAST and BALB/c mice to VACV

We previously reported that CAST mice are highly sensitive to
intranasal infection with MPXV and that the LD50 is 680 PFU
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(Americo et al., 2010). In contrast, BALB/c mice exhibited little
disease and no mortality when infected with doses of MPXV as
high as 107 PFU. To determine whether the vulnerability of CAST
mice to MPXV extended to other orthopoxviruses, we infected
CAST and BALB/c mice intranasally with escalating doses of VACV
strain Western Reserve (WR). Previous studies had indicated that
the LD50 for VACV WR in BALB/c mice was between 104 and
105 PFU. In compliance with NIH guidelines, animals that lost 30%
of their weight or appeared moribund were terminated; therefore
reported deaths included both natural occurrences and euthana-
sia. In the experiment depicted in Fig. 1, BALB/c mice were infected
intranasally with 102 through 106 PFU. Weight loss was rapid and
severe at the two highest doses of 105 and 106 PFU (Fig. 1B) with
death of all animals by day 9 after infection (Fig. 1D). Weight loss
was delayed and less severe with each successive reduction in
infectious dose. With the 104 PFU challenge, only one animal out
of 10 succumbed and there was no mortality in the 103 and
102 PFU groups. This experiment was repeated with similar results
and the LD50 for the combined data was 2.2�104 PFU.

CAST mice were infected intranasally with 10�1 through
104 PFU of VACV WR. Mice that received the three lowest doses
(0.1, 1 and 10 PFU) showed no weight loss or signs of disease
(Fig. 1A). The 0.1 and 1 PFU doses were inadequate to produce a
systemic infection as determined by the absence of antibody
production or protection against a subsequent lethal challenge
dose (Fig. S1). However, the 10 PFU group produced specific
antibody and was protected against challenge (Fig. S1). Weight
loss and signs of disease started at a dose of 102 PFU (Fig. 1A).
At the latter dose, 50% of the animals died between days 6 and
13 (Fig. 1C). Animals that received 103 or 104 PFU died more
rapidly. The LD50 of VACV WR for CAST mice was 1�102 PFU,
more than two logs lower than the same virus in BALB/c mice and
more than a half log lower than MPXV in CAST mice.

Previous studies have shown that VACV WR disseminates to
lungs, spleen and brain following intranasal infection (Law et al.,
2005). To determine the extent of virus spread and replication of
VACV WR in CAST mice, organs were removed from each mouse
that died from the infection. The organs were frozen and subse-
quently thawed and homogenized. VACV titers were determined
by plaque assay and expressed as yield per gram of tissue.
Extensive spread to lung, liver, spleen, brain, and kidney was
found in all animals with higher yields from animals infected with
103 and 104 PFU than from those infected with 102 PFU (Fig. 1G).
Because the ovaries were too small to accurately weigh, we
expressed the yield as total PFU (Fig. 1H). Extensive replication
was found in the ovaries of all CAST mice irrespective of input
dose, consistent with the known predilection of VACV WR for this
organ (Karupiah et al., 1990).

ACAM2000, a licensed vaccine for smallpox, is highly attenuated
in comparison to VACV WR. We infected CAST and BALB/c mice with
doses of ACAM2000 ranging from 104 to 107 PFU to see if disease
symptoms occurred in either mouse model. CAST mice in all dosage
groups became hunched and scruffy, developed antibodies and were
protected against weight loss following challenge with a lethal dose
of VACV WR (Fig. S2). CAST mice that received 107 PFU of ACAM2000
lost weight transiently but recovered fully by day 10 post-infection
(Fig. 1E). No weight loss occurred in BALB/c mice regardless of the
dose; only the 107 PFU group became scruffy and even they fully
recovered. Thus, although infection of either mouse strain with
ACAM2000 did not produce any deaths, there was greater morbidity
in the CAST mice.

