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Mating systems of haploid species such as fungi, algae, and bryophytes are either heterothallic (self-incompatible) with two sex

phenotypes (male and female, or mating type minus and plus in isogamous species) or homothallic (self-compatible) with only

a bisexual phenotype producing zygotes within a clone. The anisogamous volvocine green alga Pleodorina starrii is a haploid

species previously reported to have a heterothallic mating system. Here, we found that two additional culture strains originating

from the same water system of P. starrii were taxonomically identified as P. starrii and produced male and female gametes and

zygotes within a clone (bisexual). Sequences of rapidly evolving plastid genome regions were identical between the bisexual and

unisexual (male or female) P. starrii strains. Intercrossings between the bisexual and unisexual strains demonstrated normal thick-

walled zygotes and high survivability of F1 strains. Thus, these strains belong to the same biological species. Pleodorina starrii has

a new haploid mating system that is unique in having three sex phenotypes, namely, male, female, and bisexual. Genetic analyses

suggested the existence of autosomal “bisexual factor” locus independent of volvocine male and female determining regions. The

present findings increase our understanding of the initial evolutionary step of transition from heterothallism to homothallism.
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Androgyny is found in certain gods in mythologies worldwide,

and it is one of the three sex phenotypes of ancient humans (dou-

ble creatures) according to Aristophanes’ Speech from Plato’s

Symposium (Dover 1966). Co-existence of three sex pheno-

∗
This article corresponds to Roy, S.W. 2021. Digest: Three sexes from two

loci in one genome: A haploid alga expands the diversity of trioecious species.
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types (males, females, and hermaphrodites) is called “trioecy,”

which is relatively common in flowering plants (Fleming et al.

1994), while it is rare in animals, recognized only in some in-

vertebrates (Weeks 2012; Tandonnet et al. 2019). Mixed mating

systems such as trioecy may represent intermediate states of evo-

lutionary transitions between dioecious (with male and female)

and monoecious (with only hermaphrodites) mating systems

in diploid organisms (Weeks 2012). However, haploid mating
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Figure 1. Schematic drawings of life cycle and phylogenetic position of Pleodorina starriiwith three sex phenotypes. (A) When sexually

induced, unisexual male and female strains produce male and female sexual colonies, respectively, whereas bisexual strain produces both

male and female ones. Possible F1 sex phenotypes are shown by arrows from four types of zygotes. sp: sperm packet (bundle of male

gametes), mg: male gamete, fg: female gamete. (B) Maximum-likelihood (ML) tree (based on the GTR + G + I model) based on coding

regions of rbcL (1128 base pairs) from anisogamous/oogamous members of colonial volvocine species (Eudorina group, Nozaki et al. 2014)

(Table S2). Branch lengths are proportional to the estimated nucleotide substitutions, which are indicated by the scale bar. Numbers at

left, middle, and right above branches indicate bootstrap values of the ML (≥50%), maximum parsimony (≥50%), and posterior proba-

bilities (PP) of Bayesian inference (≥0.90), respectively. Asterisks at the branches indicate 100% bootstrap values and 1.00 PP by the three

methods. Navy circles and green circles represent unisexual and bisexual strains, respectively.

systems with three sex phenotypes within a single biological

species have not been previously reported. It is generally con-

sidered that bryophytes, haploid algae, and fungi have only two

types of mating systems, heterothallism and homothallism, which

exhibit only two [unisexual males and females (mating type mi-

nus and plus in isogamous species)] and one (bisexual) geneti-

cally determined sex phenotype, respectively (Bold and Wynne

1985; Ni et al. 2011; Haig 2016; Coelho et al. 2018).

In 2006, a new male-specific gene “PlestMID” (Pleodor-

ina starrii minus dominance gene) was found from male culture

strains of the anisogamous colonial volvocine green alga P. starrii

originating from the Sagami River water system, Japan (Nozaki

et al. 2006a). The finding of this gene triggered subsequent exten-

sive studies on the evolution of sex focusing on MID homologs

and their harbored sex-determining regions (SDRs) in the colo-

nial volvocine algae (e.g., Ferris et al. 2010; Hamaji et al. 2018).

