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Mast cell progenitors (MCp) are derived from 
the hematopoietic stem cells present in the BM 
and develop along the myelomonocytic path-
way. The exact pathway is still somewhat con-
troversial, described in C57BL/6 mice as either 
via a basophil/MC bipotent progenitor found 
in the spleen or derived via an alternate path in 
BM (1, 2). Regardless, MCp transit through 
the circulation, immigrate into peripheral 
tissues, and mature into tissue MCs under the 
infl uence of the local microenvironment (3–5). 
Within the peripheral tissues, MCs exhibit 
 diff erent phenotypes according to their tissue 
 location, with distinctive histochemical staining 
characteristics and diff erences in the protease 

and proteoglycan content of their secretory 
granules (6–8). They are broadly classifi ed as 
connective tissue–type MCs, which are found 
in connective tissues throughout the body, 
often adjacent to blood microvessels and in the 
peritoneal cavity of mice and rats, where they 
have been clearly implicated in the innate im-
mune response to bacteria (9, 10), and mucosal 
MCs, which appear in mucosal regions within 
the lung and the intestine. Both connective 
tissue–type MCs and mucosal MCs act as eff ec-
tor cells during infl ammation and play an im-
portant role in allergic infl ammation of the 
airways and in the intestinal immune response 
to helminth infection (11, 12).

Previous studies have proposed a model of 
basal homing of MCp to the intestine (13, 14). 
In this tissue, MCp homing is a constitutive, 
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The transcription factor T-bet was identifi ed in CD4+ T cells, and it controls interferon 𝛄 

production and T helper type 1 cell differentiation. T-bet is expressed in certain other 

leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, 

A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it 

regulates T cell traffi cking. We examined whether T-bet infl uences homing of mast cell pro-

genitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung 

or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using 

bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhe-

sion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell 

adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. 

MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an 

indirect role in homing. However, adoptive transfer experiments revealed that T-bet expres-

sion by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT 

BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing 

in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice 

respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for 

T-bet in MC recruitment to sites of infection and their activation and function. Therefore, 

remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues.
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dynamic process that appears to be independent of adaptive 
immunity. The model envisions the regulation of MCp 
traffi  cking at the level of integrin CD49d/β7 interactions, 
with its counterreceptors mucosal addresin cellular adhe-
sion molecule–1 (MAdCAM-1) and vascular cell adhesion 
molecule–1 (VCAM-1) expressed by vascular endothelium 
(13). Furthermore, the CXC chemokine receptor (CXCR) 
2 provides promigratory signals critical to MCp traffi  cking to 
the intestine (14, 15).

T-bet is a T-box transcription factor essential to the gen-
eration and function of Th1 cells, and its defi ciency leads to 
predominantly Th2-mediated responses (16). T-bet expres-
sion has been identifi ed in other leukocytes, including NK 
cells, DCs, and CD8+ cells, where it directs strong transacti-
vation of IFN-γ transcripts (17–19). We previously identifi ed 
a critical role for T-bet in CD4+ T cell traffi  cking via its 
ability to regulate selectin-dependent adhesion and surface 
expression of CXCR3 (20), and more recently T-bet has also 
been identifi ed as a regulator of NKT cell traffi  cking (21). 
We do not know of any studies of the role of T-bet in traf-
fi cking of other leukocyte types. In this paper, we investigate 
the role of T-bet in MCp traffi  cking and report the unex-
pected fi nding that MCp homing to the mucosal tissues of 
the lung and the intestine is impaired in T-bet−/− mice. This 
striking observation led us to investigate the hypothesis that 
T-bet expression by MCp controls recruitment and homing 
to mucosal tissues. We found that there is no expression of 
T-bet in MCs at several stages of development. Yet, adoptive 
transfer of T-bet–defi cient BM into sublethally irradiated 
WT mice still results in impaired homing, demonstrating for 
the fi rst time that another radiation sensitive BM-derived cell 
plays an essential role in MCp homing to mucosal tissues. 
Furthermore, we have shown that this BM-derived cell is most 
likely a DC, because adoptive transfer of WT BM-derived 
DCs (BMDCs) into T-bet−/− mice reconstitutes MCp intes-
tinal homing, and co-culture of WT BMDCs with T-bet−/− 
BM-derived MCs (BMMCs) restored the binding of BMMCs 
to MAdCAM-1 and VCAM-1 in vitro to normal levels.