Susceptibility of CAST and BALB/c mice to CPXV-Brighton (CPXV-Br)

Next, we compared the susceptibility of the two mouse strains
to intranasal infection with CPXV-Br. BALB/c mice infected with

104 PFU exhibited weight loss during the second week, but all
recovered by day 22 (Fig. 2B). Weight loss was accelerated in the
105 and 106 PFU groups and nearly all died between days 8 and 12
(Fig. 2D). The LD50 for CPXV-Br in BALB/c mice was estimated to be
3.6�104 PFU. CAST mice were infected with 101–106 PFU. All CAST
mice, even at the low dose of 101 PFU, became hunched and those
infected with 102 PFU or more lost some weight (Fig. 2A). Weight
loss was accelerated and more severe at the higher doses. The time
to death and number of mice that died were inversely and directly
related to the virus dose, respectively (Fig. 2C). At the lower doses,
deaths occurred over a period of several weeks. The extent of
weight loss did not correlate well with death at inoculation doses
lower than 104 PFU. The LD50 for CPXV-Br in CAST mice was
102 PFU, two logs lower than in BALB/c mice. CAST mice survived
longer after infection with lethal doses of CPXV-Br (Fig. 2C) than
with VACV WR (Fig. 1C) and the differences were significant at
doses of 103 (p¼0.0005) and 104 (p¼0.001).

Virus spread was assessed in CAST mice by removal of organs in
all animals that died. Organs were harvested on the day of death
and stored frozen in buffer. After thawing and homogenization,
CPXV-Br titers were determined by plaque assay. As shown in
Fig. 2E, there was extensive replication in all organs examined:
lung, liver, spleen and brain. Overall, the CPXV-Br organ titers
were slightly lower than the VACV-WR titers and there were some
differences in the relative amounts in the different organs such as
the brain.

Intranasal infection of CAST mice with poxviruses expressing
firefly luciferase (LUC)

In the previous section, we measured the amounts of virus in
various organs at the time of death. In order to follow spread in
individual animals during the course of infection, we employed
recombinant viruses that express firefly LUC, which were previously
used for cell entry studies. WRvFire (Townsley et al., 2006), IHD-JvFire
(Bengali et al., 2009), and Wyeth-vFire (Bengali et al., 2009) were
derived from the VACVWR, VACV IHD-J and Wyeth vaccine (DryVax)
strains, respectively. CPXV-Br-luc (Bengali et al., 2012) was derived
from CPXV-Br. In each case, the LUC open reading frame was
regulated by the same synthetic early/late promoter (Chakrabarti
et al., 1997) and inserted between the F12L and F13L open reading
frames (Copenhagen VACV nomenclature). To ascertain whether the
gene insertion and expression of LUC diminished virulence, we
infected CAST mice intranasally with 101, 102, or 103 PFU of WRvFire,
IHD-JvFire, or CPXV-Br-luc, respectively, and followed weight loss and
death for up to 24 days. The patterns for weight loss and mortality of
WRvFire (Fig. 3A and D) closely mimicked that of the parental VACV
WR (Fig. 1A and C), and were similar to that of IHD-JvFire (Fig. 3B and
E). Weight loss andmortality appeared more severe with CPXV-Br-luc
(Fig. 3C and F) than with the parental CPXV-Br (Fig. 2A and C).
However, this was likely due to the difference in age of animals in the
two experiments. CAST mice infected with CPXV-Br (Fig. 2A and C)
were 14–15 weeks old and those infected with CPXV-Br-luc (Fig. 3C
and F) were 8 weeks old. Survival analysis indicated significant
differences between WRvFire and CPXV-Br-luc (p¼0.006) and IHD-
JvFire and CPXV-Br-luc (p¼0.009) but not between the two VACV
strains (p¼0.389) at the dose of 103 PFU.

