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BRP-39 and its human homolog YKL-40 have been regarded as a prototype of chitinase-like proteins (CLP) in mammals. Exaggerated levels of YKL-
40 protein and/or mRNA have been noted in a number of diseases characterized by inflammation, tissue remodeling, and aberrant cell growth. Asth-
ma is an inflammatory disease characterized by airway hyperresponsiveness and airway remodeling. Recently, the novel regulatory role of BRP-39/
YKL-40 in the pathogenesis of asthma has been demonstrated both in human studies and allergic animal models. The levels of YKL-40 are increased 
in the circulation and lungs from asthmatics where they correlate with disease severity, and CHI3L1 polymorphisms correlate with serum YKL-40 
levels, asthma and abnormal lung function. Animal studies using BRP-39 null mutant mice demonstrated that BRP-39 was required for optimal aller-
gen sensitization and Th2 inflammation. These studies suggest the potential use of BRP-39 as a biomarker as well as a therapeutic target for asth-
ma and other allergic diseases. Here, we present an overview of chitin/chitinase biology and summarize recent findings on the role of BRP-39 in the 
pathogenesis of asthma and allergic responses.
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INTRODUCTION

BRP-39 was discovered in mouse breast cancer cells.1 Subse-
quently, a variety of homologues with different names were de-
scribed including human HcGP-39, human YKL-40, porcine 38 
kDa heparin-binding glycoprotein (GP38K), bovine 39 kDa 
whey protein and drosophila Imaginal Disc Growth Factors.2-5 

BRP-39 and YKL-40 are on chromosomes 1 and 2 in mouse and 
human, respectively, and are synthesized as 39 kDa proteins 
that lack chitinase activity. A variety of lines of evidence in a va-
riety of species and modeling systems have implicated BRP-39-
like molecules in the pathogenesis of tissue remodeling. In the 
breast, the expression of BRP-39 homologue, bovine 39 kDa 
whey protein, are increased during the involution phase after 
the cessation of lactation where they are felt to play an impor-
tant role in the ongoing extensive glandular remodeling.2 In 
drosophila, BRP-39-like and YKL-40-like molecules that lack 
chitinase activity have been shown to be growth factors5 and in 
porcine systems, GP38K induces the differentiation of cultured 
vascular smooth muscle cells.4 Human YKL-40 is also produced 
by cultured chondrocytes and synovial cells where it regulates 
cell proliferation and survival3 and has mitogenic effects on hu-
man skin and lung fibroblasts and synoviocytes.6 Interestingly, 
YKL-40 may also play an important role in disease pathogene-
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sis because circulating levels of this moiety are elevated in a va-
riety of diseases including metastatic breast cancer, hepatic fi-
brosis, severe purulent meningitis and community acquired 
pneumonia.7-10 Increased levels of YKL-40 have also been noted 
in rheumatoid arthritis, atherosclerosis and osteoarthritis where 
they correlate with disease activity.11-13 Recently, studies from 
our laboratory and others demonstrated that the levels of YKL-
40 were increased in the circulation and lungs from asthmatics 
where they correlated with disease severity and CHI3L1 poly-
morphisms correlated with serum YKL-40 levels, asthma and 
abnormal lung function.14-16 An additional promoter variant of 
CHI3L1 has been identified to be associated with atopic phe-
notypes in children.17 In addition, recent studies using BRP-39 
null mutant mice demonstrated blunted Th2 inflammatory re-
sponses when subjected to ovalbumin sensitization and chal-
lenge, further highlighting an important in vivo role of BRP-39 
in the pathogenesis asthma or other allergic diseases.18 This re-
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view briefly overviews the general biology of the chitin/chitin-
ases and then focuses on the biological role of BRP-39/YKL-40 
in the pathogenesis of asthma and allergic responses.