Pleodorina starrii has been believed to have a heterothallic mat-

ing system with males and females (Nozaki et al. 2006b; Nozaki

2008). However, during our long-term field surveys in the Sagami

River water system, we encountered two bisexual Pleodorina

strains producing zygotes within a clonal culture. The present

study was undertaken to resolve the evolutionary relationships

among the male, female, and bisexual culture strains of Pleodo-

rina originating from the same water system. Our molecular and

genetic data unambiguously demonstrated culture strains of all

three sex phenotypes belong to the same biological species of P.

starrii (Fig. 1).

Materials and Methods
STRAIN AND CULTURE CONDITIONS

Culture strains of P. starrii used in this study are shown in

Table S1. The cultures were grown in screw-cap tubes containing

10 mL AF-6 medium (Kato 1982; Kawachi et al. 2013) at 20°C
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on a 14-h light:10-h dark schedule under cool-white fluorescent

lamps at an intensity of 55–80 μmol·m−2·s−1. Sexual reproduc-

tion was induced as described previously (Nozaki et al. 2006b)

with slight modifications (Supporting Information S1).

GENOMIC PCR AND SEQUENCING

To determine nucleotide sequences of exons and group I introns

of rbcL (large subunit of Rubisco) (Fig. S1), plastid microsatel-

lite region (Fig. S2), and PlestMID gene (Fig. S3), genomic PCR

and DNA sequencing were performed (Supporting Information

S1). To detect the presence of PlestMID gene in two bisexual

strains (P10 and P85) (Fig. S3), genomic PCR of PlestMID was

performed (Supporting Information S1).

CDNA SEQUENCING AND SEMIQUANTITATIVE

RT-PCR

RNA was extracted from sexually induced cultures of unisexual

male strain (P7) and bisexual strain (P10) with DynabeadsTM

mRNA Purification Kit (Thermo Fisher Scientific, Waltham,

MA, USA) after the cells had been homogenized with lysis buffer

(50 mM Tris-HCl pH 8.0, 300 mM NaCl, 5 mM EDTA, 2% SDS).

Using the mRNA, amplification of cDNA, sequencing of Plest-

MID cDNA, and semiquantitative RT-PCR of PlestMID were car-

ried out (Supporting Information S1).

PHYLOGENETIC ANALYSES OF rbcL GENES

For phylogenetic analyses, nucleotide sequences of rbcL coding

regions (1128 base pairs) from 31 ingroup operational taxonomic

units (OTUs) (representing 36 strains of anisogamous/oogamous

members of the colonial Volvocales [Eudorina group; Nozaki

et al. 2014] including four unisexual and two bisexual strains

of P. starrii) and nine outgroup OTUs (Table S2) were aligned

and subjected to maximum likelihood and maximum parsimony

methods and Bayesian inference (Supporting Information S1).

The alignment is available in TreeBASE (https://www.treebase.

org/treebase-web/home.html; Study ID 28238).

MORPHOLOGICAL OBSERVATIONS

Vegetative colonies and sexual reproduction were observed as de-

scribed in Supporting Information S1.

ESTABLISHMENT OF THE FIRST FILIAL GENERATION

(F1) STRAINS OF THE Pleodorina starrii BISEXUAL

STRAIN P10

To establish the F1 strains of P. starrii bisexual strain (P10),

germination of the hypnozygotes (thick-walled zygotes) was in-

duced as described in the previous study (Nozaki 2008), and

F1 gone colonies were picked up by a micropipette and kept in

screw-cap tubes containing 10 mL AF-6 medium (Supporting In-

formation S1).

DAPI-STAINING FOR ESTIMATING GENOME SIZE

Methods for examining Volvox genome size (Yamamoto et al.

2017) were modified here (Supporting Information S1).