Bioluminescence imaging of CAST mice infected with WRvFire

Groups of CAST mice were infected intranasally with 10, 100 or
1000 PFU of WRvFire and repeatedly imaged over a period of 3
weeks. D-Luciferin was injected into the peritoneum and the LUC
signal was captured with an IVIS 200 imager. All the animals in the
100 and 1000 PFU groups exhibited bioluminescence, whereas
only two of the four inoculated with 10 PFU were infected. Images
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Fig. 1. Weight loss and survival of CAST and BALB/c mice following intranasal infection with VACV WR or ACAM2000. Groups of 4–10, 14–15 weeks old female CAST and 11
weeks old BALB/c mice were infected intranasally with escalating doses of VACV WR or ACAM2000. Animals were monitored daily for weight loss and death for 18 days.
Weight loss (A) and survival (C) of CAST mice infected with VACV WR; weight loss (B) and survival (D) of BALB/c mice infected with VACV WR; weight loss of CAST mice
(E) and BALB/c mice (F) infected with ACAM2000; virus titers on the day of death in lung, liver, kidney, spleen and brain (G) and ovaries (H) of CAST mice infected with VACV
WR. Bars represent standard error of the mean (SEM).
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from representative animals infected with 10 PFU (Fig. 4A),
100 PFU (Fig. 4B) and 1000 PFU (Fig. 4C) are presented. Because
luminescence was far greater in the head than the body, we
showed a 1 s exposure for the head and 10 s exposure for the
torso. Regions of interest (ROI) were drawn for the head, chest, and
abdomen. The photon flux was calculated using Living Image
software and the values for animals in each group were averaged.
Luminescence was first detected in the head and then simulta-
neously in the chest and abdomen (Fig. 4D–F). The maximum total
photon flux in the head was greater than 109 photon/s/cm2 and
peaked on day 7–8 in all groups. This likely includes virus
replication in the nasal passage, the site of primary infection.
The maximum total photon flux was greater than one log lower in
the torso than the head. The peak for the abdomen (days 4–7)
preceded the peak for the chest (days 7–9). Luminescence from

the ROIs drawn on the chest and abdomen was primarily from the
lungs and from the liver and spleen, respectively (data not shown).
Since the rib cage reduces the amount of light emission from the
lungs relative to that from the liver and spleen, the total photon
flux from the chest and abdomen cannot be directly compared.
However, comparisons can be made between animals infected
with different doses of virus within each designated area. There
was a clear dose–response in the rate and total amount of
replication in the head, chest, and abdomen (Fig. 4D–F), which
correlated with weight loss and mortality (Fig. 3A and D). All
animals infected with 1000 PFU died by day 9 post-infection, two
of the four infected with 100 PFU died by day 8 while the other
two recovered. The virus titers in the organs of dead animals
indicated extensive replication (Fig. S3A), as found in the previous
experiment (Fig. 1G and H).

Fig. 2. Weight loss and survival of CAST and BALB/c mice following intranasal infection with CPXV-Br. Groups of 3–10, 14–15 weeks old female CAST and 11 weeks old BALB/c
mice were infected intranasally with escalating doses of CPXV-Br. Animals were monitored daily for weight loss and death for up to 34 days. Weight loss (A) and survival
(C) of CAST mice; weight loss (B) and survival (D) of BALB/c mice; (E) virus titers on the day of death in organs of CAST mice. Bars represent SEM.
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Bioluminescence imaging of BALB/c mice infected with WRvFire

To compare the pattern of virus spread and replication in CAST
mice with that in less susceptible BALB/c mice, we infected groups
of BALB/c mice intranasally with 5�103, 5�104, or 5�105 PFU of
WRvFire. Animals were weighed and imaged for 18 days unless
they succumbed earlier to the infection. Animals in all groups lost
weight but this was more rapid and pronounced at the two higher
input doses. The number of imaging days of animals infected with
5�105 and 5�104 was reduced because they all died by days
9 and 10, respectively. Only one animal in the 5�103 group died
and this was on day 12. Images from representative animals in
each group are shown in Fig. 5A (5�103 PFU), Fig. 5B (5�
104 PFU), and Fig. 5C (5�105 PFU). As occurred with CAST mice,
luminescence was much higher in the head than in the body,
requiring longer exposure times and head covering in order to
accurately capture images in the body. Kinetics of replication as
quantitated by total photon flux in the head (Fig. 5D), chest
(Fig. 5E), and abdomen (Fig. 5F) was averaged for all animals
within each group and was similar to that found with CAST mice
(Fig. 4D–F), allowing for the difference in the inoculum doses.
Notably, the input required for similar levels of replication was
more than 2 logs higher in BALB/c than in CAST mice. As with CAST
mice, high titers of virus were recovered from organs of all animals
that died (data not shown).