BIOLOGY OF CHITIN, CHITNASES, AND CHITNASE-LIKE 
PROTEINS

Chitin and chitinases
Chitin is a polymer of N-acetylglucosamine which has no 

mammalian counterpart. Following the cellulose in wood and 
paper, chitin is the second most abundant polysaccharide in na-
ture. It is an essential component of fungal cell walls, the exo-
skeletons of crabs, shrimp and insects, the microfilarial sheath 
of nematodes and the digestive tracts of many insects.19-26 These 
pathogens use chitin in a number of ways in their life cycles. 
Most commonly, chitin protects the pathogen from the harsh 
conditions inside the animal or plant host or in its environ-
ment.27 Thus, an absence of chitin can lead to the death of the 
pathogen. Chitin deposition is regulated by biosynthesis and 
degradation. Chitinases, which are endo-b-1,4-N-acetylglucos-
amidases, are key degrading enzymes that have been studied 
most intensely in lower life forms. They are produced in signifi-
cant quantities by hosts defending against infections with chi-
tin-containing organisms. This attempt to damage the chitin 
coat of the infecting organism is part of the innate immune re-
sponse against a chitin-containing pathogen.19 It also produces 
differentially sized chitin fragments which can trigger innate im-
munity pattern recognition receptors to induce IL-17, TNF and/
or IL-10 elaboration.19,28,29 Chitinases also contribute to the life 
cycle of chitin-containing fungi and parasites where they con-
trol growth and molting. They are also used by pathogens to in-
vade or exploit chitin-containing structures in the host. This al-
lows them to establish successful infections and thus play a criti-
cal role(s) in the transmission of infection from one vertebrate 
host to another by insect vectors.26,27,30 As a result of the impor-
tance of chitin in the protection of pathogens and the impor-
tance of appropriately regulated chitinase production in the life 
cycle of pathogens, chitin synthesis inhibitors and chitinase in-
hibitors have received significant attention as potential biopes-
ticides to eradicate insects, fungi and helminthic parasites.31,32

Mammalian chitinase and chitinase-like genes 
Until recently it was assumed that mammals lacked chitinas-

es. Recent studies in humans and rodents, however, have iden-
tified a family of chitinases and CLP in both species referred to 
as the 18 glycosyl hydrolase family. Acidic mammalian chitin-
ase (AMCase), chitotriosidase, oviductin, YKL-40 and YKL-39 
have been described in humans, while YM-1, YM-2, AMCase, 
oviductin, and BRP-39 have been described in mice.20,21,33-35 Re-
cent studies from our laboratory have also described mouse 
chitotriosidase.36 YM-1 and YM-2 may be mouse-specific be-
cause comparable genes have yet to be described in man. They 

are produced by macrophages after parasitic34 or fungal infec-
tion.37 AMCase is produced by epithelial cells, macrophages 
and eosinophils at sites of Th2 inflammation.38 Interestingly, IL-
13 is necessary and sufficient for the induction of this chitin-
ase.38 In all cases, these moieties have a moderate degree of se-
quence homology with lower life form chitinases. However, in 
contrast to the chitinases in lower life forms, only chitotriosi-
dase and AMCase have true chitin-degrading activity.20 Be-
cause of mutations in their highly conserved putative enzyme 
sites, BRP-39, YKL-40 and the other CLP do not have chitinase 
activity.33,34 As a result, their roles in biology are particularly 
enigmatic. A complete understanding of the biology of the chi-
tinases and CLP requires elucidation of the roles of true chitin-
ases and the chitinase-like proteins. Insights into the roles of 
AMCase have been obtained from studies in our laboratory38 
and others.39 Recent studies using transgenic and null mutant 
mice shed on light on the biologic properties of BRP-39 and 
YKL-40, the murine and human versions of this prototypic CLP 
in the development of allergic responses and tissue remodel-
ing.18

