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Abstract: Starch is the final product of photosynthesis and the main storage form in plants. Studies
have shown that there is a close synergistic regulatory relationship between ABA signal transduction
and starch biosynthesis. In this study, we employed RNA sequencing (RNA-Seq) to investigate
transcriptomic changes of the Euryale ferox seeds treated by exogenous ABA. The differentially
expressed genes engaged in the “Starch and sucrose” and “TCA cycle” pathway. Furthermore, the
key transcription factor EfABI4 in ABA signaling pathway and the key genes of starch biosynthesis
(EfDBE1, EfSBE2, EfSS1, EfSS2, EfSS3, EfSS4 and EfGBSS1) were significantly up-regulated. Further,
the Euryale ferox plant was treated with ABA, it was found that the total starch content of Euryale ferox
seeds at different development stages was significantly higher than that of the control, and the key
genes of starch synthesis in Euryale ferox seeds were also significantly up-regulated. Finally, yeast
one-hybrid and dual luciferase assay proved that EfABI4 can promote the expression of EfSS1 by
directly binding to its promoter. Subcellular localization results showed that EfABI4 protein was
located at the nucleus and EfSS1 protein was located in the cytomembrane. These findings revealed
that ABA promotes starch synthesis and accumulation by mediating EfABI4 to directly promote
EfSS1 gene expression, which is helpful for understanding starch synthesis in seeds.

Keywords: ABA; starch; E. ferox (Euryale ferox Salisb.); transcriptome; EfABI4 transcription factor; EfSS1

1. Introduction

ABA (abscisic acid) is one of the five major plant hormones, and plays an important
role in regulating plant development [1]. ABA is closely related to the synthesis and
transportation of starch and carbohydrate metabolism in plants. It affects the transport
of assimilates by promoting the breakdown, absorption and unloading of sucrose from
plant tissues and ultimately promotes starch formation in the sink tissues [2–6]. During the
growth and development of gladiolus and tomato fruits, glucose and fructose contents were
positively correlated with endogenous ABA content [7,8]. In addition, there was a positive
correlation between ABA content and starch accumulation rate in seeds of wheat and barley
at the grain filling stage [9]. Furthermore, exogenous ABA treatment can increase the starch
content of banana [10], lotus [11], blueberry and peach [12,13]. However, the mechanism of
ABA regulation of starch synthesis is unclear.

Starch is the main carbohydrate formed by carbon fixation during photosynthesis and
plays an important physiological role in the whole growth and development of plants [14].
Starch is also a major component of human food and is widely used in wine, paper, adhe-
sives, textiles and biodegradable plastics [15]. Starch is divided into two types: amylose
and amylopectin. Amylose is linear and has no branching spiral structure; it is composed
of glucose units connected by α-1,4-glycosidic bonds. Amylopectin is a highly branched
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glucose polymer, consisting of 24 to 30 glucose residues connected end to end by α-1,4-
glycosidic bonds, with α-1,6-glycosidic bonds at the branch chain. It is the main component
of starch [16]. Starch biosynthesis is regulated by different hormonal signals, such as
abscisic acid (ABA), gibberellin (GA) and indole-3-acetic acid (IAA) [17–21]. The biosyn-
thesis of starch involves various enzymes, such as ADPG-pyrophosphorylase (AGPase),
starch synthase (SS), starch synthase (GBSS), starch branching enzyme (SBE) and starch
debranching enzyme (DBE) [22–25]. Many studies have shown that starch metabolism is
closely related to ABA in plants. In cassava, the rate of starch synthesis and accumulation
increased with the increase in ABA content [26]. In tomato, glucose and fructose contents
in peel, parenchyma and glial tissue were positively correlated with endogenous ABA
content [8]. In rice, ABA content in grains of large-grain rice varieties was higher than that
of small-grain rice varieties [27].

Abscisic acid insensitive 4 (ABI4) is a key transcription factor in ABA signaling.
ABI4 is mainly involved in regulating glucose metabolism and thus affecting starch
synthesis [28–31]. In Arabidopsis, the abi4 mutant has a glucose and fructose insensitive
phenotype [32]. ABI4 has also been shown to promote the synthesis of triacylglycerol
(TAG) [33]. ABI4 regulates the expression of starch synthesis-related genes APL3 and SBE2,
and starch degradation genes SEX1 and BMY8/BAM3, thus affecting the synthesis and ac-
cumulation of starch [34]. In addition, NnABI4 can activate and up-regulate the expression
of NnSS1, which promotes starch synthesis in Nelumbo nucifera [11]. Moreover, in maize
endosperm, overexpressed ZmABI4 can also up-regulate the expression of AGPL2, AGPLS4,
Sh2, SS1, GBSS1, SBE2a, SBE2b and PHOL genes encoding AGPase, thus increasing starch
content in maize endosperm [35].