Bioluminescence imaging of CAST mice infected with IHD-JvFire

The IHD-J and WR strains of VACV exhibit differences in
mode of spread and cell entry in cell culture (Bengali et al.,
2009; Blasco et al., 1993; Mercer et al., 2010; Payne, 1980), making
it interesting to compare them in mouse models. In a previous
comparison of BALB/c mice infected intranasally with 105 PFU of

WRvFire and an IHD-J LUC recombinant, Zaitseva et al. (2011)
found higher bioluminescence of the WR recombinant than the
IHD-J recombinant in the nasal cavity and lungs but similar levels
in the liver and spleen. In the present study, CAST mice were
infected intranasally with 10, 100, or 1000 PFU of IHD-JvFire.
Images of a representative animal from each infection group are
shown in Fig. 6A–C. The total photon flux was averaged for animals
in each group and the kinetics of virus spread in three regions of
the body was determined (Fig. 6D–F). Luminescence in the head
displayed kinetics similar to that found with WRvFire with a peak
on days 7–8 and maximum of greater than 109 photon/s/cm2 in
the 100 and 1000 PFU groups. Only one animal in the 10 PFU
group displayed any luminescence with a maximum photon flux of
3.5�108. At the two higher doses, replication was considerably
more extensive in both areas of the torso with IHD-JvFire than it
was with WRvFire. Specifically, at the input dose of 1000 PFU, the
peak photon flux in the chest was 1.5�109 with IHD-JvFire, while
it was 9.5�107 with WRvFire. In the abdomen, the maximum was
9.5�109 with IHD-JvFire and 9.4�107 with WRvFire. At the input
dose of 100 PFU, greater replication was also observed with IHD-
JvFire than with WRvFire, although the contrast was not as
striking. At the input dose of 10 PFU, little difference was seen
between the two viruses. In addition to measuring luminescence,
organs of those animals that died were titered confirming higher
levels of IHD-JvFire than WRvFire except in the brain and turbi-
nates (Fig. S3B).

Bioluminescence imaging of CAST mice infected with Wyeth-vFire

Next, we imaged CAST mice infected with Wyeth-vFire, which
was derived from the same attenuated DryVax vaccine strain as
ACAM2000. Due to the attenuation, we only infected animals at
the high dose of 107 PFU. Images of a representative animal are

Fig. 3. Intranasal infection of CAST mice with LUC-expressing viruses. Groups of four 8–10 week old female mice were infected intranasally with 10, 100, or 1000 PFU of
WRvFire, IHD-JvFire, or CPXV-Br-luc. Animals were monitored daily for 24 days for weight loss and death. Weight loss of mice infected with WRvFire (A), IHD-JvFire (B) and
CPXV-Br-luc (C); survival of mice infected with WRvFire (D), IHD-JvFire (E), and CPXV-Br-luc (F). Bars represent SEM.
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shown in Fig. 7A and quantitation of luminescence of three
animals is in Fig. 7B. Strong bioluminescence was detected in
the head, which reached a maximum of greater than 109 photon/
s/cm2, a value similar to that found in animals infected
with 1000 PFU of the more virulent WR and IHD-J strains. Spread
to the lungs peaked on day 5 with a maximum of 1.5�106

photon/s/cm2. However, there was very little spread to the
abdomen and virus was completely cleared from all animals by
day 15.

Bioluminescence imaging of CAST mice infected with CPXV-Br-luc

Groups of CAST mice were infected intranasally with 10, 100, or
1000 PFU of CPXV-Br-luc and imaged repeatedly over a period of
3 weeks. Images of a representative animal from each group are
shown in Fig. 8A–C and the average luminescence values in the
head, chest and abdomen in Fig. 8D, E, and F, respectively. The
peak luminescence and the speed of infection were proportional to
the dose. As with VACV, luminescence increased most rapidly in

Fig. 4. Bioluminescence imaging of CAST mice infected with WRvFire. Three groups of four female CAST mice were infected intranasally with (A) 10 PFU, (B) 100 PFU, or
(C) 1000 PFU of WRvFire. Representative images of the heads and ventral torsos of infected mice are shown. The number above each image is the day post-infection. The
yellow boxes outline the regions of interest (ROI) used to calculate photon flux. Relative LUC expression is represented by a pseudocolor heat map in which red indicates a
high number of photon counts and blue indicates a low number of photon counts. Bioluminescent images of the head were obtained using an f/stop of 1, binning factor of 4,
and an acquisition time of 1 s, while images of the ventral torso were obtained with an f/stop of 1, binning factor of 8, and an acquisition time of 10 s. The same color scale set
between 600 and 60,000 was used for all three panels of pictures. To quantify bioluminescence signals as total photon flux (photon/s/cm2/sr), ROI analysis was performed on
the (D) head, (E) chest, and (F) abdomen of infected mice. Data represent mean group values for photon flux. Bars represent SEM.
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the head, followed by the chest and abdomen. However, the
kinetics of spread was slower with CPXV-Br-luc than with WRvFire
and IHD-JvFire. The peak flux in the heads of the two VACV strains
occurred on days 7–8, while luminescence with CPXV-Br-luc was
still increasing on days 9–10 when the mice infected with 1000
and 100 PFU died; the peak occurred on day 16 in the mice
infected with 10 PFU. The course of CPXV spread in the chest
and abdomen was also much slower than with VACV.