Functions of mammalian chitinase-like proteins 
One of the most pressing issues in chitinase biology relates to 

our almost complete lack of understanding of the functions of 
these strongly conserved (and therefore presumably biological-
ly important) moieties in mammals and man.33 Mammalian 
CLP are induced at sites of inflammation (such as parasitic in-
fections)34 and remodeling.9 This raises the possibility that these 
molecules play active roles in human anti-parasite and anti-in-
fective defense and repair responses. In accord with this con-
cept, microarray analysis has demonstrated that the genes en-
coding chitinases are among the most prominently induced 
genes in parasite-challenged40 or IL-13-challenged lung tissue.41 
It is important to point out, however, that the majority of the 
mammalian chitinase-like molecules do not have true chitinase 
activity (only chitotriosidase and AMCase have chitinolytic ac-
tivity). Thus, the biologic roles of these molecules are even less 
adequately understood. It is reasonable to believe, however, 
that mammalian enzymes with true chitinase activity (such as 
AMCase and chitotriosidase) can play a direct role in host re-
sponses to chitin-containing pathogens.39 It is also reasonable 
to postulate that chitinase-like proteins such as BRP-39/YKL-40 
can also: (a) play a role as sentinels that trigger responses to par-
asites, infections and/or antigen challenge; (b) attract eosino-
phils and T cells to sites of parasitic infection34,35,42 and/or; (c) 
generate or modulate tissue inflammation, immunity and/or 
remodeling. Recently, with the development of BRP-39 null 
mutant mice and lung specific YKL-40 overexpressing trans-
genic mice, in vivo regulatory role of BRP-39/YKL-40 in allergic 
inflammation and tissue response have been described.18 These 
studies demonstrated that BRP-39 is a key regulator of Th2 in-
flammation, M2 macrophage differentiation and Th2 cell and 
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macrophage apoptosis/cell death. These findings provide novel 
insights into the in vivo roles of BRP-39 in allergic sensitization 
process and effector function of Th2 cytokines. They represent a 
new level of understanding about the processes that regulate 
inflammatory cell survival and tissue remodeling responses, the 
pathologic hallmarks of asthma and allergic diseases.

Chitinase and chitinase-like proteins (C/CLP) in tissue
remodeling 

Recently, a number of studies suggest an important role of C/
CLP in disease pathogenesis characterized by inflammation 
and pathologic tissue remodeling. The activity and levels of chi-
totriosidase in serum and BAL were higher in the patients with 
sarcoidosis, or with idiopathic pulmonary fibrosis, than in con-
trols.43,44 Several studies also suggested that CLP such as YKL-40 
or mouse Ym-1 or Ym-2 could be involved in tissue remodeling 
processes. Serum YKL-40 was significantly related to the degree 
of liver fibrosis, and staining of YKL-40 antigen was higher in 
areas with fibrosis, particularly in areas with active fibrogene-
sis.45,46 The animal models that accompany this tissue remodel-
ing process also demonstrated significant changes in C/CLP 
expression at sites of inflammation or remodeling. Th2-induc-
ing pathogens Schistosoma mansoni and Nippostrongylus 
brasiliensis cause granulomatous inflammation and liver fibro-
sis in the infested mice. In that model, AMCase and Ym-1 ex-
pression were significantly increased along with type 2 cyto-
kines such as IL-13 and IL-4.47 In the mice with pulmonary fi-
brosis induced by crystalline silica exposure,48 or herpesvirus,49 
there are close associations between expression of C/CLP and 
the degree of tissue remodeling. In this regard, it is intriguing to 
speculate that C/CLP, such as AMCase or YKL-40, play an im-
portant role in tissue remodeling process in chronic asthmatic 
patients. However, it is still not clear whether C/CLP actively 
participate in the tissue remodeling process or indirectly mod-
ulate the process through regulation of other cytokines and/or 
growth factors. Further mechanistic studies using specific gene 
targeted animal models or transgenic models will be required 
to define more specific functions of C/CLP in tissue remodeling 
processes. 

