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Topological analog signal processing
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Analog signal processors have attracted a tremendous amount of attention recently, as they
potentially offer much faster operation and lower power consumption than their digital
versions. Yet, they are not preferable for large scale applications due to the considerable
observational errors caused by their excessive sensitivity to environmental and structural
variations. Here, we demonstrate both theoretically and experimentally the unique relevance
of topological insulators for alleviating the unreliability of analog signal processors. In par-
ticular, we achieve an important signal processing task, namely resolution of linear differential
equations, in an analog system that is protected by topology against large levels of disorder
and geometrical perturbations. We believe that our strategy opens up large perspectives for a
new generation of robust all-optical analog signal processors, which can now not only per-
form ultrafast, high-throughput, and power efficient signal processing tasks, but also compete
with their digital counterparts in terms of reliability and flexibility.
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replaced analog electronic and mechanical computers for
carrying out computational tasks. Such processors not only
offer high-speed operation, but also ensure reliability and flex-
ibility of the processing!, a property which has established DSPs as
perfect candidates for realizing large-scale computational systems.

While providing high-speed and reliable operation, DSPs also
suffer from several fundamental drawbacks such as high-power
consumption, costly analog to digital converters, and drastic
performance degradation at high frequencies2. Considering these
limitations, it is neither reasonable nor affordable to use DSPs for
performing specific, simple computational tasks such as differ-
entiation or integration, equation solving, matrix inversion, edge
detection and image processing. Therefore, the old idea of all-
analog computing and signal processing has been recently
revived, driven by the development of cost-efficient nanofabri-
cation techniques and promising related advances in ultrafast
optics. In their pioneer work, Silva et al.3 theoretically demon-
strated the possibility of carrying out simple computational tasks
such as convolution, differentiation and integration, making use
of optical waves as they propagate through engineered metama-
terial layers. By going beyond the aforementioned restrictions of
DSPs, such a wave-based computational scheme then inspired
numerous exciting applications including analog computing?-1°,
signal processing, equation solving!® 17, optical image proces-
sing!8-21, optical memories??, and photonic neural networks?>.
Not only are such types of analog signal processors (ASPs) real
time and ultrafast due to their wave-based nature, but also they
offer low power consumption and high-throughput operation as
they are free of analog/digital conversion steps. In addition, they
allow the unique possibility of carrying out different computa-
tional tasks in parallel, thereby significantly reducing the total
processing time24-30,

Despite their advantageous properties, ASPs still suffer from
one important limitation compared to DSPs, which severely
hinders their applicability for large-scale applications: while
repeating the same operation always gives rise to the same result
when using DSPs (which is enabled by available error-finding
algorithms and protocols in digital systems), analog signal pro-
cessing is often accompanied with considerable observational
error caused by the extreme sensitivity of ASPs to changes in
environmental and structural parameters3!.

F or a few decades, digital signal processors (DSPs) have widely
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Here, we demonstrate the possibility of drastically enhancing
the reliability of ASPs by leveraging the unique immunity of
topological insulators32-47 against imperfections, a much-sought
feature which has established itself as a new paradigm for rea-
lizing a large variety of reliable devices such as lasers*$, mod-
ulators?’, and lenses®®. More specifically, we demonstrate a
topological wave-based analog system that can solve linear dif-
ferential equations of arbitrary order in time-domain at the speed
of the wave and prove its strong immunity against geometrical
flaws and environmental changes. Our findings provide exciting
perspectives for a new generation of ultrafast, high-throughput,
and highly reliable analog computing systems and signal
processors.

Results

Topological analog equation solver. To illustrate the core idea of
our proposal, let us consider an important signal processing task,
namely the resolution of a first-order linear differential equation
with a non-zero arbitrary forcing g(t) (below, we will generalize
the concept to differential equations of higher order). The goal is
to design a two-port wave system that, regardless of the specific
form of g(f) sent at the input, outputs a signal f(t) that would be
the solution of a differential equation f (£)+af(t) = Bg(t), where «
and f are real coefficients. To this aim, one could consider a
conventional resonator created by, for example, a one-
dimensional photonic band gap material with a defect in the
middle (Fig. la). According to coupled-mode theory, the trans-
mission coefficient through such resonator near its resonance
frequency f; is given by>!