Direct comparison of virus spread in CAST mice infected with 100 PFU
of WRvFire, IHD-JvFire, or CPXV-Br-luc

To directly compare spread of WRvFire, IHD-JvFire and CPXV-
Br-luc, we infected CAST mice with 100 PFU of each virus in the

same experiment. Mice infected with WRvFire or IHD-JvFire
rapidly lost weight with maximum loss between days 8 and 12
(data not shown). Three of the four mice infected with WRvFire
and two of the four mice infected with IHD-JvFire died between
days 7 and 10. Weight loss in CPXV-Br-luc-infected mice was not
observed until day 13 and three of the four mice died between
days 17 and 19, a week later than that seen in the WRvFire and
IHDJ-vFire-infected groups (data not shown). This delayed disease
of CPXV compared to VACV was reflected in the spread and
replication of virus shown in the quantitation of luminescence
signals (Fig. 9). Kinetics of WRvFire and IHD-JvFire replication was
similar to each other in the head, chest and abdomen. Although
the luminescence values in the chest and abdomen were higher
with IHD-J compared to WR, this difference did not reach

Fig. 5. Bioluminescence imaging of BALB/c mice infected with WRvFire. Three groups of five female BALB/c mice were infected intranasally with (A) 5�103 PFU,
(B) 5�104 PFU, or (C) 5�105 PFU of WRvFire. Representative images of the heads and ventral torsos of infected mice are shown with the day post-infection indicated above
the images. The yellow boxes outline the ROI used to calculate photon flux. Bioluminescence images of the head were obtained using an f/stop of 1, binning factor of 4, and an
acquisition time of 1 s, while images of the ventral torso were obtained with an f/stop of 1, binning factor of 8, and an acquisition time of 10 s. In panel A the color scale was
600–30,000; for panels B and C it was 4000–60,000. Quantification of bioluminescence signals, expressed as photon flux (photons/s/cm2/sr), is shown for the head (D), chest
(E), and abdomen (F). Data represent mean group values for photon flux. Bars represent SEM.
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statistical significance. The peak luminescence values in CPXV-Br-
luc were similar to that of WRvFire and IHD-JvFire at all three
sites; however, the times to reach the peak in CPXV-Br-luc were
delayed by 7–10 days in comparison to the other two viruses.

Infection of CAST and BALB/c mice with HSV-1

We compared the susceptibility of CAST and BALB/c mice to
HSV-1 in order to determine if the difference with orthopoxviruses
extended to an unrelated large, double stranded DNA virus.
Weight loss of CAST and BALB/c mice infected intranasally with
5�103–5�106 PFU are shown in Fig. 10A and B, respectively.
Although BALB/c mice lost more weight than did CAST mice at the

higher doses (po0.05 on days 2–5 and days 6–8 in animals
infected with 106 and 105 PFU, respectively), the percent survival
and time-to-death were similar in the two strains (Fig. 10C). LD50

values of 3�105 and 5�105 PFU were calculated for CAST and
BALB/c, respectively. Trigeminal ganglia were removed from all
surviving animals and viral DNA was quantified by qPCR. Although
yields were slightly higher in CAST mice than BALB/c mice
(Fig. 10E), the difference was not statistically significant.

Both strains of mice were also infected by the ocular route with
5�104–1�106 PFU of HSV-1. Survival was similar in the two
strains of mice (Fig. 10D) with LD50 values of 7.9�104 and
5.6�105 in CAST and BALB/c mice, respectively. In a subsequent
experiment, 15 mice from each strain were infected with a