INTERCROSSING BETWEEN Pleodorina starrii

UNISEXUAL AND BISEXUAL STRAINS

To investigate intercrossing between P. starrii unisexual strains

(P7 male or 2P1 female) and bisexual strain (P10), 10 male

colonies and 10 possible female colonies were collected from

sexually induced cultures (see Supporting Information S1) by a

micropipette and mixed in 0.25 mL new mating medium in a hole

of a glass plate. Four types of experiments were performed: uni-

sexual P7 male × bisexual P10 female; unisexual 2P1 female ×
bisexual P10 male; bisexual P10 male only (control); and bisex-

ual P10 female only (control). The glass plates within Petri dishes

(20 × 90 mm) were then placed at 25°C on a 12-h light:12-h

dark schedule under cool-white fluorescent lamps at an intensity

of 180–220 μmol·m−2·s−1.

To establish F1 strains from intercrossed zygotes, zygote

germination was induced as described above. F1 gone colonies

were picked up by a micropipette and kept in screw-cap tubes

containing 10 mL AF-6 medium. Isolated F1 strains were main-

tained at 20◦C on a 14-h light:10-h dark schedule under cool-

white fluorescent lamps at an intensity of 55–80 μmol·m−2·s−1

for one month and evaluated survival rates whether vegetative

colonies proliferated normally (survive) or perished (Table S3).

The sex phenotypes of F1 strains were evaluated by morphol-

ogy of their sexual reproduction and genomic PCR of PlestMID

(Table S4). Using χ2 tests with Microsoft® Excel® 2016, we cal-

culated the goodness-of-fit for each of the two alternating models

of genotypes of three sex phenotypes (see below).

To demonstrate two genotypes of female strains, F1 unisex-

ual female strains were obtained from unisexual female 2P1 ×
bisexual P10 (Table S1). Further genetic analysis between such

a F1 unisexual female strain and unisexual male strain (P7) were

performed by following procedure. Female and male strains cul-

tured in 10 mL of AF-6 and grown at 20◦C on a 14-h light:10-h

dark schedule under cool-white fluorescent lamps at an intensity

of 55–80 μmol·m−2·s−1 were taken 0.25 mL each and mixed in

10 mL VTAC+soil medium (Supporting Information S1). The

mixture was then grown at 25◦C on a 12-h light:12-h dark sched-

ule under cool-white fluorescent lamps at an intensity of 180–

220 μmol·m−2·s−1. After three days, the 10 mL mixed culture

was mixed with 20 mL of mating medium in Petri dishes (90

× 20 mm) and grown at 25◦C on a 12-h light:12-h dark sched-

ule under cool-white fluorescent lamps at an intensity of 180–

220 μmol·m−2·s−1. Hypnozygotes were then formed and the es-

tablishment and evaluation of sex phenotypes of F2 strains were

performed as described above.
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Results and Discussion
BISEXUALITY IN CULTURE STRAINS OF Pleodorina

ORIGINATING FROM THE TYPE LOCALITY OF P.

starrii

Two Pleodorina strains (P10 and P85; Table S1) showed bisexu-

ality but they were taxonomically identified as P. starrii based on

morphological traits of vegetative colonies (Fig. 2A and B) and

molecular phylogeny (Fig. 1B). When cultured in the nitrogen-

deficient medium for induction of sex (Nozaki et al. 2006a, b),

these two strains produced both male and female sexual colonies

in each culture. Except for production of both types of sexual

colonies within a clone, development of the male and female sex-

ual colonies and formation of zygotes in strains P10 and P85

were essentially the same as those of the unisexual male and fe-

male culture strains of P. starrii (Nozaki et al. 2006a, b) as de-

scribed below. Thus, strains of all three sexual types belong to the

same species by the morphological species concept (Aldhebiani

2018).