A !
AR e W

where we have used the time harmonic convention exp(j27ft), A
is an arbitrary constant, and Q is the quality factor of the reso-
nance. Now, if we consider as input signal the source term g(#)
modulated at the carrier frequency fp, ie. g(t) = g(t)cos(2mfyt),
its relationship with the output f(t) = f(f)cos(2nf,t) can be
obtained via inverse Fourier transform of the transfer function
(TF) H(f) of Eq. 1, leading to the desired first-order differential
equation f(#)+af(t) = Bg(t), with a=nfy/Q and S =2nA. This
analysis illustrates the possibility to realize an analog equation

H(f) =

With disorder

Fig. 1 Robust topological analog signal processing. We consider the possibility to process time-domain wave signals by engineering their transfer function
as they propagate through an engineered solver. a A first-order differential equation solver is constructed from resonant tunneling through a crystal defect.
The output signal is the solution of the differential equation associated with the transfer function of the system. b In the presence of geometrical defects,
like slight position shifts, the signal processing functionality achieved with the trivial equation solver of panel (a) is completely destroyed. € To make the
signal processing robust, we propose instead to build the target transfer function of the system from resonant tunneling through a topological edge mode.
d Markedly different from the trivial equation solver of panels (a) and (b), the output of the topological solver is left totally unaffected by the disorder
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solver by engineering a resonator and measuring the envelope of
its response to the known input signal g(#) (modulated at the
resonance frequency). From this example, the main advantages of
analog computation over digital one are evident: there is no need
for converting the input signal g(¢) to a digital stream (and vice
versa), and the computation is being carried out in real time with
no limitation at large values of f,. However, this simplicity comes
with a severe drawback: when adding geometrical imperfections
to the system (Fig. 1b), the transfer function can be significantly
disturbed by the creation of disorder-induced modes, shifting its
spectrum and introducing new resonating peaks. This leads to an
output signal which has nothing to do with the correct solution.

What we propose is instead to form the same transfer function,
but out of resonant transmission through a topological edge
mode, whose existence is guaranteed by the nontrivial topologies
of the surrounding bulk insulators. Figure 1lc depicts such a
solution based on two insulating lattices with supposedly different
topologies, inspired by the Su—Schrieffer—Heeger (SSH)
scheme32. Like the previous case, when the input signal g(f)
(modulated at fy) is applied to such system, the output signal
envelope f(t) is equal to the solution of the desired differential
equation. However, the topological equation solver can be
immune to disorder, since the presence of a single mid-gap
interface mode can be guaranteed by bulk-edge correspondence?
(Fig. 1d).

To test this idea on a realistic system, we designed a topological
first-order linear differential equation solver for airborne audible
acoustic signals (see Supplementary Note 1 for an electromagnetic
equivalent). The topological ASP system is based on sonic
topological insulators inspired by the SSH scheme, obtained from
solid cylinders placed in a pipe of square cross-section, as in
Fig. 1c, d (see Methods for geometrical details and topological
invariant calculations). The topological interface is designed to
provide a resonant mode at fy =2254Hz, with A=1 and Q=
0.5fp, aiming at solving the differential equation f()+27nf(t) =
2mg(t). The transfer function H(f) of the system, calculated by
three-dimensional full-wave finite-element calculations in the
frequency domain, is compared to the target transfer function in
Fig. 2a (green and dashed curves in the middle inset), revealing
their perfect agreement. Now, consider an input signal g(¢) with
an arbitrarily chosen time envelope g(f) to be injected into the
waveguide (Fig. 2a, left). The corresponding output signal f(¢) is
then calculated by convoluting g(#) with the impulse response of
the system, obtained from H(f) (we have also verified our results
by direct simulations in the time domain, see Supplementary
Note 2). Comparing the envelope of the resulting output signal f
(t) (blue line) to the exact solution of the intended differential
equation (dashed line) reveals that the topological ASP system is
indeed solving the equation as sound propagates through the
system.

Next, we add some disorder to our equation solver by
randomly shifting the position of the cylinders (average position
shift is 18% of lattice period in any direction) and repeat the same
procedure in the bottom panel of Fig. 2a. We notice that, despite
the relatively large level of disorder, the transfer function H(f) has
been left almost unaffected. Hence, the corresponding output
signal f(t) still corresponds to the solution of the desired
differential equation, confirming the high robustness of the
proposed equation solver. To demonstrate that this property is
indeed linked to the topological nature of the system, we repeat
this analysis for a topologically trivial equation solver, which is
based on a resonance induced by defect-tunneling through a
Bragg band gap. As confirmed in Fig. 2b, such resonating system
is also capable of solving the first-order differential equation. The
transfer function H(f), and the output signal g(¢) is however

severely affected when imparting similar imperfections to the
sample (position shifts have the same magnitude as that of
topological case). This clearly affirms the superiority of
topological ASPs over trivial ones. It should be pointed out that
the choice of the input signal envelope g(t) is arbitrary here and
any other temporal form can be considered for g(f) (see
Supplementary Note 3).