RESULTS

MCp homing to the mucosal tissues is impaired 

in T-bet−/− mice

We have recently shown that CD4+ T cell traffi  cking in 
T-bet−/− mice is dramatically reduced (20). Our interest in 
MC traffi  cking then led us to investigate whether MCp hom-
ing to the mucosal tissues is impaired in T-bet−/− mice. We 
measured the total number of MCp in the intestine and the 
lung, as well as in the BM and the spleen. T-bet defi ciency 
resulted in a nearly total loss of the MCp reservoir normally 
present in the small intestine and in a signifi cant decrease in 
the lung, whereas MCp numbers in the spleen and the BM 
were comparable to those in WT mice. This fi nding was 
consistently observed in both BALB/c (Fig. 1 A) and 
C57BL/6 (Fig. 1 B) mice strains lacking T-bet. Consistent 
with previous fi ndings (13), the number of MCp found in 
the tissues examined in the BALB/c strain was greater than 

that in C57/BL6 mice. Histochemical analysis of tissue sec-
tions prepared from intestine and spleen of adult, age-matched 
T-bet−/− and WT mice also showed that fewer MCs were 
detected in the intestine of T bet−/− compared with WT 
mice. In the spleen, which showed no diff erences in MCp, 
MCs were also diminished in the T-bet−/− mice (Fig. 2). 
These data indicate that under basal conditions in the absence 
of T-bet there is a tissue-specifi c homing defect in MCp 
homing to mucosal tissues.

T-bet−/− MCs exhibit impaired binding to VCAM-1 

and MAdCAM-1 under fl ow conditions

Having observed a lack of homing of MCp to the intestine, 
which is the largest reservoir of committed MCp in the 
mouse (22), we postulated that T-bet−/− MCp might exhibit 
diminished α4 integrin–dependent adhesive interactions 
with endothelial cell adhesion molecules VCAM-1 and MAd-
CAM-1, because these endothelial ligands have previously 
been shown to be essential for MCp homing to the intestine 
(13). To assess this further, we measured adhesion of WT and 
T-bet−/− BMMCs to immobilized, recombinant mouse 
VCAM-1 or MAdCAM-1 under conditions of physiological 
laminar shear fl ow. Because the number of MCp in the BM 
or in circulating blood of adult mice is low (1, 23), it is 
 impossible to isolate quantities suffi  cient to perform these 
 adhesion assays. Therefore, we and others (24, 25) have used 
BMMCs generated in vitro as a surrogate model to study the 
diff erent properties and adhesion pathways of MCs. T-bet−/− 
BMMCs displayed markedly reduced binding to both 
VCAM-1 and MAdCAM-1 across a range of shear fl ow (Fig. 
3). Incubation of WT and T -bet−/− BMMCs with blocking 

Figure 1. Selective loss of MCp in intestine and lung of T-bet−/− 

mice. Total numbers of MCp in the intestine, lung, spleen, and BM 

(one femur) of WT (shaded bars) and T-bet−/− (open bars) mice were 

determined by limiting dilution MCp assay. Experiments were performed in 

the BALB/c (A) or C57BL/6 (B) mouse strains. Values are the mean ± SEM 

for fi ve separate experiments for BALB/c and two separate experiments 

for C57BL/6 mice. *, P < 0.01; or **, P < 0.001 for T-bet relative 

to WT mice.
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antibodies against the α4 integrin chain abolished BMMC 
binding to VCAM-1 (unpublished data). These data suggest 
that T-bet aff ects the adhesive interactions between MCp and 
intestinal endothelial VCAM-1 and MAdCAM-1. Because 
MCp express receptors for keratinocyte-derived chemokine 
(KC/CXC chemokine ligand [CXCL] 1) and chemokines 
coimmobilized with adhesion molecules are known to 
trigger leukocyte stable arrest under shear fl ow conditions 
(26, 27), we examined whether this or other chemokines 
(stromal cell–derived factor 1α [SDF-1α]) coimmobilized 
with VCAM-1 or MAdCAM-1 would overcome the adhe-
sion defect. Neither WT nor T-bet−/− MCp showed an 
 increase in adhesion (Fig. S1, A–C, available at http://www
.jem.org/cgi/content/full/jem.20060626/DC1) nor resistance 
to detachment after adhesion to MAdCAM-1 (Fig. S1 D), 
suggesting that MCs and T cells do not exhibit the same 
 re cognition response in this assay. We next tested whether 
surface expression of α4 integrins (CD49d), which bind to 
VCAM-1 and MAdCAM-1, were altered. FACS analysis re-
vealed very low levels of surface expression of α4 and β7 in-
tegrins and the chemokine receptor CXCR2 in BMMCs 
generated from either WT or T-bet−/− mice (Fig. S2), in 
agreement with previous reports (24, 28, 29). Thus, the defect 
is not explained by a loss of α4β7 integrin expression or a lack 
of chemokine-induced arrest under fl ow conditions.

T-bet is not expressed in BMMCs or MCp

Because this defect in adhesion suggests a direct role for T-bet 
in controlling MCp adhesion, the next set of studies deter-
mined T-bet expression in cultured BMMCs or other cells 
along the developmental pathway that we have previously 
described (1). Western blot analysis revealed that T-bet is not 
expressed in either T-bet−/− or WT BMMCs under basal 
conditions or after stimulation with nonphysiologic (PMA + 
ionomycin) or physiologic (LPS and IgE cross-linking) stimuli 
(Fig. 4 A). In contrast, T-bet was easily detected in T cyto-
toxic type 1 cells (Tc1), analyzed in parallel as a positive con-
trol for T-bet expression.