All reproductive cells of the male colony in a bisexual strain

differentiated into sperm packets (bundles of spindle-shaped

male gametes) via successive cell divisions (Fig. 2C). Female

colonies produced in the bisexual strain exhibited apparent

differentiation of somatic and reproductive cells and could not

be clearly distinguished from mature vegetative colonies in

morphology (Fig. 2D), except that the female colonies were

penetrated by male gametes to form zygotes inside the female

colonial matrix. The sperm packets were released from the

parental male colony and swam to the female colony (Fig. 2D)

and dissociated into individual male gametes that penetrated the

female colonies (Fig. 2E). When stained with 4’,6-diamidino-2-

phenylindol (DAPI), fluorescence of the nuclei of male gametes

was strong (Fig. 2H) compared with that of female gamete

nuclei (Fig. 2J). Newly formed zygotes with an apparently

male gamete nucleus within the female gamete cytoplasm

were observed in DAPI-stained cells (Fig. 3L). After about 10

days, reddish-brown mature zygotes were formed. They had

a smooth heavy wall and were reddish brown in color and

formed a clump originating from their parental female colony

(Fig. 2N).

To examine the inheritance of the bisexuality, five F1 strains

of P10 (strains P10-F1_I, II, III, IV, and V) were examined. Each

F1 strain showed production of male and female gametes from

sexual male and female colonies within the clonal culture, respec-

tively, and formation of hypnozygotes within the female colony

(Fig. S4D–H). Penetration of a male gamete nucleus within the

female gametes was observed in P10-F1_IV after DAPI-staining

(Fig. S4B). Thus, the bisexuality in P. starrii is vertically trans-

mitted to the next generation.

Figure 2. Morphology of the bisexual strain P10 of Pleodorina

starrii. Arrows indicate somatic cells. (A) Sixty-four-celled vegeta-

tive colony. Scale bar = 50 µm. (B) Colony stained with methylene

blue showing individual cellular sheaths (asterisks). Scale bar =
50µm. (C) Sexually inducedmale colony. Note that all reproductive

cells divide into sperm packets (bundles of male gametes). Scale

bar = 50 µm. (D) Female colony with sperm packet (arrowhead).

Scale bar = 50 µm. (E) Female colony with dissociated male ga-

metes (arrowhead). Scale bar = 50 µm. (F) Sperm packet. Scale bar

= 10 µm. (G, H) Fixed, DAPI-stained male gamete. Note that nu-

cleus of male gamete (arrowhead) is strongly stained with DAPI

(H). Scale bars = 5 µm. (G) DIC image. (H) Fluorescence image. (I,

J) Fixed, DAPI-stained female gametes with a male gamete. Note

that DAPI fluorescence of female gamete nuclei (n) is vague com-

pared with that of male gamete (arrowhead). Scale bars = 10 µm.

(I) DIC image. (J) Fluorescence image. (K–M) Fixed, DAPI-stained

zygote with a male gamete nucleus (arrowhead) penetrating into

the female gamete cytoplasm. Scale bars = 10 µm. (K) DIC image.

(L) Fluorescence image. (M) DIC + fluorescence image. (N) Ten-day-

old mature hypnozygotes. Scale bar = 50 µm.

COMPARISON OF PLASTID GENOME SEQUENCES

BETWEEN UNISEXUAL AND BISEXUAL STRAINS OF

Pleodorina starrii

Phylogenetic relationships within the colonial volvocine algae

based on 1128 base pairs of rbcL coding regions demonstrated
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Figure 3. Results of intercrossings between unisexual and bisexual strains of Pleodorina starrii. Scale bars = 50 µm. (A) Five-day-old

matured hypnozygotes from P7 (unisexual male strain) ×P10 (bisexual strain) female colonies. (B) Six-day-old matured hypnozygotes

from 2P1 (unisexual female strain) ×P10 male colonies (bisexual strain). (C) Ten days after the isolation of sexually induced male colonies

of bisexual strain P10 only (control). (D) Ten days after the isolation of sexually induced female colonies of bisexual strain P10 only

(control).

that the bisexual strains belonged to P. starrii (Fig. 1B). In addi-

tion, the plastid genome sequences including more rapidly evolv-

ing regions, 1357 base pairs of two group I introns inserted in the

rbcL gene (Fig. S1) and 1108 base pairs of an intergenic region

harboring a microsatellite region (Fig. S2), were exactly the same

between bisexual strains (P10 and P85) and unisexual male and

female strains (NIES-1363, P7, NIES-1362, and 2P1) (Table S5).