Symmetry protection of the topological equation solver. Since
one-dimensional topological phases are symmetry protected,
these numerical results raise an important question: what is the
underlying symmetry of the proposed system that protects its
edge modes? In regular tight-binding SSH chains, made of eva-
nescently coupled identical resonators with detuned hoppings K
and J (Fig. 3a, top panel), the mid-gap edge mode occurring at
the topological boundary is protected by chiral symmetry, and a
transfer function based on tunneling through this edge mode is
robust to disorder in the hoppings, as long as they are weak
enough not to close the band gap. However, transmission is not
robust to even small levels of on-site disorder, which breaks chiral
symmetry. This is exemplified in Fig. 3a-c. Figure 3a shows the
mid-gap spectral transmission resonance associated with a per-
fectly ordered sample. Figure 3b shows the transfer function
immunity to disorder in the couplings. Finally, Fig. 3c shows the
large sensitivity of the transmission peak to arbitrarily small
disorder in the resonance frequencies, which breaks the chiral
symmetry. Our multiple scattering system, albeit not based on
evanescent coupling, behaves similarly. The transmission peak of
the ordered sample (Fig. 3d) survives disorder shifts that do not
close the band gap (Fig. 3e), but not disorder in the obstacle radii
(Fig. 3f). These numerical results, obtained from full-wave finite-
elements simulations, are fully consistent with our topological
theory, which defines topological invariants on each bulk band
using the unit cell transfer matrix My, that maps the Brillouin
circle to a subspace of SU(1,1) matrices (see Methods).
Remarkably, the topological invariants can only be defined under
the symmetry M2, = 1, which holds for position disorder, but
not for radii disorder, as we prove in Methods.

Experimental demonstration. Based on these findings we have
built a prototype of the topological equation solver (Fig. 4a, top
signal path). We first perform a frequency-domain measurement
to obtain the transfer function of the system, H(f), by exciting the
waveguide with pseudo-random noise and recording the trans-
mitted pressure with a microphone. The graph in the middle inset
represents the magnitude of the measured transfer function
(green curve) compared to what we get from the numerical
simulations (gray curve). As observed, the transfer function has a
peak near the resonance frequency f, of the topological edge
mode, corresponding to the resonance parameters A = 0.87and
Q = 0.03fy, or differential equation parameters a = 2.7, § = 107/
3. We next switch to a direct time-domain experiment and inject
the same arbitrary input signal g(¢) as in Fig. 2 into the waveguide
(see Supplementary Note 4 for measurements with other types of
input signals). Comparing the measured transmitted pressure f (t)
(blue line) with the exact solution of the corresponding differ-
ential equation (dashed line) confirms the proper functioning of
the equation solver. To probe its stability, we then randomly
move the cylindrical scatterers and repeat the same procedure
(Fig. 4a, bottom signal path). Remarkably, the topological ASP is
still perfectly functional despite these large shifts. This exceptional
property is strikingly highlighted when we compare the measured
output signal from the topological equation solver with that
measured at the output of its trivial counterpart in the presence of
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Fig. 2 Numerical demonstration of the topological differential equation. We compare a topological (a) and a trivial (b) acoustic signal processors designed
such that the envelope of their output f(t) is the solution of the differential equation f'(t) + af(t) = fg(t), where g(t) is envelope of the input signal g(t)
modulated with carrier frequency fo. @ An arbitrarily chosen signal envelope g(t) is applied to the input of the topological equation solver. The transfer
function of the system H(f) (green line), which reproduces exactly the mathematical target defined by the equation (dashed line), is not affected by the
presence of disorder (bottom signal path). As a result, the envelope of the output signal f(t) matches exactly the solution even in the presence of disorder.
b Conversely, in a topologically trivial processor, the presence of disorder-induced localized states creates spurious peaks and shifts the transfer function of
the system, which makes it deviate from the targeted transfer function (dashed line). The parameters of the linear differential equation are chosen to be
a=f=2nx, and the position disorder strength is 18% of the lattice period in both cases

disorder of similar strength (Fig. 4b). Very different from the
topological processor, the signal coming out of the trivial pro-
cessor is completely distorted, which clearly validates the superior
robustness of topological ASP systems. Note that a large range of
values for the parameter « and § can be targeted using various
means, like changing the lattice periodicity, number of unit cells,
and adding losses (see Supplementary Note 5).