Euryale ferox Salisb. (Nymphaeaceae) is an important characteristic aquatic vegetable
in China, with high economic value and medical value [36,37]. It is very healthy food, abun-
dant in nutritional and bioactive compounds such as carbohydrates, protein, flavonoids,
vitamins, minerals and polyphenols. It has high medicinal value, such as reducing blood
sugar, regulating blood fat, and anti-diabetic, anti-hyperlipidemic, and hepatoprotective
effects. Starch is the main storage substance of E. ferox seeds [38]. In several local varieties
of Euryale ferox, the starch content in seeds increases with the maturation of seeds, but the
amylopectin content and the ratio of amylose to amylopectin are significantly different
among varieties [39,40]. The content, composition and structure of Euryale ferox starch are
closely related to the quality of E. ferox seeds [41,42]. At present, EfSBE1 expression has
been proven to be related to the difference in amylopectin in different varieties of E. ferox
seeds, and EfSBE3 can regulate the synthesis of amylopectin [41,43]. However, related
studies on other types of starch synthase in Euryale ferox are still scarce. Therefore, studying
how the starch synthesis of E. ferox seeds forms is important. In this study, the regulation
mechanism of ABA on starch biosynthesis of E. ferox seeds was investigated.

To explore the physiological, biochemical, and molecular mechanisms underlying
ABA regulated starch and to clarify the influence of ABA on quality of starch from
Euryale ferox. We screened candidates for key differentially expressed genes after ABA
treatment of E. ferox seeds by transcriptome. We further proved the effect of ABA on
starch of Euryale ferox by treating the growth and development process of Euryale ferox with
exogenous ABA. Finally, we demonstrated the molecular regulatory mechanism using
Y1H assays, subcellular localization and dual luciferase assay. This study provides a solid
theoretical basis for ABA regulation of E. ferox seed starch synthesis.

2. Results
2.1. Transcriptome Analysis of ABA Treated on Euryale ferox Seeds

The Illumina Novaseq 6000 system was used to deeply sequence the total RNA
of six samples (ABA treated and control). In total, 264,860,112 high-quality reads were
obtained by sequencing, and 39.74 Gb of clean data were obtained by further quality
screening and detection (Figure S1). By comparing the raw counts of the ABA-treated and
control groups, 5102 genes with significant differential expression (p < 0.05 and Log2FC ≥ 1)
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were obtained. Among them, 2745 genes were up-regulated and 2345 genes were down-
regulated in the ABA treatment group, indicating that more genes responded positively to
ABA treatment (Figure S2).

In order to study the specific effects of exogenous ABA treatment on E. ferox seed,
differentially expressed genes (DEGs) were classified by GO function. “Vitamin binding
protein” and “pyruvate kinase activity” were enriched in “cell component”. “Carboxylic
acid biosynthesis”, “organic acid biosynthesis” and “fatty acid metabolism” were enriched
in “biological process”. “Catalytic activity” and “binding” were enriched in “molecular
function” (Figure 1A). These results suggest that the differentially expressed genes may
be involved in the starch biosynthesis process of E. ferox seeds. The KEGG analysis found
that the most of the up-regulated DEGs were significantly enriched in “Starch and sucrose
metabolism”, “Carbon metabolism”, “TCA cycle”, “Biosynthesis of amino acids”, “Phenyl-
propanoid biosynthesis” and “Galactose metabolism” (Figure 1B). The results of KEGG
enrichment analysis were consistent with those of GO functional enrichment.
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Figure 1. (A) GO enrichment of differentially expressed genes in Euryale ferox Salisb. (B) KEGG
enrichment of differentially expressed genes in Euryale ferox Salisb.