We next considered the possibility that T-bet was not 
expressed in BMMCs because of a loss of expression under 
the culture conditions required for successful in vitro diff er-
entiation. Because previous studies have reported that the 
Lin−/c-kit+/Sca1− CD34+ cell population from adult BM 
gives rise to MCs (1, 30), we used a high-speed FACS ap-
proach on the BM of WT adult mice to isolate these cells and 
probe the isolated cells for T-bet expression by quantitative 
real-time PCR, using Th1 cells as a positive control (Fig. 4 B). 
T-bet was present in the WT BM, but at very low levels. 
The cell populations sorted from the BM as Lin− or Lin+ 
cells, which correspond to uncommitted or committed BM 
progenitors (of MCs and other lineages), respectively, also 
expressed very low levels of T-bet (Fig. 4 B, inset plotted 
with expanded y axis). The expression of T-bet by whole 
BM cells is most likely caused by Lin+ cells, because T-bet 
was below detectable levels in the population (Lin−) that 
leads to MCp production. We also tested for the expression 
of T-bet in other hematopoietic progenitors present in the 
BM and committed to the myeloid pathway, such as the 
common myeloid progenitor, the granulocyte monocyte 
progenitor (GMP), the recently described basophil MC pro-
genitor (BMCP) (1), and the basophil progenitor (BaP), as 
well as in MCp derived in vitro from GMP and mature peri-
toneal MCs. None of these cells, progenitors or mature MCs, 

Figure 2. Histochemical analysis of tissue sections prepared from 

the intestine and spleen of WT and T-bet−/− mice. (A) Sections of 

small intestine or spleen from WT or T-bet−/− BALB/c mice were incubated 

with chloroacetate esterase substrate to identify MCs (indicated by the 

arrows). 1 representative fi eld out of 20 fi elds analyzed per mouse is 

shown. Bar, 200 μm. (B) Quantifi cation of MCs per cross section of tissue. 

Values are the mean ± SEM for three BALB/c and four T-bet−/− mice 

and are the total number of MCs per cross section of jejunum or spleen. 

*, P < 0.05.

Figure 3. BMMCs have a defect in adhesion to VCAM-1 

or MAdCAM-1 under conditions of shear fl ow. BMMCs derived from 

WT BM (shaded bars) or T-bet−/− BM (open bars) were drawn across 

immobilized VCAM-1 (A) or MAdCAM-1 (B) across a range of estimated 

shear stress, and adhesive interactions were recorded. BMMC interactions 

were determined at the end of each shear stress. Values refl ect the total 

number of adherent and rolling cells over time during the range of shear 

stress examined. Values are the mean ± SEM from fi ve separate experi-

ments. *, P < 0.05; or **, P < 0.01 for T-bet relative to WT mice.
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expressed T-bet. In contrast, T bet was easily detected in posi-
tive-control Th1 cells (Fig. 4 C). We conclude that T-bet is not 
expressed in committed MCp, its immediate precursors, or 
BMMCs derived in vitro, and hence postulate that T-bet plays 
an indirect role in the homing of MCp to the mucosal tissues.

Reconstitution of MCp in sublethally irradiated BM 

reconstituted (SIBR) mice with BM cells from T-bet−/− 

or BALB/c mice

In view of the inability of our assays to detect T-bet expres-
sion in MCp or cultured BMMCs, we were forced by the 
observed striking defect of MCp pools in certain mucosal tis-
sues of T-bet–null mice to pursue other approaches to under-
standing how T-bet exerts this eff ect. To defi ne whether the 
observed homing defect was due exclusively to a defect in the 
T-bet−/− BM (including MCp or other BM precursors 
 expressing T-bet) or, alternatively, to a defect of the local 
 intestinal microenvironment by itself, we depleted the 

 hematopoietic precursors in WT mice by sublethal irradia-
tion and then reconstituted the animals by adoptive transfer 
of either WT or T-bet−/− BM cells (SIBR). The number of 
MCp found in the intestine of WT-SIBR mice reconstituted 
with T-bet−/− BM was very low compared with that in WT-
SIBR mice reconstituted with WT BM. In contrast, the 
numbers of MCp in the spleen and BM were not signifi -
cantly diff erent in WT mice reconstituted with T bet−/− BM 
from those reconstituted with WT BM. (Fig. 5 A). On the 
other hand, sublethally irradiated T-bet−/− mice reconsti-
tuted with BM from WT mice showed total reconstitution of 
intestinal MCp, as well as of BM and spleen MCp (Fig. 5 B). 
These results demonstrate that the MCp that arise from the 
T bet−/− BM show a defect in homing to the intestine despite 
normal numbers of precursors in the spleen or BM, whereas 
the MCp arising from the WT BM and transferred into 
a T-bet−/− host show adequate tissue homing of MCp, 
including homing to the intestine. These data implicate a de-
fect or loss of T-bet–expressing cells in the BM compartment 
that is responsible for the lack of MCp adhesion and intesti-
nal-specifi c homing in the T-bet−/− mice and rule out the 
possibility of a defect in the intestinal compartment of 
T-bet−/− mice.