To further extend the reach of the approach, we investigate the
possibility of solving linear differential equations of higher order.
Suppose, for instance, that we want to solve the second-order
differential equation f'(t) + 6nf'(f) + 87mf(t) = 4n?g(t), which
corresponds to the transfer function H(f) = 1/(2 + 3j(f — fo) — (f
— fo)?). Using partial fraction decomposition, one can then write
H(f) = Hy(f) — Hy(f), with Hy(f) = 1/(1 + j(f — f,)) and Hy(f) = 1/
(2 + j(f — fo)). It follows that in order to solve the desired second-
order differential equation, we can realize two (first-order)
equation solvers with the transfer functions H;(f) and H,(f) and
subtract their output signals (see Fig. 5a). This is accomplished in
an analog way in Fig. 5b, where H;(f) and H,(f) are realized using
two different topological first-order systems with tailored
dissipation losses. The analog subtraction operation is realized
with an acoustic rat-race coupler. Full-wave simulations involving
the full geometry with the two-pipes and the rat-race coupler
confirm that H(f) = H,(f) — Hy(f) is properly implemented.
Hence, when an input signal, g(¢), say for example with a
Gaussian envelope, is applied to the system, the envelope f(t) of
the output signal follows the exact solution of the target
differential equation. This is confirmed by direct finite difference
time domain (FDTD) simulations.

The experimental demonstration of topological second-order
differential equation solving is provided in Fig. 5c. We designed
two first-order differential equation solvers connected to each
other via our 3D-printed acoustic rat-race coupler. The two first-

order ODE solvers are tuned to solve the second-order ODE by
adjusting the level of transmission losses using sound absorbing
melamine foam. We then simultaneously excited both waveguides
with the input signal g(¢), and measured the output f(¢). As seen
in the figure, excellent agreement exists between the measured
output signal envelope f(t) (solid blue line) and the expected exact
solution of the corresponding second-order differential equation
(dashed line). This technique can easily be extended to the
resolution of differential equations of arbitrary order (see
Supplementary Note 6). It is worthy to mention further that, as
an alternative route to what we proposed here, one can realize
higher order and more complex transfer functions by cascading
two or more SSH chains, allowing their topological edge modes to
couple to each other, as we demonstrate in Supplementary
Note 7.

Discussion

The robustness of the proposed topological ASPs constitutes a
key step towards a new generation of all-acoustic or all-optical
ASPs, which not only can be much faster and simpler than DSPs,
but also can compete with them in terms of reliability and flex-
ibility. Our proposed strategy also opens new perspectives for
further explorations that merge the field of topological insulators
with linear system theory. For instance, while we focused here on
time-domain signal processing (solving differential equations in
real time), performing topological operation in other domains
such as space or frequency (i.e. topological filters) seems equally
promising and straightforward from our findings (an example is
given in Supplementary Note 8). Another interesting direction
would be to translate the concept to optics, where general design
tools such as optical circuits and metatronics®? can enable an easy
implementation of the topological concept proposed here, and

4 | (2019)10:2058 | https://doi.org/10.1038/s41467-019-10086-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a No disorder b Coupling disorder c On-site disorder
CEOOEOO® PEOOOD GOCOEOE®
1 0.05
c
Qo
]
2 3
€05 » 0.02
@ o
o
'_
0 - 0
15 2 25 1.98 2 2.02 1.98 2 2.02
Frequency (kHz) Frequency (kHz) Frequency (kHz)
d No disorder e Position disorder f Radii disorder
-00 00 © 00 0 0900090 @0 O 0900 ° -0 0O
]
1 0.24 0.28
c
o
2 > 3 014
é 0.5 8 0.12 8
o !
", 0 i Pole 0 Y: Pole
2.2 2.25 2.3 2.15 2.25 2.35 2.15 2.25 2.35

Frequency (kHz) Frequency (kHz)

Frequency (kHz)

Fig. 3 Effect of various defect types on the topological equation solver. a A topological interface made from tight-binding SSH chains (top), consisting of
resonators with resonance frequency wg coupled to each other via detuned hopping amplitudes K and J > K, supports an edge mode protected by chirality.
The transmission spectrum of the chain (bottom) shows a mid-gap resonance, which corresponds to the topological edge mode. b Some disorder is added
to the hopping amplitudes of the system (top), which preserve chiral symmetry. The bottom panel demonstrates the robustness of the transmission peak
(averaged over 20 realizations of disorder) as the disorder strength (DS) is increased. ¢ Same as panel (b) except that the disorder is applied to the on-site
potentials of the chain, hereby breaking chiral symmetry. The transmission peak is sensitive to arbitrarily weak disorder. d—f Same as (a—c) but for the
proposed acoustic equation solver. The resonance line-shape of the edge mode is robust to the position movement (normalized to the lattice constant) of
the rods inside the waveguide (panel e), which does not break the symmetry M2, = 1 (see Methods). In contrast, detuning the radii of the obstacles breaks

cell ™

this property, and causes degradation in the performance of the equation solver (panel f)

facilitate the design and optimization of topological ASPs, so that
they perform more complex signal processing tasks, or so that
they become more robust to certain types of defects instead of

must be unitary. We can therefore parametrize them very generally as

others (immunity engineering). Alternatively, one may think of
generalizing the concept to two-dimensional topological systems
protected by time-reversal symmetry, which offer immunity
against a broader range of defects. Finally, we envision that the
coupling between topological ASPs systems and nonlinearities
may lead to exciting venues for large-scale neural network sys-
tems with robust processing capabilities.