2.2. DEGs Related to Starch Biosynthesis

According to GO and KEGG enrichment analysis, the large number of markedly
regulated DEGs were significantly enriched in starch and sucrose metabolic pathways. The
four key enzymes of starch synthesis are GBSS, SBE, SS and DBE. Among them, EfGBSS1,
EfDBE1, EfSBE2, EfSS1, EfSS2 and EfSS4 were up-regulated after ABA treatment (Figure 2A).
Further exploration of differentially expressed genes in the starch synthesis pathway is
helpful to study the ABA regulatory mechanism of starch biosynthesis. At the same time,
we found that the relative expression level of EfABI4, a key ABA response gene, was
significantly higher than that of the control, indicating that the expression of EfABI4 gene
in E. ferox seeds was induced by exogenous ABA.

In order to verify the accuracy of RNA-seq results, the relative expression levels of
EfDBE1, EfGBSS1, EfSBE2, EfSS1, EfSS3, EfSS4, and EfABI4 were significantly up-regulated
by qRT-PCR (Figure 2B and Table S2). These results were consistent with the expression
level of differential genes in transcriptome results, indicating that the transcriptome analysis
results were reliable.
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Figure 2. (A): Differentially expressed gene analysis of the starch biosynthesis pathway in response
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2.3. ABA Treatment on Starch Biosynthesis during Euryale ferox Salisb Development

To further verify the transcriptome sequencing results, exogenous ABA was applied
to the leaves of Euryale ferox during growth and development, and then the total starch
content and the expression levels of key genes for starch synthesis were measured in E. ferox
seeds at different development stages. In this experiment, the principle of triple biological
repetition was strictly followed. Meanwhile, the same ecological environment conditions
were maintained between control plants and ABA-treated plants, and the experimental
arrangement was reasonable and rigorous. After exogenous ABA treatment, the contents
of total starch, amylose, and amylopectin in E. ferox seeds at different developmental
stages were higher than those in the control (Figure 3A–C and Tables S3–S5), especially
at 20–40 days after flowering (Figure 3D and Table S6). In addition, the ratio of amylose
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to amylopectin decreased gradually and significantly at 30 days after flowering. Then,
qPCR showed that after ABA treatment, the expression levels of EfABI4 gene were higher
than CK at different developmental stages, and the relative expression levels of starch
synthesis-related genes EfDBE1, EfGBSS1, EfSBE2, EfSS1, EfSS2, EfSS3 and EfSS4 were also
higher than CK, especially at 20 days after flowering (Figure 3E, Table S7). These results
are consistent with the transcriptome results. Whether ABA mediates starch synthesis in
E. ferox seeds by EfAB14 remains to be studied.
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Figure 3. (A): The effects of ABA on total starch content in E. ferox seeds. (B): Effects of ABA on
amylose synthesis in E. ferox seeds. (C): Effects of ABA on amylopectin synthesis in E. ferox seeds.
(D): Effect of ABA on amylose to amylopectin ratio in E. ferox seeds. (E): The relative expression
levels of EfABI4, EfDBE1, EfGBSS1, EfSBE2, EfSS1, EfSS2, EfSS3 and EfSS4 after ABA treatment
during Euryale ferox Salisb development. The ‘*’ or ‘**’ above the histogram indicated the statistical
significance at the level of 0.05 or 0.01 (p < 0.05; p < 0.01).
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2.4. EfAB14 Directly Promotes the Expression of EfSS1

To verify whether EfABI4 can directly regulate the expression of EfSS1, EfSS4 and
EfGBSS1, we conducted a yeast one-hybrid experiment. As shown in Figure 4A, EfABI4 can
bind to the promoter of EfSS1, indicating that EfABI4 can directly regulate the expression
of EfSS1. The regulation of EfAB14 on EfSS1 was studied by double luciferase method. The
results showed that the co-expression of EfABI4 and EfSS1 increased the relative lucdiferin
level in tobacco leaves by 1.44 times (Figure 4B and Table S8). Y1H and dual luciferase
assay confirmed that EfAB14 could bind the EfSS1 promoter and promote the expression of
EfSS1 in E. ferox seeds. In addition, subcellular localization results indicated that EfABI4
was located at the nucleus, and EfSS1 was located in the cytomembrane (Figure 4C).
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hybrid assays. (B): The relative FLUC/RLUC activities of EfSS1 promoters activated and repressed
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at 1. ** indicates a significant difference at p < 0.01. (C): Subcellular localization of EfSS1 and EfABI4
(EfSS1 and EfABI4 were inserted into the pCAMBIA1300-sGFP vector). Scale bars, 10 µm.