In the genus Volvox, both heterothallism and homothallism

were recognized within a single morphological species such

as “Volvox africanus” (Starr 1971) and “V. dissipatrix” (Starr

1972; Starr and Zeikus 1993). However, recent studies delineated

two different species, one heterothallic and the other homothal-

lic: Volvox reticuliferus (heterothallic) and Volvox africanus (ho-

mothallic) in “V. africanus” (Nozaki et al. 2015) and V. zeikusii

(heterothallic) and V. dissipatrix (homothallic) in “V. dissipatrix”

(Nozaki et al. 2019), based on genetic and morphological differ-

ences between heterothallic and homothallic entities (Fig. 1B).

In contrast, the present results demonstrated that the unisex-

ual strains and the bisexual strains of P. starrii formed a very

closely related group that could not be distinguished from each

other even based on the rapidly evolving sequences in the plas-

tid genome (Table S5). Thus, the unisexual and bisexual strains

of Pleodorina originating from the Sagami River water system

(Table S1) fall within the single species P. starrii by the phyloge-

netic species concept (Aldhebiani 2018).

INTERCROSSINGS BETWEEN UNISEXUAL AND

BISEXUAL STRAINS OF Pleodorina starrii

Results of intercrossing are shown in Figure 3. After about five

days from the intercrossing experiment between the unisexual

strains (P7 male and 2P1 female) and a bisexual strain (P10),

clumps of reddish brown hypnozygotes were observed in both of

the two intercrossings: sexual male colonies of unisexual male

strain (P7) × isolated female colonies of bisexual P10 strain,

and sexual female colonies of unisexual female strain (2P1) ×
isolated male colonies of bisexual P10 strain (Fig. 3A and B).

Almost all of the female gametes developed into mature hyp-

nozygotes as in the sexual reproduction in the bisexual strain

(Fig. 2N). However, hypnozygotes were not observed in two con-

trol cultures that included only sexual male or female colonies

from the bisexual strain (Fig. 3C and D).

Survivability of F1 strains originating from such inter-

crossed zygotes (sexual male colonies of unisexual P7 × P10

sexual female colonies and sexual female colonies of unisex-

ual 2P1 × P10 sexual male colonies) was 0.76–0.84, whereas

that from the zygotes of unisexual parents (P7 × 2P1) was 0.84

(Table S3). Thus, no postzygotic isolation could be considered

between the bisexual strain and unisexual strains of P. starrii.

They all belong to the same biological species (Mayr 1942;

Aldhebiani 2018).

PlestMID GENE IN BISEXUAL STRAINS

Based on the genomic PCR of PlestMID, the two bisexual

strains (P10 and P85) showed presence of PlestMID as in

the unisexual male strains (Fig. S5). Genome sequences of

1608 bp PlestMID exon–intron regions (Fig. S3) of the two

bisexual strains were exactly identical to those of unisexual

male strains (NIES-1363 and P7). A PlestMID cDNA sequence

(818 bp) covering the entire coding regions (Fig. S3) obtained

from a sexually induced culture of the bisexual strain (P10)

was also identical to those of the unisexual male strain (P7)

(Table S5). Our semiquantitative RT-PCR of PlestMID
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demonstrated upregulation of this gene in sexually induced

cultures of the bisexual strain as in unisexual male strain (Nozaki

et al. 2006a; Fig. S6). Thus, PlestMID of the bisexual strain

might be functionally identical to that of unisexual male strains

of P. starrii.

ESTIMATION OF GENOME SIZES OF P. starrii

UNISEXUAL AND BISEXUAL STRAINS

By using the fluorescence value of nuclei of Volvox carteri strain

EVE (Ferris et al. 2010) somatic cells as control, genome sizes of

P. starrii unisexual male strain (NIES-1363) and bisexual strain

(P10) could be considered to be 0.7–0.9 times of the genome size

of control (Fig. S7). Thus, no genome duplication could be con-

sidered in the origin of the bisexual strain in P. starrii.