Methods

Bloch eigenproblem. The bulk crystal is one-dimensional with lattice constant a
and two obstacles per unit cell. We model it and define its topology using the
transfer matrix My of a unit cell. We start by defining the two scattering matrices
S1 and S,, as the far-field scattering matrices of each obstacle when being alone in
the monomode waveguide. These matrices relate the outgoing complex signals on
the left (L) and right (R) sides of the scatterers by and by to the incident ones, ay,

and ag:
bL,i ai
( bR’i > N Si < R, > ' (2)

Note that for now we do not make the assumption that the two matrices are equal:
for instance, the cylinders could have different cross-sections, or be shifted with
respect to each other, etc. These matrices also usually depend on the angular
frequency w. Assuming conservation of energy during the scattering process, they

e'¥1cost, e'*1sinf;
S, = o v o | (3)
—e “isind, '™ e %1cost, €
e'%2cosb, e'*sinf,
S, = PG ) o | (4)
—e 2sinf,e' e '%2cos,e'

where the frequency-dependent angles 6, 5, ; 5, ¢, and @, , are unique once we
fix the reference plane, here at the central position of the scatterers. Assuming
reciprocity (S,; = S12), we must have 2a; , — ®;, = 71, which restricts us to three
parameters per scattering matrix, allowing to write:

%1 cosf, €sinf, 5)
1= i, o i o, |

e%sing,  —e %1 cosh, e

€%2cos0), €*2sinf, ©)
, = S . . .

e%sind, —e ?2cosf,e?

One can then derive the associated transfer matrices M; and M,, defined as
by ap;
() n(2) o
agi Li

el e 91 cosf)
M. — sinf, sinf, (8)
1 €91 e cosf), e~ ’

and obtains

sin, sin,
) e 922 cosh,
M. — sinf, sinf, (9)
2 €91 e "2 cosfl, ) :
sin, sin,
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Fig. 4 Experimental demonstration of the topological equation solver. The acoustic waveguide is a square transparent tube and the scatterers are made
from black Nylon rods. As in our numerical investigations of Fig. 2, we compare the trivial signal processors in terms of robustness to position defects. A
frequency domain measurement allows us to extract the transfer function H(f) (green line), which we compare to the ideal target (dashed line) and

simulation (gray). An additional measurement then performed in time domain by directly sending an input signal with envelope g(t) into the system, and
recording the coda with envelope f(t) at the output. a The topological equation solver is indeed found to be immune to the shits in rods position. b Very
differently, the trivial equation solver is severely affected. The parameters of the linear differential equation are chosen to be a = 2.7z, f=10x/3, and the

position disorder has the same strength in both cases
If the two scatterers are separated by a distance d in a unit cell of lattice constant a,

the total transfer matrix of the unit cell M is the product:

Moy = MaaM, MM Mo

iwl
ec 0

ML = ( _iwL ) I
0 e«

where L = d, %1, and c is the phase velocity. One obtains, after taking the matrix

(10)

with

(1)

product,
M (w) M (w
My (@) = n(@) M (@) (12)
My (0) My (w)
with
M, (0) = €@ %) csch) csch, + e (91=02) il “@)coth cotd,,  (13)
M, (w) = — e =% c5eh), coth, — e e+ m) coth), csch, . (14)

We use the notation z* to denote the complex conjugate of z. Noting |y) = [a, b]7,
with a and b being the forward and backward complex field amplitudes at the
entrance of the unit cell, the application of Bloch theorem yields the following
eigenvalue problem,