Fig. 6. Bioluminescence imaging of CAST mice infected with IHD-JvFire. Three groups of four female CAST mice were infected intranasally with (A) 10 PFU, (B) 100 PFU, or
(C) 1000 PFU of IHDJ-vFire. The day post-infection onwhich images were obtained are indicated above each image. The yellow boxes outline the ROI used to calculate photon
flux. Bioluminescent images of the head were obtained using an f/stop of 1, binning factor of 4, and an acquisition time of 1 s. Images of the ventral torso were acquired using
an f/stop of 1, binning factor of 8, and an acquisition time of 10 s. The same color scale set between 600 and 60,000 was used for all three picture panels. ROI analysis was
performed on the (D) head, (E) chest, and (F) abdomen of infected mice to calculate total photon flux. Data represent mean group values for photon flux. Bars represent SEM
(the low photon flux values on day 9 was probably due to poor injection of substrate).
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sub-lethal dose of 5�104 PFU. On day 6 post-infection, mice were
euthanized, trigeminal ganglia removed, and viral DNA quantified.
As shown in Fig. 10F, similar amounts of DNA were found in CAST
and BALB/c mice.

Discussion

Most virus infection studies have been carried out with
classical inbred mouse strains that have limited genetic diversity
and are composed of a mosaic of genomes from Mus musculus
subspecies. There is greater diversity among wild-derived strains
that were captured from various parts of the world and inbred
separately. Indeed, in a screen of 38 inbred mouse strains, the 32
classical strains were all resistant to challenge with MPXV whereas
deaths occurred in three of the six wild-derived strains (Americo
et al., 2010). The most sensitive strain was CAST/EiJ, a subspecies of
Mus musculus castaneous that was derived from a small number
of founder mice captured in Thailand. We subsequently found that
CASA/RkJ, which was independently inbred from the same founder
population as CAST/EiJ, was also sensitive to MPXV (our unpub-
lished data). A literature search revealed only one other study of
the susceptibility of CAST or CASA to virus infection. The two
mouse strains were both resistant to the flaviviruses Murray Valley
encephalitis virus and yellow fever virus as measured by lethality

and virus replication following intracerebral challenge (Sangster
et al., 1993). The flavivirus resistance gene was ultimately mapped
to a member of the 2′–5′-oligoadenylate synthetase gene family
(Perelygin et al., 2002).

The purpose of the present investigation was to determine
whether the sensitivity of the CAST mouse was unique to MPXV or
extended to other orthopoxviruses and DNA virus families. The
classical inbred BALB/c mouse, which is commonly used for VACV
and CPXV studies, served for comparison. Using the intranasal
route, we found that the LD50 values of VACV WR and CPXV Br
were each 2 logs lower in CAST mice than BALB/c mice. Titration of
the organs of infected CAST mice indicated that the virus had
spread from the upper respiratory tract to lungs, brain and
abdominal organs. In contrast, BALB/c and CAST mice had a similar
susceptibility to intranasal or intraocular inoculation of HSV-1, an
unrelated DNA virus. Based on the data obtained with flaviviruses
and herpesviruses, there does not seem to be a general vulner-
ability of CAST mice to virus infection.

Live bioluminescence imaging provides a useful means of
following virus spread and recovery in individual animals
(Hutchens and Luker, 2007) and has been used with VACV
(Luker et al., 2005; Zaitseva et al., 2009) and CPXV (Goff et al.,
2007). Three strains of VACV – WR, IHD-J and a derivative of the
DryVax vaccine – were used because of their different properties
though all were derived from the New York City Department of
Health strain. Although WR and IHD-J are neurovirulent
strains that were passaged in mouse brains, the latter spreads
more rapidly in tissue culture due to more complete release of
progeny from the cell surface (Blasco et al., 1993; Payne, 1980).
Nevertheless, the kinetics of WR and IHD-J spread in mice was
similar and dose dependent. Following intranasal infection,
luminescence was first detected in the head, presumably the nasal
passages. Luminescence in the chest and abdomen appeared at the
same time suggesting independent spread to different
organs. Comparison of the photon flux of each virus indicated
that WR and IHD-J replicated to a similar extent in the head but
that the latter replicated to higher titers in the chest and
abdomen. Using a high virus inoculum, we followed the spread
of the vaccine strain of VACV. In this case, there was relatively less
spread to the chest and abdomen and the attenuated virus was
cleared more rapidly than either WR or IHD-J. The kinetics of
spread of CPXV-Br was dose dependent and luminescence
appeared first in the head and subsequently in the chest and
abdomen. CPXV spread was slower than that of the VACV strains,
even though the final photon flux was similar. It would be
interesting to extend these studies to variola virus, the agent
responsible for smallpox, as a small animal model for this human
virus does not presently exist.