3. Discussion

As an important plant hormone, ABA regulates many physiological processes of
plant growth and development [44–46]. Previous studies have shown that ABA regulates
sucrose transport and metabolism by inducing transcription of related genes through signal
transduction into the nucleus [47]. ABA injections into strawberries could promote the
content of soluble sugar in fruit [46]. ABA can promote the long-distance transport of
sugar by enhancing phloem area and promoting the expression of some hexose transporter
genes [48]. Moreover, treatment of wheat and barley ears with low concentration of ABA
can promote assimilate transfer to grains [49]. Therefore, transcriptome sequencing was
performed on E. ferox seeds after ABA treatment and we found that starch and sugar
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metabolic pathways were enriched. The Euryale ferox plants were treated with ABA during
development, and total starch, amylose, amylopectin and expression of related genes in
E. ferox seeds also increased significantly. These results were consistent with previous
research results, but the specific regulation mechanism needs to be further explored.

ABI4, as a key transcription factor in ABA signaling, is associated with starch synthesis
in plants [50,51]. In previous studies, AtABI4 in Arabidopsis directly binds to CE1-like
elements in the promoter regions of SBE2.2 and APL3 genes, up-regulating the expression
of SBE2.2 and APL3, thereby increasing starch content in seeds [34]. In rice, the expression
of OsAPL3 gene is regulated by both sucrose and ABA levels [52]. ZmABI4 can up-regulate
the expression of ZmSS1 and ZmGBSS1 genes and increase the starch content in maize
endosperm [35]. In addition, it was recently reported that NnABI4 in Nelumbo nucifera
can directly bind to the promoter of NnSS1 and up-regulate its expression, ultimately
promoting starch synthesis in rhizomes [11]. AtABI4 drives the expression of downstream
genes by binding to the CE1-like motif element in the promoter region of the sugar response
gene, such as the large subunit ApL3 of ADP-glucose pyrophosphorylase and the starch
branch enzyme SBE2.2 in the starch synthesis pathway [53]. In our study, the promoter
of EfSS1 in E. ferox seeds contains CACCG, a coupling element of CE1. Y1H assay and
dual luciferase assay confirmed that EfABI4 could bind to the EfSS1 promoter and promote
the expression of EfSS1 (Figure S3). These results prove that EfAB14 plays a key role in
regulating the biosynthesis of starch from E. ferox seeds. Therefore, an important scientific
issue is to explore the specific regulatory mechanism of ABI4 on the anabolism of starch and
sugar, and further research is needed. At the same time, the expression levels of EfDBE1,
EfGBSS1, EfSBE2, EfSS1, EfSS2, EfSS3 and EfSS4 were also significantly up-regulated after
ABA treatment, which was consistent with the increasing trend of starch content in E. ferox
seeds. Therefore, the model of ABA mediating starch synthesis in E. ferox by EfAB14 was
constructed (Figure 5), but whether ABA also mediates starch synthesis in E. ferox by other
ABA response factors needs to be further explored.

Int. J. Mol. Sci. 2022, 23, 7598 8 of 12 
 

 

 
Figure 5. The model of ABA regulating starch biosynthesis in E. ferox seeds. 

4. Materials and Methods 
4.1. Plant Materials and ABA Treatment 

Euryale ferox ‘ZS_01’ was used as experimental material and planted in Yangzhou 
University Aquatic vegetable test base in summer 2021. Euryale ferox ‘ZS_01’ is grown in 
the open air under natural conditions (32°23′ N, 119°25′ E). E. ferox seeds were collected 
25 days after flowering, soaked in 100 mg/L ABA (Sheng Gong, Shanghai, China) solution, 
and sampled after soaking for 0 h and 18 h. They were quickly washed and placed in liquid 
nitrogen and refrigerated at −80 ℃ for use, with three biological replicates for each sample. 

In addition, after the Euryale ferox plants entered the reproductive growth stage, 50 
mL 5 mg/L ABA solution was applied to the leaves once every 7 days for 3 times in total 
(12 August 2021, 19 August 2021, 26 August 2021). E. ferox seed samples were collected at 
10, 20, 30 and 40 days after flowering. Three replicates were set for each treatment. The 
seeds were quickly frozen, made into powder, and stored at −80 ℃. 

4.2. RNA Extraction and Sequencing 
Total RNA was extracted from E. ferox seeds after ABA treatment using plant RNA 

extraction kit (Dalian Takara, Dalian, China). The RNA integrity of ABA treated seeds at 
0 h and 18 h was analyzed by agarose gel. After passing the quality inspection process, a 
cDNA library was constructed according to the steps of the cDNA library construction 
kit. After the library was constructed, the library was checked and sequenced using Illu-
mina Novaseq 6000 system after reaching the standard. The accuracy of subsequent anal-

Figure 5. The model of ABA regulating starch biosynthesis in E. ferox seeds.