M (@)|y) = e™|y) (15)

which we call the Bloch eigenproblem of the crystal. Note the nontrivial depen-
dence of Mce(w) on w. The most straightforward use of the above equation is the
following way: for all values of w, one can diagonalize M. (w), and get two
opposite values +kp(w) of the Bloch wavenumber in the first Brillouin zone, and
resolve the band structure. Note that My is not unitary and is non-Hermitian,
meaning that in general, the values +kp(w) are complex, allowing in principle for an
infinite number of bands and bandgaps. Note further the difference with the
standard tight-binding SSH model, which leads to a Hermitian eigenvalue problem
that maps the Brillouin circle into the space of SU(2) matrices, and a clear topo-
logical classification of chiral symmetric systems via the winding number. Here,
consistent with time-reversal symmetry>* M_y(w) € SU(1,1), a group of non-
Hermitian matrices®>. SU(1,1) Hamiltonians are found, for instance, in PT-
symmetric extensions of the SSH tight-binding model°® where non-Hermiticity of

the Hamiltonian originates from the absence of energy conservation. Here, M is
not a Hamiltonian, in the sense that its eigenvalues are not related to w, but to kg,
and the pseudo anti-Hermiticity of M (crzMieHaZ = —M_y) is related to time-
reversal symmetry. In Supplementary Fig. 11 we represent the band structure
obtained from the transfer matrix approach, and compare it with the one obtained
directly from full-wave simulations of the unit cell subjected to periodic boundary
conditions (FEM method). To solve the transfer matrix eigenvalue problem, the
parameters 0, 5, & 5, and @, ,, which depend on frequency, were extracted from
FEM scattering simulations of a single obstacle in a waveguide. The distance
between the two scatterers is taken to be d = § — e, with e, =2.8 cm (“trivial”
case) and a = 23 cm. The rod diameter is 3.5 cm and the width of the waveguide is
7 cm. The agreement between the two approaches validates the accuracy of the
multiple scattering model, in particular the underlying assumption of no near-field
interactions between the obstacles in the crystal.

Properties of the unit cell transfer matrix. To define the topology of the system
in the next section, we first need to establish a few key properties of the unit cell
transfer matrix. We start with general properties, before moving to more specific
properties on a band or at degenerate points of the band structure.

As a direct consequence of time-reversal symmetry>4, the transfer matrix of the
system M. belongs to the group SU(1,1) of matrices of the form

a B
Moy = (/3 lx*) (16)
which is parametrized using the Pauli matrices as
Mcell = Or0y +ﬁRo-x +ﬁ10y + ialo-z' (17)

Its eigenvalues, given by A, = ag +iy/a? — B2 — 7 are real when a?<|B|*, and

complex otherwise. These eigenvalues are degenerate under the condition
of — B2 — B} =0, i.e. when the parameters B, ; and a; belong to a double cone in
the (Br, B1» a1) space. This cone is represented in the bottom panels of Fig. 6. At the
tip of the cone, one has g = ff; = &; = 0, meaning that M reduces to M. =
AR0p.

On a band, the matrix M has a special form. Indeed, the Bloch eigenproblem
implies that ap +iy/a? — |B|> = €/%s4, from which follows that

ag = cos(kga)

(18)
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Fig. 5 Robust resolution of a second-order differential equation. a The second-order transfer function associated with the resolution of the equation f"(t) +
67f (t) + 872f(t) = 4n2g(t) can be achieved by proper subtraction of two first-order transfer functions. b Implementation of the scheme in panel (a) with
two topological first-order differentiators. The signal subtraction is realized with a rat-race coupler (circular component connecting the two systems). The
bottom panels represent full-wave numerical simulations of the complete 3D structure in the case of a Gaussian pulse input, demonstrating that the
targeted signal processing task is indeed performed by the system. ¢ Experimental realization of the second-order differential equation solver. The
measured output signal envelope (f(t), purple lines) is found to be in perfect agreement with both the numerical simulation (gray) and with the exact
solution of the corresponding second-order differential equation (dashed line)

and
o= 1+ |8 (19)

implying ? + o2 = 1+ |B[>, which is equivalent to a} = sin®(kza) + ||, or

a; = +1/sin?(kga) + |BI>. (20)
On a band, we therefore have
cos(kga) +iy/sin®(kga) + B> B+
Mg =
B cos(kga) F iy/sin?(kga) + |B*
(21)

As a result, a band describes a one-to-one mapping from the Brillouin circle
onto a closed path C in the subspace of SU(1,1) matrices M. (kg) with the above
form. From the Bloch eigenvalue problem M_y(w)|y) = ¢'%¢|y), one deduces that
on a band, M« () has complex eigenvalues, meaning that o2 >|g[%, i.e. the path C
must be inside the cone, either in the upper region ay > |f], or the lower one a; < —|
Bl. In addition, the path C can only touch the cone whenever the eigenvalues of
Mo, namely e'*s9, are degenerate. This is necessarily the case at the edges of the
Brillouin zone (ky = + ), and at its center kg = 0. In between, C cannot touch the
cone, since two distinct eigenvalues e*'*»* must be found, by virtue of time-reversal
symmetry. Finally, the path C is not a loop, but a simple line, since M is a simple
function of w, and therefore is the same for two opposite values of kp on a band: it
starts on the cone at ky = —Z and lands on it again at kg = 0, before following the
reverse path between kg =0 and ky = Z. Figure 6a represents an example of C
contour for the third band of the crystal (supposedly topologically “trivial” case,