The sensitivity of CAST mice to MPXV, VACV and CPXV
suggests that they either have a susceptibility gene or lack
one or more resistance factors that retard orthopoxvirus repli-
cation in classical inbred mouse strains. Preliminary studies
suggest the latter as the F1 generation of CAST X C57Bl/6 are
resistant to MPXV (our unpublished data). Several studies have
highlighted the importance of interferon-γ (Giavedoni et al.,
1992; Kohonen-Corish et al., 1990; Liu et al., 2004; Sroller et al.,
2001; Verardi et al., 2001) in protection against VACV in murine
models. Studies with MPXV suggested that an inadequate
interferon-γ response in the lung correlated with susceptibility
of CAST mice and that exogenous interferon-γ was protective
(Earl et al., 2012).

In conclusion, we have established a CAST mouse model for
studies of orthopoxvirus infection and spread that has advantages
over the use of classical inbred strains. The lethal dose of VACV
and CPXV is 100-fold less for CAST mice than for BALB/c mice and
the difference is even greater for MPXV.

Fig. 7. Bioluminescence imaging of CAST mice infected with Wyeth-vFire. Three
female CAST mice were infected intranasally with 107 PFU of Wyeth-vFire.
(A) Representative images of the heads and ventral torsos. The day post-infection
on which images were obtained is indicated above each image. The yellow boxes
outline the ROI used to calculate photon flux. Bioluminescent images of the head
were obtained using an f/stop of 1, binning factor of 4, and an acquisition time of
1 s. The same color scale set between 600 and 60,000 was used for all three panels
of pictures. Images of the ventral torso were acquired using an f/stop of 1, binning
factor of 8, and an acquisition time of 60 s. (B) ROI analysis was performed on the
head, chest, and abdomen of infected mice to calculate total photon flux. Data
represent mean group values for photon flux. Bars represent SEM.
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Materials and methods

Cells and viruses

BS-C-1 cells were maintained at 37 1C and 5% CO2 in modified
Eagle minimal essential medium (Quality Biologicals, Inc., Gaithers-
burg, MD) supplemented with 8% heat-inactivated fetal bovine serum,
10 U of penicillin/ml, 10 μg streptomycin/ml, and 2mM L-glutamine.

The following strains of VACV were used: WR (ATCC VR-1354) and
Wyeth New York City Board of Health from a Wyeth Laboratory
DryVax seed stock. CPXV-Br was obtained from ATCC (VR-302). The
following recombinant viruses expressing firefly LUC regulated by a

synthetic early-late promoter were described previously: WRvFire
(Townsley et al., 2006), IHD-JvFire and Wyeth-vFire (Bengali et al.,
2009), and CPXV-Br-luc (Bengali et al., 2012). Poxviruses were
prepared as previously described (Earl et al., 2001). HSV strain F was
prepared and titers were determined according to standard protocols.

Mouse strains

Female CAST/EiJ and BALB/c mice were obtained from Jackson
Laboratories (Bar Harbor, ME) and Taconic Biotechnology (Ger-
mantown, NY), respectively. Mice were maintained in small,
ventilated microisolator cages.

Fig. 8. Bioluminescence imaging of CAST mice infected with CPXV-Br-luc. Three groups of four female CAST mice were infected intranasally with CPXV-Br-luc. Representative
images of mice infected with (A) 10 PFU, (B) 100 PFU, or (C) 1000 PFU of CPXV-Br-luc are shown. The day post-infection on which luminescence was measured is indicated
above each image. The yellow boxes outline the ROI used to calculate photon flux. Bioluminescent images of the head were obtained using an f/stop of 1, binning factor of 4, and
an acquisition time of 1 s. Images of the ventral torso were acquired using an f/stop of 1, binning factor of 8, and an acquisition time of 30 s. Color scales were as follows: 10 PFU
inoculum dose, 100–4000 for the head and 100–60,000 for the torso; 100 and 1000 PFU input doses, 2000–60,000. ROI analysis was performed on the (D) head, (E) chest, and
(F) abdomen of infected mice to calculate total photon flux. Data represent mean group values for photon flux. Bars represent SEM.
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Virus inoculation of animals