GENETIC ANALYSIS OF THREE TYPES OF SEX

To examine how three phenotypes of sex are inherited in P. star-

rii, we examined F1 strains obtained from intercrossing between

unisexual strains (P7 male and 2P1 female) and a bisexual strain

(P10). F1 strains originating from P7 male and P10 bisexual (us-

ing isolated female sexual colonies) were either unisexual male

(21 strains) or bisexual (17 strains) (Table 1). On the other hand,

F1 strains from 2P1 female and bisexual P10 (using isolated male

sexual colonies) exhibited three phenotypes, unisexual male (12

strains), unisexual female (21 strains), and bisexual (nine strains)

(Table 1).

Two alternating hypotheses could be considered to ex-

plain the three sex phenotypes maintained in a single biological

species, P. starrii (Fig. 4). Based on the presence and absence of

PlestMID in the unisexual male and unisexual female P. starrii

strains, respectively (Fig. S5), both hypotheses consider that the

unisexual male and female strains harbor MID-containing and -

lacking SDRs, respectively, as in other heterothallic volvocine

species (Hamaji et al. 2018). One of the two models proposes

a hypothesized bisexual factor (BF) localized on the autosomal

region, and BF and male and female haplotypes of SDRs or mat-

ing type locus (MT) (MTM and MTF, respectively) are needed

to maintain three sex phenotypes in P. starrii (Fig. 4A). Under

this hypothesis (“autosomal BF model”), MTM determines the

unisexual male or bisexual phenotype in the absence or pres-

ence of BF, respectively (Fig. 4A). MTF in the autosomal BF

model determines the unisexual female phenotype, irrespective

of the presence or absence of BF (Fig. 4A). The other model

(“bisexual MT model”) hypothesizes an additional type of SDR

(bisexual MT) that is an allele of MTM and MTF (Fig. 4B).

Thus, under the bisexual model, three types of SDR, namely,

MTM, MTF, and bisexual MT, directly determine the unisexual

male, unisexual female, and bisexual phenotypes, respectively

(Fig. 4B).

As shown in Figure 4, the results of sex phenotypes of F1

strains of intercrossing between unisexual female and bisexual

genotypes are different between these two hypotheses. In the au-

tosomal BF model, F1 strains are male, female, and bisexual at

the ratio of 1:2:1 when the parent female lacks BF (Fig. 4A).

This ratio was consistent with our genetic results of F1 between

unisexual and bisexual strains (Table 1). In contrast, the bisexual

MT model suggests that the F1 strains show only two phenotypes

of sex, namely, female and bisexual (1:1) (Fig. 4B). Therefore,

autosomal BF model is preferred to explain three sex phenotypes

of P. starrii.

To confirm the autosomal BF model by other genetic or

crossing results, we focused on two genotypes of unisexual fe-

male strains in this model: the unisexual female strains may ei-

ther have or lack BF (BF + MTF or BF – MTF, respectively)

(Fig. 4A). In contrast, female strains in the bisexual MT model

have only a single genotype (MTF) (Fig. 4A). To determine the

presence of these two genotypes of the unisexual female strains,

further crossing experiments were carried out by using F1 uni-

sexual female strains from intercrossing between unisexual fe-

male and bisexual genotypes because these F1 female strains may

have two genotypes, BF+MTF and BF – MTF (Fig. 4A). We

found two F1 female strains that showed different genetic results

when crossed with P7 male (Fig. S8). One F1 female strain (F1-

1) produced only male and female F2 strains (14 and 20 strains,

respectively) (Table S6). The other F1 female strain (F1-2) pro-

duced F2 strains of three sex phenotypes, male, female and bisex-

ual (5, 13, and 6 strains, respectively) (Table S6). These results

strongly indicate presence of two genotypes in the unisexual fe-

male strains of P. starrii and are consistent with the autosomal

BF model (Fig. 4A).