with e, =2.8 cm), and Fig. 6¢ represents the same contour for e, = —2.8 cm,
corresponding to the dual system, which is supposedly topological (the topological
properties will be proven in the next section). Figure 6b represents the case e, =0
cm that closes the bandgaps. As expected, in all cases the contour starts and end on
the cone.

To study the conditions under which two consecutive frequency bands can
touch, it is convenient to recast the Bloch eigenproblem into the equivalent form:

e M (@)ly) = |y)

and think of it as follows: for each kg in the first Brillouin zone, finding the bands
means finding the values of w for which the matrix e~"%s9 M, has at least one
eigenvalue equal to one, with the corresponding eigenvector being the Bloch
eigenvector on that particular band. This can happen for infinitely many values of
. If both eigenvalues of e~*k+*M_ at a given frequency are equal to one, the band
structure is doubly degenerate, which is therefore the maximum frequency
degeneracy allowed by the system. Since the general form of the eigenvalues of

i . 2 —i i
e lkBa(O(Ril /OC% _ Iﬁl ) —e 1kBuei1kBu’ the

second eigenvalue e can only become equal to unity at the Brillouin zone
edges (ks = + Z), or at ky =0. As a consequence, bandgaps can only close at the
center or edge of the Brillouin zone, i.e. when the contour C touches the cone.

Assuming the first case, i.e. a degeneracy at ky = + Z, one has e'%»% = —1. We
obtain, at the particular frequency of the degeneracy,

cmapgg = (VFIL B

and this matrix can only be equal to identity if || = 0. The second case of
degeneracy at kg = 0 leads to the same conclusion (|B| = 0). This means that when

(22)

e ksaM_, on a band are v, =

—2ikga

(23)
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Fig. 6 Topology of the bands. We define the topology of the bands as the number of times the contours C crosses the axis of the cone defined in Eq. 20.
a For the trivial lattice, the contour C does not cross the axis of the cone, corresponding to a zero topological invariant. b When the system goes through
phase transition, the contour C touches the tip of the cone. The topological invariant cannot be defined in this case. € Same as panels (a) and (b) but for the
topological lattice. The contour C crosses the axis of the cone one time in this case, which corresponds to a nontrivial topology

two bands touch, the contour C is reaching the tip of the cone, as confirmed by
Fig. 6b.

Topology of the bands. As seen in previous sections, each band defines a mapping
between the Brillouin circle and a subspace of SU(1,1) matrices. We now define a
topological invariant for each band, i.e. an integer quantity that is invariant upon
continuous transformations of the band structure. This means that this number
can only change when the band undergoes a discontinuous transformation, i.e.
touches another one, or equivalently when the contour C touches the tip of

the cone.

Like in the standard tight-binding SSH model, we need an extra symmetry, akin
to chiral symmetry, to be able to define topological invariants on each band. Here
we need to require that the scattering matrices S; and S, are equal, taking 6, = 6,
=0, a1, =0, =a and ¢; = ¢, = ¢. With this extra condition, the quantity f =
M,, (w(kg)) in Eq. 14, that parametrizes the matrix M on a band, becomes

w(ky)d

Blky) = 2699 o (a + T) cotfcsch, (24)

where the quantities «, 6 and ¢ that parametrize the S matrix of a single obstacle
generally depend on w(kg). We then assume the case of nonresonant scatterers,

meaning that cos 6 does not vanish on the band, and the variation of & and 6 on the
band are negligible. Because M always has two complex-conjugate unimodular
eigenvalues, w(kp) is necessarily monotonous between —/a and 0. Let us focus our

attention to the quantity cos (tx + M), which can potentially make the complex

number (k) vanish at some particular point of the Brillouin zone. When kg goes
from —7/a to 0, the angle y = « + &f)d moves monotonically between two real
values, $ay Ymin and Pmay defining a continuous monotonous mapping between

[*fao} t0 [Ymin> Ymax)- NOW, two situations can arise:

(1)  The, segment [Ymin, Ymax] does not contain 7/2 (modulo 7), in which case
cos( &+ ““2%) never vanishes as kg go from —7/a to 0. This means that 8
never vanishes on the band.

(2)  The segment [Ymin» Ymax] contains 77/2 (modulo 7), in which case f vanishes
at least once on the band.