Figure 4. Analysis of T-bet expression in BMMCs and in FACS-

sorted MCp and their precursors. (A) BMMCs in vitro derived from 

WT-BALB/c BM were stimulated as indicated in Materials and methods, and 

cell lysates were subjected to Western blot analysis for T-bet and β-actin. 

One representative experiment is shown. (B) Quantitative real-time PCR 

analysis of mRNA levels of T-bet in FACS-sorted BM MCp, myeloid pro-

genitors, and Th1 cells. Results of real-time PCR are normalized to β-actin 

and are expressed as the mean ± SEM for two independent experiments. 

(C) RT-PCR analysis of T-bet mRNA levels in purifi ed progenitor popula-

tions; β-actin is also shown as loading control.

Figure 5. Tissue MCp reconstitution in SIBR BALB/c mice receiving 

T-bet−/− or WT BM and in SIBR T-bet−/− mice receiving WT BM. 

(A) Total number of MCp in the intestine, the BM (one femur), and the 

spleen in SIBR BALB/c mice receiving BALB/c BM (shaded bars) or T-bet−/− 

BM (open bars) were assessed in parallel by a MCp limiting dilution assay. 

Values are the mean ± SEM of fi ve separate experiments. **, P < 0.001 

relative to WT BM reconstituted mice. (B) Total number of MCp in the 

intestine, the BM, and the spleen in SIBR T-bet mice receiving WT BM 

(open bars). SIBR WT mice receiving WT BM were used as controls 

(shaded bars) and evaluated in parallel as in A. Values are the mean ± SEM 

of three separate experiments.
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T-bet expressed in BMDCs regulates MCp intestinal homing 

via VCAM-1 and MAdCAM-1 ligands

Because the fi ndings in Fig. 5 demonstrated that a defect in 
the BM compartment of T-bet−/− mice is responsible for the 
lack of MCp homing to the intestine, we performed experi-
ments to identify the BM cell type responsible. Based on the 
literature (18), DCs are good candidates because their devel-
opment, diff erentiation, and activation is independent of T-bet, 
but DCs can up-regulate T-bet and secrete IFN-γ (18). We 
derived DCs from WT BM by culture in GM-CSF for 7 d 
and transferred these BMDCs into WT or T-bet−/− mice. 
Strikingly, T–bet−/− mice given WT BMDCs showed levels 
of MCp in the intestine comparable to WT mice given 
 BMDCs in parallel when evaluated 14 d later. Transfer of 
BMDCs into WT mice did not signifi cantly increase the 
number of MCp (Fig. 6 A). In contrast, T-bet−/− animals 
that did not receive BMDCs exhibited a dramatic reduction 
of MCp in the intestine as compared with WT mice.

The role of T-bet+ BMDCs in controlling MCp intesti-
nal homing was further investigated by testing whether co-
culture of WT BMDCs with T-bet−/− BMMCs restored 
T-bet BMMC binding to VCAM-1 and MAdCAM-1. Indeed, 
a 6-h co-culture of T-bet−/− BMMCs with WT BMDCs 
completely rescued binding to VCAM-1 and MAdCAM-1, 
as these cells exhibited no binding under conditions of shear 
fl ow that was comparable to WT BMMCs (Fig. 6, B and C). 
BMMC adhesion was abolished by anti–α4 integrin anti-
body. These data strongly suggest that T-bet in the DCs plays 
a role in homing of MCp to the intestine by regulating the 
α4β7-dependent binding to the endothelial cell ligands 

VCAM-1 and MAdCAM-1, which are necessary for the 
 appropriate homing of MCp to the intestine (13).

T-bet−/− mice are able to mount an immune response 

to Trichinella spiralis infection

Infection with T. spiralis stimulates a large increase in the 
number of MCs residing in the small intestine (8). The rapid 
expulsion of T. spiralis is associated with and dependent on 
the pronounced mastocytosis, which is turn is mediated by a 
Th2-type response (31–34). Lack of the intestinal MCs and 
MCp in β7 integrin–defi cient mice resulted in a delayed 
MC hyperplasia and delayed rejection of the T. spiralis from 
 infected mice (35). Thus, we assessed the intestinal MC 
 response of WT and T-bet−/− mice to infection with T. spiralis. 
Despite the low number of resident MCs and reduced MCp 
reservoir in the intestine of T-bet−/− mice, a robust mucosal 
MC response was noted in the T-bet–defi cient mice. The 
response was even greater than that observed in WT mice 
infected in parallel and resulted in an enhanced elimination of 
the worms from the intestine (Fig. 7) regardless of the strain 
background. The enhanced clearance of infection was ob-
served with T-bet−/− mice in a Th2 cell–type background 
strain (Fig. 7 A, BALB/c mice) and with T-bet−/− mice in a 
Th1 cell–type background strain (Fig. 7 B, C57BL/6 mice). 
The local MC hyperplasia in response to the infection was 
also markedly increased in the T-bet−/− mice, even more so 
than in WT mice (Fig. 7, C and D). These results are consis-
tent with the view that the T-bet–null mouse is polarized 
toward the induction of a Th2 cell infl ammatory milieu (19), 
and T. spiralis, which provides a potent stimulus, provokes a 
more vigorous MC proliferation response to this pathogen.