Int. J. Mol. Sci. 2022, 23, 7598 8 of 12

4. Materials and Methods
4.1. Plant Materials and ABA Treatment

Euryale ferox ‘ZS_01’ was used as experimental material and planted in Yangzhou
University Aquatic vegetable test base in summer 2021. Euryale ferox ‘ZS_01’ is grown in
the open air under natural conditions (32◦23′ N, 119◦25′ E). E. ferox seeds were collected
25 days after flowering, soaked in 100 mg/L ABA (Sheng Gong, Shanghai, China) solution,
and sampled after soaking for 0 h and 18 h. They were quickly washed and placed in liquid
nitrogen and refrigerated at −80 °C for use, with three biological replicates for each sample.

In addition, after the Euryale ferox plants entered the reproductive growth stage, 50 mL
5 mg/L ABA solution was applied to the leaves once every 7 days for 3 times in total
(12 August 2021, 19 August 2021, 26 August 2021). E. ferox seed samples were collected at
10, 20, 30 and 40 days after flowering. Three replicates were set for each treatment. The
seeds were quickly frozen, made into powder, and stored at −80 °C.

4.2. RNA Extraction and Sequencing

Total RNA was extracted from E. ferox seeds after ABA treatment using plant RNA
extraction kit (Dalian Takara, Dalian, China). The RNA integrity of ABA treated seeds at
0 h and 18 h was analyzed by agarose gel. After passing the quality inspection process, a
cDNA library was constructed according to the steps of the cDNA library construction kit.
After the library was constructed, the library was checked and sequenced using Illumina
Novaseq 6000 system after reaching the standard. The accuracy of subsequent analysis was
positively correlated with the quality of reads, so raw reads obtained by sequencing needed
to be detected. In order to ensure high data quality, redundant, complex and low-quality
reads were screened and cut out, and the high-quality reads obtained were called clean
data. The filtered sequenced sequence was compared with the reference genome E. ferox.
Trinity software was used for a series of sequence assembly of high-quality sequencing
data, and long and high-quality transcripts were obtained for subsequent research and
analysis [54].

In order to obtain more comprehensive gene function information, we carried out
rigorous bioinformatics analysis on the obtained E. ferox Unigene, including differential
expression gene analysis and differential gene GO and KEGG enrichment analysis. After
differential gene expression analysis, GO enrichment analysis was performed to further
annotate the genes and gene products. Finally, Unigene obtained from E. ferox was com-
pared with KEGG, a database with genome deciphering function, for the convenience of
subsequent research and analysis.

4.3. Reverse Transcription-Quantitative PCR (RT-qPCR)

The extracted RNA was reverse transcribed into cDNA using HiScript®IIl RT Su-
perMixfor qPCR (Cat No.10911; Yeasen, Shanghai, China). Quantitative reverse tran-
scription polymerase chain reaction (QRT-PCR) was used to analyze the key genes of the
starch synthesis pathway in E. ferox seeds. The qRT-PCR reaction was 20 µL, including
10 µL 2 × ChamQ SYBR qPCR Master Mix (Vazyme Biotech, Co., Ltd.), 0.8 µL positive and
negative primer mixture, 1.0 µL cDNA template and 8.2 µL ddH2O, respectively. Primer
Premier 5.0 was used for Primer design. See Supplementary Table S1 for the gene specific
primer sequences. β-actin (EfUBQ5) gene was used as an internal gene expression control:
the gene was amplified with forward primer 5′-GTGAAGGCGAAGATCCAGGACAAG-3′

and reverse primer 5′-CCACGAAGGCGAAGCACAAGG-3′. Amplification was performed
on the CFX-96 Real-time PCR system (Bio-Rad, Hercules, CA, USA) using the following
real-time fluorescent quantitative PCR program: 95 °C for 30 s, 95 °C for 10 s and 60 °C for
30 s for a total of 40 cycles. The relative gene expression was calculated by 2−∆∆CT [55].
Three replicates were performed for each amplification reaction.

The photosynthetic parameters of leaves were measured for six consecutive days
on the second day after the first spray of exogenous ABA. The portable photosynthesis
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measurement system LI-6400XTP can simultaneously measure the leaf photosynthetic rate
(Pn), stomatal conductance, and transpiration rate (Ts).