Conclusion
THREE SEX PHENOTYPES IN A SINGLE BIOLOGICAL

SPECIES

Intercrossing between closely related heterothallic and homothal-

lic strains has previously been reported in two algal groups. In

the zygnematalean Closterium peracerosum-strigosum-littorale

complex, formation of hybrid zygospores was observed between

heterothallic mating type plus and homothallic cells, but zy-

gospores were not formed in intercrossing between heterothallic

mating type minus and homothallic cells. In addition, formation

of hybrid zygospores between heterothallic and homothallic

cells was much less than that of the homothallic cells alone

(Tsuchikane et al. 2012). Formation of possible hybrid zygotes

based on intercrossing between female spheroids of Volvox reti-

culiferus (heterothallic) and male spheroids of Volvox africanus

(homothallic) was recently reported (Nozaki et al. 2015).
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Table 1. Results of intercrossings between Pleodorina starrii unisexual and bisexual strains.
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Figure 4. Schematic drawings of possible genotypes and intercrossings of Pleodorina starrii, on the basis of two alternative hypotheses.

Gray and yellow bars represent autosome and UV sex chromosome, respectively. Blue and red regions within UV chromosomes repre-

sent male sex-determining region (MTM), female sex-determining region (MTF), respectively. M: Unisexual male. F: Unisexual female. B:

Bisexual. (A) Genotypes and intercrossings of three sex phenotypes in autosomal bisexual factor (BF) model. Short green region within

autosome represents BF. Bisexual has both BF and MTM (BF + MTM), whereas unisexual male lacks BF (BF-MTM). Unisexual female has

two possible genotypes: lacking BF (BF-MTF) and having BF (BF + MTF). (B) Genotypes and intercrossings of three sex phenotypes in

bisexual MT model. Green region within UV chromosome represents bisexual sex-determining region (bisexual MT). Note that each of

three sex phenotypes has sex-specific MT.

However, such intercrossed zygotes become disintegrated within

three weeks (Nozaki et al. 2015). Therefore, a genetic barrier

exists between closely related heterothallic and homothallic en-

tities of Closterium and Volvox, representing different biological

species (Mayr 1942). In contrast, three sex phenotypes (male,

female, and bisexual) are naturally present within the same

biological species P. starrii (Fig. 1).

According to Goldstein (1964), “selfing male” strains were

recorded in several populations of Eudorina; selfing male strains

produced a small number of zygotes intraclonally, whereas a

large number of zygotes were formed when they were paired

with complementary female strains. However, detailed genetic

or molecular studies have not been performed in such pos-

sible bisexual strains, and presence of three types of sex

phenotypes within a single population was not described. Consid-

ering these studies and the present study, co-existence of three sex

phenotypes in a single biological species may not be an unusual

phenomenon in wild populations. The continued field-collection

studies may reveal further existence of three sex phenotypes in

other volvocine species.
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EVOLUTIONARY TRANSITION FROM

HETEROTHALLISM TO HOMOTHALLISM AMONG

VOLVOCINE ALGAE

In the volvocine algae, transition from heterothallism to ho-

mothallism might have occurred independently and repeatedly

(Hanschen et al. 2018; Nozaki et al. 2019), but the molecular and

genetic bases for this evolutionary event have been poorly un-

derstood. In mosses and liverworts, polyploidy is associated with

evolution of homothallism (monoecy) (Renner et al. 2017). How-

ever, the present comparison of genome sizes between P. starrii

unisexual male and bisexual strains suggests that genome dupli-

cation did not occur within this species (Fig. S7). The present

genetic analyses of the three sex phenotypes in Pleodorina starrii

demonstrated a possible autosomal factor (BF) that determines

the bisexuality in the presence of MTM. Thus, evolution of such

an autosomal factor in the ancestral heterothallic species might

have occurred in the initial stage of transition from heterothallism

to homothallism in some ancestral volvocine algae.
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