D I S C U S S I O N 

We report on the unexpected and novel fi nding that the tran-
scription factor T-bet expressed in DCs indirectly regulates 
MCp homing to mucosal tissues. The involvement of T-bet in 
Th1 T cell polarization, IFN-γ production by DCs, and termi-
nal maturation of NK cells has been documented (16–19), 
whereas the role for T-bet in leukocyte traffi  cking is an emerg-
ing area. Recent reports showed that T-bet was necessary for 
traffi  cking of CD4+ T cells (20), CD8+ T cells (36), and NKT 
cells (21) to sites of immune reactions. Our interest in under-
standing the factors that control MC traffi  cking (1, 3) led us to 
study the eff ect of T-bet defi ciency on MCp homing to tissues.

The initial observation of a dramatically lower number of 
MCp in mucosal tissues in T-bet−/− animals (Fig. 1), specifi -
cally in the small intestine as measured by limiting dilution 
bioassay, was very surprising. That this reduction in MCp 
was physiologically relevant was corroborated by the ob-
served 50–70% reduction in mature tissue MCs, as detected 
by histological analysis of the small intestine and spleen (Fig. 2). 
As some mature MCs in the spleen have been shown to be 
derived from the intestine, at least after infection with T. spiralis 
(37), the decrease in splenic MC numbers could refl ect the 
decreased numbers of intestinal MCs in the T-bet−/− mice or 
a maturational defect within the spleen.

Figure 6. BMDCs induce recovery of T-bet−/− intestinal MCp 

in vivo and adhesion of T-bet−/− BMMCs to VCAM 1 and MAdCAM 1 

under conditions of shear fl ow in vitro. (A) Total number of MCp in 

the intestine of WT BALB/c (shaded bars) or T-bet−/− (open bars) mice 

receiving WT DCs was assessed in parallel by MCp limiting dilution assay. 

Values are the mean ± SEM of two separate experiments using two mice 

per group. **, P < 0.01. (B and C) BMMCs derived from WT BM or T-bet 

BM−/− (shaded bars) mice cultured in the presence or absence of BMDCs 

(open bars) were drawn across immobilized VCAM-1 (B) or MAdCAM-1 

(C) at a shear stress of 0.76 dynes/cm2, and adhesive interactions were 

recorded. Values refl ect the total number of adherent and rolling cells. 

Values are the mean ± SEM of two separate experiments. **, P < 0.01.
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From earlier studies, we knew that T-bet was necessary 
for both the biosynthesis of functional selectin ligands and the 
expression of chemokine receptors in CD4+ T cells (20), 
which guided us to consider that MCp adhesion by itself was 
defective. Because the hematopoietic pool of committed 
MCp in mice is estimated to be <30,000 cells (Fig. 1) (1, 23), 
we used BMMCs cultured in vitro as a surrogate for MCp 
cells to study their adhesive properties under physiological 
shear fl ow conditions. These experiments revealed that 
T-bet–defi cient BMMCs adhered poorly to both VCAM-1 
and MAdCAM-1 (Fig. 3). Furthermore, coimmobilized 
chemokines such as SDF-1α/CXCL12 or KC/CXCL1 
were not suffi  cient to reconstitute or augment adhesion. 
Despite the decreased adhesion, no loss of α4β7 integrin or 
CXCR2 expression was detected (Fig. S2), perhaps impli-
cating a defect in α4 integrin–dependent or chemokine 
receptor signaling.