REGULATORY ROLE OF BRP-39/YKL-40 IN ASTHMA AND 
ALLERGIC RESPONSES 

Role of BRP-39 in allergic inflammation and tissue remodeling
Recently, BRP-39 null mutant mice and lung-specific YKL-40 

overexpressing transgenic mice have been generated and used 
to define the functional role of BRP-39 in allergic and Th2 cyto-
kine effector functions.18 These studies demonstrated that the 
null mutant mice have a significant defect in antigen-induced 
Th2 inflammation and IL-13-inuced inflammation and remod-
eling. These studies further demonstrated that BRP-39 and 
YKL-40 accomplish this, at least in part, by inhibiting inflam-

matory cell (T cell, macrophage and eosinophil) apoptosis/cell 
death while inhibiting Fas expression and stimulating protein 
kinase B/AKT phosphorylation. BRP-39 and YKL-40 were also 
shown to stimulate dendritic cell accumulation and activation, 
and to induce alternative macrophage activation. These studies 
suggest that BRP-39 may involve multiple stages of allergic re-
sponses by regulation of sensitization and Th2 cytokine effector 
functions. The defects in antigen sensitization and Th2 inflam-
mation in BRP-39 null mutant mice can be explained by a 
marked decrease in the numbers of myeloid and plasmacytoid 
dendritic cells and the ability of these cells to be activated after 
antigen exposure. The hypothetical regulatory pathways of 
BRP-39 in allergic inflammation and tissue remodeling re-
sponse has been illustrated in the Fig. 1. However, the exact 
regulatory mechanism of BRP-39 in dendritic cell function to 
drive Th2 polarization still remains to be determined. The spe-
cific role of BRP-39 in allergic response was further supported 
by the rescue experiment by generating BRP-39 null mice with 
epithelial cell-specific YKL-40 transgenic mice. In these mice, 
the epithelial YKL-40 totally rescues the deficient Th2 response 
in BRP-39 null animals, suggesting that secreted YKL-40 is an 
important soluble factor driving asthma-like Th2 inflammatory 
responses. These studies also identified a novel regulatory func-
tion of BRP-39 in IL-13-induced tissue fibrosis. Previous studies 
from our laboratory demonstrated that the fibrogenic effects of 
IL-13 are mediated, at least in part, by the ability of IL-13 to in-
duce and activate TGF-b1.50 Intriguingly, TGF-b1 induction of 
the lungs of IL-13 transgenic mice was significantly decreased 
in mice with a deficiency of BRP-39. It may explain the general 
regulatory role of BRP-39 in tissue remodeling in various dis-
eases. However, the cellular and molecular mechanism of BRP-
39 intervening IL-13-induced TGF-b1 production and activa-
tion need to be further determined. Finally, BRP-39 has a po-
tent regulatory role in cell death responses that may responsible 
for proinflammtory roles of BRP-39 in allergic inflammation 
and in other inflammatory diseases, at least in part. BRP-39 has 
been shown to inhibit Fas- or TNF-a-induced cellular apopto-
sis while enhancing PKB/Akt pathways in macrophages and T 
cells.18 The properties of YKL-40 in activating MAP kinase and 
PKB/Akt pathways have been demonstrated in in vitro assays 
with connective tissue cells.6 Inflammatory cell apoptosis has 
been regarded as a mechanism of resolution of inflamma-
tion.51,52 Thus, further mechanistic evaluation on the regulatory 
role of BRP-39 in specific apoptosis pathways will be necessary 
to understand the in vivo function of BRP-39 in asthmatic in-
flammation and tissue remodeling.

YKL-40 as a biomarker and potential therapeutic target 
A variety of inflammatory cells (e.g., neutrophils, macro-