Since =0 means that the contour C crosses the cone axis, we can therefore
define a topological invariant 7 in the following way: We can count the number of
times # that C crosses the cone axis as kg goes from —/a to 0. This integer number
changes each time a5 OF Yimin equals 77/2 (modulo 7), i.e. when f is zero either at
the edge or center of the Brillouin zone, i.e. when a band gap closes. Figure 6 shows
how the contour C evolves for the third band of our system, when one goes from
the trivial regime (panel a, C does not cross the cone axis, # = 0) to the topological
one (panel ¢, C crosses the cone axis, 7 = 1). At the topological phase transition, the
contour C touches the tip of the cone, which closes the band gap, and the number
is not defined.

Symmetry protection. The definition of the topological invariant # as the number
of times the contour C crosses the cone axis between —n/a to 0 is based on two
underlying symmetries, and both must be fulfilled:

1. (1) Time-reversal symmetry, which guarantees that M belongs to SU(1,1)>>.

1. (2) Equality of S; and S, (the far-field individual scattering matrices of both
obstacles must be identical), or equivalently:

My =1. (25)
Obviously, horizontal position disorder does not change the individual

scattering parameters of the object. In addition, vertical position disorder does not
change it either, as demonstrated in Supplementary Fig. 12 (the only difference in
the scattering spectrum are very sharp Fano interferences occurring from coupling
to a acoustic bound state in the continuum, but they are far from the frequency
range of interest). As a consequence, position disorder does not break M2, = 1.
However, changing the diameter of one rod definitely changes its scattering matrix.
What happens in the case of rods with different radii is that the real and imaginary
part of the quantity

iw(kp)d

Blkg) = —e =

. oo _iw(kp)d
€926/ =%) csc ) cotf, — e+

€91e7 %) cot ) csc B,

(26)

are never simultaneously zero, which implies that the contour C can avoid
crossing the cone axis by simply going around it. This is analogous to a SSH chain
without chiral symmetry, where some properly chosen chirality-breaking defects at
an interface can change the winding number without closing the band gap. These
results explain the outcome of the full-wave simulations presented in Fig. 3 of the
main text.

Numerical methods. Full-wave simulations are all performed using Comsol
Multiphysics (Acoustic and RF modules). Dispersion curves are obtained by
considering a single unit cell of the lattice arrays, applying Floquet boundary
condition to the lateral sides of the unit cell, and performing eigenfrequency
simulations for all of the Floquet—Bloch wavenumbers.

In order to obtain the frequency spectra of the ODE solvers, we excite the
system with an incident plane-wave with unit amplitude and measure the amount
of pressure at the transmission side of the waveguide.

In order to cross-validate our experimental measurements, we performed
numerical finite-element simulations including a viscothermal loss of 1.15 dB/m to
achieve a transfer function X(w), for example, between the injected and transmitted
sound waves. We then obtained the transfer function of the loudspeaker Y(w) by
exciting the empty waveguide and measuring the associated sound pressure level at
the transmission side. The transfer function Z(w), between the voltage applied to
the loudspeaker and the transmitted pressure, was then readily obtained as
Z(w) = X(w)/Y(w).
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In our FDTD simulations, we excite the waveguide from one end with the
desired modulated input signal, and record the temporal evolution of the pressure
field (with a time step subject to Courant-Friedrichs-Lewy (CFL) condition for
ensuring stability) received at a point on the other side of the waveguide.

Experimental methods. As mentioned in the main text, an acrylic square tube is
used to implement the acoustic waveguide. Nylon 6 continuous cast cylinders were
then manually inserted into the waveguide to form the SSH-type array. Supple-
mentary Fig. 13a represents the experimental setup used to achieve the transfer
function of the system. The setup contains a loudspeaker, a Data Physics Quattro
signal analyzer connected to a computer (not shown in the figure) controlling it,
one ICP microphone measuring the transmitted sound pressure level, and a home-
made anechoic termination (not shown in the figure). To obtain the transfer
function of the sample, we drive the loudspeaker with a burst noise voltage (which
is set as the reference signal in the setup), and measure the pressure level with
respect to the reference channel using the ICP microphone. Supplementary

Fig. 13b shows the experimental setup used to create an input signal (voltage) with
an arbitrary time profile g(¢), and to measure the temporal evolution of the output
signal f(t). The setup consists of a Speedgoat Performance Real-Time Target
Machine with 10131 interface controlled by xPC target environment of MATLAB/
Simulink, a loudspeaker, a power amplifier, a home-made acoustic termination
(not shown in the figure), and an ICP microphone measuring the transmitted
pressure.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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