At this juncture, the picture emerging was that T-bet 
expression in MCp selectively controlled homing to mucosal 
tissues (but not development in BM or spleen) via the α4β7 
integrin–VCAM-1/MAdCAM-1/CXCR2 adhesion path-
way. An unexpected fi nding was that T-bet transcripts were 

below detectable levels in mature MCs isolated from the 
peritoneal cavity, in BMMCs or in committed intestinal 
MCp obtained by immunoisolation and high-speed FACS 
sorting (Fig. 4). We did detect T-bet expression in Lin+ BM 
cells, which are precursors of many other cell types, but 
not in the uncommitted Lin− population or in other early 
 myeloid progenitors, such us common myeloid progenitor, 
GMP, and BMCP, or the committed progeny of the BMCP, 
the MCp or BaP. From these collective fi ndings, we con-
cluded that T-bet cannot directly regulate MCp homing via 
α4β7 integrin/CXCR2–dependent adhesion. To further 
understand the role of T-bet, we addressed whether the 
 defect resided in other cellular components of the BM and/
or in the intestinal milieu by reconstituting sublethally irradi-
ated WT or T-bet−/−–null animals with BM from WT or 
T-bet−/− mice. These studies indicated that the defect lies in 
the BM compartment and not in the intestinal microenviron-
ment (Fig. 5), because T-bet–null mice reconstituted with 
normal BM cells had similar numbers of intestinal MCp to 
WT mice reconstituted with WT BM cells. In contrast, WT 
mice reconstituted with T-bet−/− BM cells showed decreased 
MCp homing to the intestine. Because the genotype of the 
BM was critical and not that of the intestine, these results in-
dicate that T-bet expression in BM cells, other than the MCp 
or its immediate precursors, is critical to proper homing of 
MCp to tissues. Although surprising, this is similar to the re-
cent observation that TNF-α production by CD11b+ BM 
cells was critical to development and expansion of BMMCs 
(38) and supports the concept that MC development along 
the myeloid pathway requires interaction with other leuko-
cytes. Given the restricted expression of T-bet within leuko-
cytes of the BM, the most likely T-bet+ cell found in this 
environment is the DC.

We have tested this hypothesis by adoptive transfer of 
WT DCs into T-bet−/− mice and found that these animals 
now exhibited normal homing of MCp to intestine. Fur-
thermore, T-bet−/− BMMCs co-cultured with WT DCs 
recover the ability to bind to MAdCAM-1 and VCAM-1 
at levels that are comparable to WT BMMCs. We con-
clude that the presence of DCs expressing T-bet in the 
BM compartment is required for normal α4β7 integrin–
dependent binding to MAdCAM-1 and VCAM-1 and MCp 
intestinal homing.

We further probed whether such a defect in the MCp pool 
increased the susceptibility of these animals to a serious out-
come when challenged with a helminth infection. Based on 
studies in β7 integrin–defi cient mice, which lack MCp and 
MCs in the intestine and show delayed rejection of an intes-
tinal helminth, we anticipated a similar fi nding in T-bet–null 
mice, even though these mice are polarized toward Th2 re-
sponses (35, 13). Unexpectedly, the rejection of the worms 
by T-bet mice was equal to or even better than that by WT 
mice (Fig. 7), consistent with previous reports of an associa-
tion of a rapid expulsion of T. spiralis with a pronounced 
mastocytosis mediated by a Th2-type response and the fi nd-
ings that T-bet–null mice are Th2 cell polarized (19, 35). 

Figure 7. Time course of worm rejection and histological analysis 

of WT and T-bet−/− mice infected with T. spiralis. (A) WT (shaded 

bars) or T-bet−/− (open bars) mice were infected with 450 worms. Six 

mice of each strain were analyzed for jejunal worm burden on day 13 

after infection. Values are the mean number of worms recovered per 

mouse ± SEM. The BALB/c (A) and C57/BL6 (B) strains are shown. 

**, P < 0.01. (C) Histochemical analysis for MCs in the jejunum of nonin-

fected or T. spiralis–infected WT and T-bet−/− mice. One representative fi eld 

is shown for each condition. MCs are indicated by the arrows. Bar, 200 μm. 

(D) Quantifi cation of MCs in the jejunum of noninfected or T. spiralis–

infected WT and T-bet−/− mice. Y-axis values represent the number of 

MCs present in 10–16 fi elds for each condition. **, P < 0.01.
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Our fi nding suggests that like in the β7 integrin–null mice, 
the adhesion defect in α4β7 integrin/CXCR2–mediated 
 signaling for homing is compensated by other pathways elic-
ited by the potent Th2 cell–mediated immune response that 
overcomes the initial dependence on the former molecules.

We have yet to identify the specifi c DC T-bet–dependent 
mechanisms in BM that are responsible for the defect in the 
α4β7 integrin–CXCR2 adhesion pathway. We do not sus-
pect that reduced α4 integrin/CXCR2 expression is respon-
sible, because BMMCs derived from WT and T-bet–defi cient 
mice showed equivalent, albeit low, levels of surface-
 expressed α4 and β7 integrins and CXCR2. The loss of the α4 
integrin during protracted in vitro culture that we observed 
(unpublished data) has also been reported previously (28, 29). 
Another possibility is that T-bet−/− cells have a defect in α4 
integrin or CXCR2 signaling that leads to the observed loss 
of adhesion. We note that one should interpret these results 
cautiously, because BMMCs are not MCp; they are only a 
tool, the best in vitro surrogate cells currently available for 
studying MCp.