phages and differentiating monocytes) as well as structural 
cells (e.g., differentiated smooth muscle cell, chondrocytes, sy-
novial cells, endothelial cells, and tumor cells) endogenously 
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express YKL-40.3,53-58 Intriguingly, increased levels of YKL-40 
protein and/or mRNA have been noted in a variety of diseases 
characterized by inflammation, tissue remodeling, and aber-
rant cell growth. They include rheumatoid arthritis,59 osteoar-
thritis,60 giant cell arthritis,61 sarcoidosis,62 sclerosis,63 diabetes,64 
atherosclerosis,65,66 inflammatory bowel disease,67 liver fibro-
sis45,68 and several malignancies.58,69,70 Recently, elevated levels 
of YKL-40 in the BAL and serum in smokers with COPD were 
reported.71 These significant associations of YKL-40 with a vari-
ety of disease development or progression renders YKL-40 as a 
useful diagnostic or prognostic biomarker.72,73 In addition, in 
many of these disorders the levels of YKL-40 reflect the activity 
and natural history of the disease.13,14,74,75 This is nicely illustrat-
ed in studies from our laboratory and others which demon-
strated that elevated levels of serum YKL-40 are seen in patients 
with asthma which correlate with the levels of lung tissue YKL-
40 and disease severity.14 These studies also highlighted poly-
morphisms in chitinase 3-like-1 that correlated with the levels 
of circulating YKL-40, the presence of asthma, and compro-
mised lung function.15 The potential importance of YKL-40 can 
also be seen in rheumatoid arthritis, coronary artery disease, 
solid cancers and death in the elderly where elevated serum 
YKL-40 levels correlate with the severity of joint involvement, 
the number of blocked coronary arteries, short disease free in-

tervals, and all cause mortality, respectively.13,74,76,77 As a result, 
YKL-40 is a prognostic biomarker and has been proposed to be 
a therapeutic target in conditions characterized by acute or 
chronic inflammation, extracellular matrix remodeling, fibrosis 
and cancer.76-78 In this regard, recent animal studies demon-
strating an essential role of BRP-39 in the pathogenesis of aller-
gic inflammation and tissue remodeling,18 legitimate the use-
fulness of BRP-39/YKL-40 as a therapeutic target for asthma 
and other allergic diseases.

UNSOLVED ISSUES AND FUTURE RESEARCH NEEDS 

Mechanisms underlying BRP-39/YKL-40 effector responses 
BRP-39/YKL-40 is a secreted protein that is synthesized with a 

propeptide that is removed to reveal the mature protein. X-ray 
crystal analysis has revealed a (beta/alpha) 8 barrel fold with a 
43 AA carbohydrate binding cleft.79 Despite this structural 
knowledge, the carbohydrate binding repertoire of BRP-39/
YKL-40 has not been fully defined. Its ability to bind with high 
affinity to chitin has been noted above. Recently, it has been 
shown to bind to heparin and collagen with lower affinity. The 
roles of BRP-39/YKL-40 in inflammation, remodeling and an-
giogenesis and its ability to act as a mitogen, chemotactic factor 
and growth factor are believed to be the result of cell surface li-

Fig. 1.  The proposed regulatory pathway of BRP-39 in allergic inflammation and tissue remodeling. Macrophages and epithelial cells are the primary cells expressing 
BRP-39 in the lung after allergen sensitization and challenge. BRP-39 increases the dendritic cell numbers in the lung  and further activates and leads to enhanced Th2 
polarization. BRP-39 also increases Th2 cells by reduction of T cell apoptosis or increase of cell survival. TGF-b or other growth factors produced by Th2 cytokine stimu-
lation leads to airway or alveolar remodeling. BRP-39 and Th2 cytokines such as IL-13 or IL-4 further contribute to the production of BRP-39 via regulation of cell death 
responses or alternative macrophage activation.
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gand binding events.79 In accord with this concept, BRP-39/YKL-
40 has been shown to activate mitogen activated protein kinase 
(MAPK), PI-3 kinase (PI3K) and PKB/Akt79 signaling pathways. 
While the activation of these pathways is linked to ligand bind-
ing to a cell surface receptor, no cell surface BRP-39/YKL-40 
binding proteins have been identified. In fact, a biologically ac-
tive receptor for any C/CLP has not been identified. Thus, the 
identification of the ligand-receptor interactions that mediate 
the effector responses of BRP-39/YKL-40 and related moieties is 
one of the most pressing challenges in C/CLP biology.79 

BRP-39 in allergic sensitization and allergic responses with chi-
tin or chitin-containing allergen 