On the day of infection, poxviruses were thawed, sonicated and
diluted in phosphate buffered saline containing 0.05% bovine serum

albumin. The titer of each dose was verified by plaque assay on BS-C-
1 cells. For HSV-1, titered, and frozen stocks were used. Intranasal
infections were performed by delivery of 10–20 ml of virus into one
nostril. For ocular infections, mice were anesthetized with Avertin
and virus was deposited on corneas following scarification. Mock-
infected animals were inoculated with a similar volume of diluent. In
all other experiments, animals were anesthetized by inhalation of
isoflurane prior to infection. Animals were weighed and observed five
to seven times per week for up to 5 weeks post-infection. Animals
that lost 30% of their initial starting weight or becamemoribund were
euthanized in accordance with NIAID Animals Care and Use guide-
lines. All experiments were performed in an ABSL-2 facility with
approval of the NIAID Animal Care and Use Committee.

Statistics

Statistical significance for weight loss, virus titer and luminescence
were determined with an unpaired, two-tailed t test. Kaplan–Meier
survival analysis was performed with GraphPad Prism software.

Bioluminescence imaging

Live imaging was performed with an IVIS 200 system (Perkin
Elmer, Waltham, MA). D-Luciferin (Perkin Elmer, Waltham, MA) was
injected intraperitoneally (150 μg/g body weight) 10 min prior to
imaging. Animals were maintained under isoflurane anesthesia for
the duration of the procedure. Animals were imaged daily on week-
days for up to 4 weeks. Luminescent images were collected for 1–60 s
with small or medium binning factors. Images of the torso were
collected with black paper covering the head to eliminate spill over
due to the high luminescence in the head. ROI were drawn around
specific anatomic sites and light emissionwas measured in photons/s/
cm2/sr (photon flux). In the photographs displayed, the color thresh-
olds for each site were constant throughout the time course. Acquisi-
tion and analysis were performed with Living Image Software.

Virus titration of infected organs

On the day of death, lung, liver, spleen, brain, kidney, nasal
turbinates and ovary were removed, placed in 2–3 ml of balanced
salt solution containing 0.1% bovine serum albumin and immediately
stored at �80 1C until further use. Organs were thawed and homo-
genized with a GLH-1 mechanical grinder equipped with a hard-
tissue probe (Omni International, Kennesaw, GA). Tissue homogenates
were sonicated for three 45 s intervals in tubes immersed in ice water
and then centrifuged for 20 s at 400� g in a 4515 microcentrifuge
(Eppendorf, Hauppauge, NY). Supernatants were aliquoted and virus
titers were determined by plaque assay on BS-C-1 cells.

VACV enzyme-linked immunosorbent assay (ELISA)

Briefly, 96-well plates were coated overnight with 106 PFU of
purified VACV, fixed with 2% paraformaldehyde for 10 min at 4 1C,
and blocked with phosphate-buffered saline containing 5% non-fat
dry milk and 0.2% Tween 20 for 1 h at 37 1C. Serum samples were
heat inactivated at 56 1C for 30 min. Two-fold serial dilutions were
prepared and the plates were incubated at 37 1C for 1 h. After
washing, plates were incubated successively with anti-mouse
IgG-peroxidase and then BM Blue substrate (Roche Applied Science,
Indianapolis, IN). Absorbance was measured at 370 and 492 nm using
a Spectramax M5 using Softmax Pro software (Molecular Devices).

qPCR for HSV-1 viral loads

Trigeminal ganglia were harvested from BALB/c and CAST mice
post ocular or intranasal infection as described (Liang et al., 2009).

Fig. 9. Kinetics of virus spread in CAST mice infected with WRvFire, IHD-JvFire, or
CPXV-Br-luc. Groups of four female CAST mice were infected intranasally with
100 PFU of WRvFire, IHD-JvFire, or CPXV-Br-luc at the same time and imaged for 4
weeks. ROI were drawn on the (A) head, (B) chest, and (C) abdomen of infected
mice and total photon flux was calculated. Data represent mean group values for
photon flux. Bars represent SEM.
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Viral DNA was quantified by qPCR using primers to HSV-1 gD
(gD-F: GTCAGCGAGGATAACCTGGGG; gD-R: GGGAGGGCGTACTTA-
CAGGAGC) and normalized to the level of cellular glyceraldehyde
3-phosphate dehydrogenase (GAPDH-F: CTGACGTGCCGCCTGGA-
GAAA; GAPDH-R: CCCGGCATCGAAGGTGGAAGAGT).
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