T-bet controls a multitude of genes in several cell types, 
making it diffi  cult to discern how T-bet is indirectly control-
ling MCp homing to mucosal tissues. Our experiments pro-
vide evidence that the transcription factor T-bet expressed in 
DCs within the BM indirectly imprints a program in devel-
oping MCp that ensures appropriate homing to the mucosal 
tissues. Regardless of the fact that the IFN-γ gene is one of 
the main direct targets of T-bet (16, 18), we were not able to 
increase the MCp intestinal homing in T-bet−/− mice by in-
traperitoneal injection of IFN-γ, and more strikingly, the 
MCp present in the WT intestine were depleted after IFN-γ 
treatment, probably due to apoptosis of MCs induced by 
IFN-γ, as described by other authors (unpublished data) (39). 
Thus, it seems most likely that IFN-γ is not directly 
 responsible for MCp homing and that some other factor 
causes the homing defect in T-bet–defi cient mice. Nonethe-
less, these fi ndings are remarkable, as it is the fi rst indication 
that another innate eff ector cell directly infl uences MC de-
velopment in a way that aff ects its traffi  cking in the absence 
of overt infl ammation.

In summary, these observations provide further evidence 
that the transcription factor T-bet is involved in leukocyte 
traffi  cking and show, for the fi rst time, a role for T-bet 
 expression in DCs for the constitutive homing of MCp cells 
to mucosal tissues.

MATERIALS AND METHODS
Reagents. Dulbecco’s PBS and RPMI 1640 were purchased from Invitro-

gen. The following reagents were obtained from the indicated sources: 

mouse MAdCAM-1 chimeric protein (T. Yednock, Elan Corporation, San 

Francisco, CA), recombinant mouse VCAM-1-Fc chimera (R&D Systems), 

and recombinant mouse IL-3, stem cell factor (SCF), SDF-1α, GM-CSF, 

and KC/CXCL1 (PeproTech). The monoclonal antibodies to mouse PSGL-1 

(clone 2PH1), CD62L (MEL-14), α4 integrin (clones R1-2 and 9C10), 

CXCR4 (clone 2B11), MHC class II (anti–H-2Kd; SF1-1.1–FITC), and 

CD11c (HL3-APC) were purchased from BD Biosciences; anti–mouse 

CXCR2 was an anti-peptide antibody made in rabbits, as previously de-

scribed (14). Anti–T-bet antibody (clone 4B10) was obtained from Santa Cruz 

Biotechnology, Inc. IgE-DNP, PMA, ionomycin, LPS, fetal calf serum, and 

polyclonal antibody to β-actin were purchased from Sigma-Aldrich. Gr1 

(anti-Ly6G/C; RB6-8C5–PE) was obtained from eBioscience.

Mice. Previously described 6–8-wk-old WT and T-bet−/− mice (19) on 

C57/BL6 and BALB/c backgrounds were purchased from the Jackson Lab-

oratory. Mice were maintained in a specifi c pathogen-free barrier unit at the 

Harvard New Research Building facilities or at the Dana Farber Cancer 

 Institute animal facilities. All experimental protocols were reviewed and ap-

proved by the Institutional Animal Care and Use Committee in accordance 

with policies of the Public Health Service.

MC isolation and cell culture. BM MCs were generated as previously 

detailed (7). 0.5 × 106 BMMCs/ml were cultured for 4 wk in T-25 culture 

fl asks (Corning) under standard conditions in the presence of 10 ng/ml IL-3 

and 10 ng/ml SCF.

BMDC isolation and cell culture. BMDCs were generated as previously 

detailed (40, 41). BMDCs from WT mice were cultured in the presence of 

10ng/ml GM-CSF, with supplementation on days 0, 3, and 6. On day 7, 

they were analyzed by FACS. The BMDC purity was 65–75% CD11c+, 

class II+, and Gr1−, with contaminating cells predominantly Gr-1+ cells 

(Fig. S3, available at http://www.jem.org/cgi.content/full/jem.20060626/DC1). 

This Gr-1 population is likely to contain a mixture of mature granulocytes, 

monocytes, and macrophages, none of which express T-bet, as previously 

described (18). 2 × 106 cultured BMDCs/mouse were injected intrave-

nously into T-bet−/− mice. Also on day 7, they were stimulated with 10 U/ml 

IFN-γ for 1 h and co-cultured with BMMCs (DC/MC = 1:1.5) for 6 h. These 

co-cultures were tested for adhesion to VCAM-1 and MAdCAM-1 under 

shear fl ow conditions.

Adhesion assays under physiological shear fl ow conditions. Glass 

coverslips (25-mm diameter; Carolina Biological Supply) were coated with 

10 μg/ml VCAM-1 or 20 μg/ml MAdCAM-1. BMMC adhesive interac-

tions were examined under conditions of fl uid shear stress using a video 

 microscopy system, as previously described (42). Cell accumulation was de-

termined after the initial minute of each fl ow rate by counting the number 

of adherent cells in four diff erent fi elds using a 20× phase-contrast objective 

(Plan Apo; Nikon) and recorded with videomicroscopy connected to Video-

Lab software (Ed Marcus Laboratories). Data are the mean ± SEM (n = 3 

experiments). P ≤ 0.5 or less was considered statistically signifi cant using the 

paired t test or one-way analysis of variance for multiple groups.