Although it has been shown that BRP-39 is required for opti-
mal sensitization with ovalbumin (non-chitin containing aller-
gen),18 the exact role of BRP-39 in sensitization processes is still 
largely undefined. How dose BRP-39/YKL-40 regulate dendritic 
cell functions or subsequent T cell polarization? What is the 
role of BRP-39/YKL-40 in allergic responses with chitin or chi-
tin-containing allergens (e.g., house dust mite, pollen, Ragweed 
etc.) other than ovalbumin? Although some evidence suggests 
that BRP-39 plays a similar role with chitin-containing house 
dust mite challenge as with ovalbumin,18 the regulatory role of 
BRP-39 in allergic responses with chitin or chitin-containing al-
lergen has not been fully evaluated. Those are the remaining 
questions that need to be fully addressed in the future for a 
clearer understanding on the role of BRP-39/YKL-40 in asthma 
and other allergic responses. 

Potential interaction of BRP-39 with AMCase or other C/CLP
Previous studies demonstrated that AMCase also play an im-

portant role in allergen-induced Th2 inflammation and effector 
function of IL-13.38 Because these functional similarities, it rais-
es the question regarding a potential redundancy of C/CLP in 
the regulation of allergic inflammation. Although there is over-
lap in the expression and regulatory pathways between these 
two molecules, many pieces of evidence suggest specific regu-
latory roles of BRP-39 that are distinctive from those of AM-
Case.18 First, the regulation of the expression of BRP-39 and 
AMCase is not the same: IL-13 induces both AMCase and BRP-
39, but BRP-39 was induced by IFN- while AMCase was not. 
Second, double immunohistochemisty demonstrated that sites 
of BRP-39 and AMCase differentially expressed, depending on 
the cells. BRP-39 staining was more pronounced in alveolar ep-
ithelial cells and macrophages, while AMCase had its abun-
dance in airway epithelial cells. Lastly, the levels of AMCase 
were not significantly changed in IL-13 transgenic lungs with 
BRP-39 null mutation. Because IL-13-induced inflammatory 
and tissue phenotypes were drastically changed in the absence 
of BRP-39, we can speculate that BRP-39 is required for IL-13 
effector functions independent of AMCase. However, we still 
do not have clear answers regarding whether these two mole-

cules have close interaction in the regulation of allergic re-
sponses, partly because currently we do not have appropriate 
murine models such as AMCase null mutant mice or transgen-
ic mice to evaluate specific function of AMCase in relation to 
BRP-39. In this regard, comprehensive in vivo and in vitro stud-
ies to define potential C/CLP interactions will be necessary to 
understand C/CLP regulation of allergic responses.

CONCLUSIONS

YKL-40, a human homolog of BRP-39, a chitinase-like protein, 
has been reported to be associated with a number of diseases 
characterized by inflammatory and tissue remodeling respons-
es. However, the in vivo role of BRP-39/YKL-40 in the patho-
genesis of specific diseases has been elusive until the recent de-
velopment of gene-specific null mutant mice and overexpress-
ing transgenic mice. Studies from our laboratory demonstrate 
that BRP-39 is stimulated by IL-13 and Th2 inflammation and 
that null mutations of BRP-39 diminish Th2 and IL-13-induced 
inflammation and remodeling.18 They also demonstrate that 
BRP-39/YKL-40 inhibits T cell and macrophage apoptosis/cell 
death while inhibiting Fas expression, increasing the activation 
of PKB/Akt and inducing M2 macrophage differentiation.18 
When combined with the recent demonstration that the levels 
of YKL-40 are increased in the circulation and lungs from asth-
matics where they correlate with disease severity14 and that 
CHI3L1 polymorphisms correlate with serum YKL-40 levels, 
asthma and abnormal lung function,15 these studies further 
provide novel insight on the regulatory roles of BRP-39 in IL-13 
and/or Th2-mediated inflammation and tissue responses. They 
also legitimate the usefulness of BRP-39/YKL-40 as a diagnostic 
biomarker as well as potential therapeutic target of asthma and 
other allergic inflammatory diseases. For better understanding 
of the effector function of BRP-39/YKL-40 in inflammation and 
tissue remodeling, more mechanistic studies directed to define 
the molecules that interact with these chitinase-like proteins 
such as receptor or signaling proteins, will be warranted in the 
future.
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