4.4. Determination of Starch Content in ABA Treated Leaves

Fresh E. ferox seeds were ground with a mortar. The total starch content of 3 mg
sample, amylopectin content of 0.005 g sample and amylose content of 0.01 g sample
were determined by visible spectrophotometry. A Solarbio Detection Kit (Beijing Solarbio
Science & Technology Co., Ltd.) was used to determine total starch, amylose and amy-
lopectin contents. Starch content (mg/g) = 1.351X/0.003 × 1.11, X = (∆Adetermination
+ 0.0756)/4.9517, ∆A is ∆A determination = (A determination-A blank) − (A’ determina-
tion -A’ blank); Amylose content (mg/g) = 2 × ∆A determination/∆A standard/0.001;
Amylopectin content (mg/g) = X × 5/0.005, X = (∆Adetermination + 0.0006)/0.7564. Each
measurement was repeated three times.

4.5. Y1H Assays

The full-length CDS of EfABI4 was inserted into pGADT7 (Shanghai Oebiotech, Shang-
hai, China) to generate the AD-EfABI4 structure. The EfSS1 promoter fragment was cloned
into pAbAi (Shanghai Oebiotech, Shanghai, China) vector to generate pAbAi-EfSS1, which
was linearized by BstBI (Dalian Takara, Dalian, China) and then transformed into Y1HGold
yeast strain (Shanghai Oebiotech, Shanghai, China). The transformed cells were grown
in the SD/-Ura plate for 3 days. After inhibiting the self-activation of the EfSS1 promoter
with Aureobasidin A (Dalian Takara, Dalian, China), the prey ABI4 was transferred to
the Y1HGold yeast (Shanghai Oebiotech, Shanghai, China) containing the EfSS1 promoter.
Subsequently, the yeast was spread on the SD/−Leu +AbA100 plate and allowed to stand
and cultivate for 3–6 days.

4.6. Subcellular Localization

The encoding sequences of EfABI4 and EfSS1 were cloned into pCAMBIA1300-GFP by
SacI and XbaI (Dalian Takara, Dalian, China) digestion sites (pSuper: GFP-EfABI4, GFP-
EfSS1). The plasmid was transformed into Agrobacterium tumefaciens GV3101 and grown
under appropriate antibiotics for subcellular localization analysis. Agrobacterium-mediated
transient expression in 4-week-old Nicotiana benthamiana leaves was studied by syringe
osmosis. After 72 h of dark growth, the GFP fluorescence of the samples was observed
using a confocal laser scanning microscope (Zeiss, Jena, Germany). The primers are listed
in Supplementary Table S1.

4.7. Transient Dual-Luciferase Detection

To further verify the binding activity of EfABI4 protein and EfSS1 promoter, double
luciferase assay was performed. Firstly, the recombinant plasmids EfABI4-pGreenII 62-SK
and proEfSS1-pGreenII 0800-LUC were transferred into A. tumefaciens GV3101 strain. Sec-
ondly, the bacteria were resuspended with the infection solution (100 mM Acetosyringone,
0.5 M MES (PH5.6) and 10 mM MgCl2) until the OD600 value was 1.0, and the bacterial
solution containing EfABI4-pGreenII 62-SK and the bacterial solution proEfSS1-pGreenII
0800-LUC were mixed in a ratio of 1:1, and then left to stand for 3 h. Then, the tobacco
(Nicotiana benthamiana) was injected. According to the fluorescence value measured by the
double reporting system, the fluorescence value of the target gene plasmid/the fluorescence
value of the internal reference plasmid (i.e., F/R value) was calculated, and the ratio of the
target gene plasmid to the control group and the standard error were calculated and the
histogram was made.

5. Conclusions

In conclusion, we identified the expression profiles of a number of differentially
expressed key genes, including EfABI4, EfDBE1, EfGBSS1, EfSBE2, EfSS1, EfSS2, EfSS3 and
EfSS4, which were highly correlated with the expression profiles of key starch biosynthesis-
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related genes. Moreover, we demonstrated that the EfABI4 transcription factor can directly
bind to the EfSS1 promoter, up-regulate the expression of EfSS1 in E. ferox seeds, and
promote the biosynthesis of starch in E. ferox seeds. This provides a practical basis for
understanding the molecular regulatory network between ABA signal transduction and
starch biosynthesis.
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