Preparation of tissue mononuclear cells (MNCs) and MCp limiting 

dilution assay. The procedure for determining the number of MCp was 

essentially as previously described (13, 22). Individual tissues from two mice 

were pooled and processed to isolate MNCs. MNCs were serially diluted in 

96-well fl at-bottom microtiter plates, and 100 μl of γ-irradiated (30 Gy) 

spleen-derived feeder cells in media containing 20 ng/ml IL-3 and 20 ng/ml 

SCF were added. MNCs were cultured for 12 d before MC colonies were 

identifi ed and counted with inverted microscopes (CK, Olympus; TMS, 

Nikon. The MCp concentration is expressed as MCp/tissue and is derived 

by multiplying the concentration of MCp per 106 MNCs by the MNC 

yield/organ. For the BM, the number represents the total MCp per femur.

T-bet expression by Western blot. BMMCs from WT mice were stimu-

lated for 24 h with 2 μg/ml LPS, 50 ng/ml PMA plus 2 μM ionomycin, or 

IgE cross-linking (1μg/ml of mouse αDNP-IgE for 16 h plus 10 ng/ml 

DNP-OVA). Immunoblot analysis was performed by using the 4B10 mAb, 

as previously described (16).

Sorting of MCp, real-time PCR, and semiquantitative RT-PCR. 

Sorting of myeloid progenitors was as previously described (30). Myeloid pro-

genitors were sorted as Lin− Sca-1− c-kit+ CD34+, as previously de-

scribed (43). BaP or MCp sorting was as previously described (1). Total RNA 
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was extracted from the sorted cells or from in vitro–generated mouse Th1 

cells or Tc1 cells (provided by N. Grabie, Brigham and Women’s Hospital, 

Boston, MA) as positive controls using TRIzol solution (Invitrogen) and 

reverse transcribed using a cDNA synthesis kit (iScript; Bio-Rad Labora-

tories). The amount of amplicon generated was monitored with an ABI 

Prism 7700 (Applied Biosystems). A specifi c probe labeled with both reporter 

and a quencher dye was added into the Taqman PCR mix at the beginning 

of the reaction. The cycle number was normalized to β-actin.

For semiquantitative PCR, the following primers were used to amplify 

T-bet and β-actin: T-bet (forward), 5′-G C C A G G G A A C C G C T T A T A T G-

T C -3′; T-bet (reverse), 5′-C T G T G A G A T C A T A T C C T T G G G C T G -3′; 
β-actin (forward), 5′-G T G G G C C G C T C T A G G C A C C A -3′; and β-actin 

(reverse), 5′-C G G T T G G C C T T A G G G T T C A G G G G G G -3′.

Immunohistochemistry. Thin sections (1.5-μm thickness) of tissue were 

fi xed with 4% paraformaldehyde and subjected to the chloroacetate esterase 

reactivity cytochemistry procedure for MC histology analysis, as previously 

described (8). The results are expressed as the number of MCs per cross-

sectional area of the intestine or spleen.

T. spiralis infection and worm burden determination. Trichinella 

larvae were obtained as detailed previously (8). Mice were infected with 

�450 larvae suspended in 200 μl PBS by direct gastric installation. Worm 

burden was determined after 13 d, as previously described (44). Each experi-

mental group comprised six animals.

Sublethal irradiation with BM reconstitution. Animals were irradiated 

(GammaCell-40; Atomic Energy of Canada) for 4.5 min, 5 gray (500 rad). 

2 h after irradiation, mice were given intravenous injections of 107 BM cells 

that had been isolated from femurs and tibias of syngenic or congenic ani-

mals. 14 d after irradiation, mice were killed, and MCp limiting dilution 

 assays were performed.

Statistical analysis. Data are the mean ± SEM (n = 5 separate experiments 

with two mice per group in each experiment), unless indicated otherwise. 

P ≤ 0.05 was considered statistically signifi cant by the paired t test or one-

way analysis of variance for multiple groups using Prism software (version 4; 

GraphPad).

Online supplemental material. The online supplemental material contains 

additional information about adhesion studies under fl ow conditions, as well 

as characterization of DCs and BMMCs. Fig. S1 evaluates the adhesion of 

BMMCs under shear fl ow conditions to VCAM-1 and MAdCAM-1, co-

immobilized with the chemokines KC and SDF-1α. Fig. S2 shows expression 

of CXCR2 and α4 and β7 integrins in BMMCs by FACS analysis. Fig. S3 shows 

the phenotypes of the DCs used in our assays. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20060626/DC1.
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