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ABSTRACT: An untargeted metabolomics workflow for the
detection of metabolites derived from endogenous or exogenous
tracer substances is presented. To this end, a recently developed
stable isotope-assisted LC−HRMS-based metabolomics work-
flow for the global annotation of biological samples has been
further developed and extended. For untargeted detection of
metabolites arising from labeled tracer substances, isotope
pattern recognition has been adjusted to account for nonlabeled
moieties conjugated to the native and labeled tracer molecules.
Furthermore, the workflow has been extended by (i) an optional
ion intensity ratio check, (ii) the automated combination of
positive and negative ionization mode mass spectra derived from fast polarity switching, and (iii) metabolic feature annotation.
These extensions enable the automated, unbiased, and global detection of tracer-derived metabolites in complex biological
samples. The workflow is demonstrated with the metabolism of 13C9-phenylalanine in wheat cell suspension cultures in the
presence of the mycotoxin deoxynivalenol (DON). In total, 341 metabolic features (150 in positive and 191 in negative
ionization mode) corresponding to 139 metabolites were detected. The benefit of fast polarity switching was evident, with 32 and
58 of these metabolites having exclusively been detected in the positive and negative modes, respectively. Moreover, for 19 of the
remaining 49 phenylalanine-derived metabolites, the assignment of ion species and, thus, molecular weight was possible only by
the use of complementary features of the two ion polarity modes. Statistical evaluation showed that treatment with DON
increased or decreased the abundances of many detected metabolites.

Untargeted metabolomics approaches probe the entire
metabolic space of a biological system (e.g., cells or whole

organism). This can be realized by trying to measure as many
metabolites as possible or alternatively by searching for those
metabolites that arise from either exogenous or endogenous
substances such as toxins, drugs, or sugars and amino acids,
respectively. The screening of such metabolites in LC−HRMS
data is rather straightforward when performed in (a) a targeted
way with positive lists of putative biotransformation products
(e.g., Levsen et al.,1 Sandermann2). In contrast, untargeted
approaches are usually more challenging and aim at the
detection of known and unknown metabolic products by (b)
background subtraction and/or statistical investigation (e.g.,
Zhang et al.3) or (c) isotopic labeling, including stable isotopic

labeling (SIL)-assisted approaches. Although the search
according to approach a is limited to the subset of predicted,
putative tracer derived conjugates (e.g., sugars, amino acids,
small peptides) or degradation products known from literature
and previous approaches, approach b also enables detecting
previously unknown metabolites, but also requires more
sophisticated data processing than approach a. Furthermore,
the latter approach is prone to detect non-tracer-related
metabolites, significantly differing between the investigated
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sample types. In contrast, approach c provides an easy way to
detect both known and unknown tracer-derived metabolites
and has the advantage over both a and b that the detected
metabolites can be linked to the studied tracer substance (e.g.,
Baillie,4 Iglesias et al.5).
To avoid the use of radioisotopes, SIL-assisted metabolism

studies use stable isotope (e.g., 13C, 15N, or 34S)-enriched
tracers and assume that biological systems metabolize native
and labeled variants of a supplied tracer nearly equally.6 Cabaret
and colleagues7 studied U-13C sterigmatocystin in porcine
tracheal epithelial cells, and Li and colleagues8 utilized
deuterium labeling together with a principal component
analysis guided approach to detect novel metabolites of the
drug tempol.
For GC/MS-based, untargeted tracer metabolism studies,

Hiller and colleagues9 presented the NTFD (nontargeted tracer
fate detection) algorithm, which detects changes and metabolic
fluxes derived from labeled tracers in the primary metabolome.
For LC−HRMS-based tracer metabolization approaches,
several software tools designed for the untargeted detection
and analysis of isotope patterns of metabolites derived from
native and partly isotopically labeled tracers are available (e.g.,
mzMatch-ISO,10 X13CMS11). However, to the best of our
knowledge, no tools for the automated global and highly
selective detection of only those metabolites derived from
native and labeled tracers with nonoverlapping isotope patterns
are currently available.
Thus, a LC−HRMS-based workflow for the unbiased

detection of known and unknown metabolites derived from
U-13C-SIL guided tracer metabolism was developed. It is based
on our recently published workflow for the detection of
metabolic features derived from native and fully labeled
biological samples,12 which has been further developed to
support fast polarity switching and automated annotation of
metabolic features of the detected metabolites. In contrast, to
the currently existing workflows, such as mzMatch-ISO or
fluxomics applications, which have been designed to detect
shifts of relative abundances in native isotope patterns, the
presented approach requires distinct, nonoverlapping isotope
patterns and is capable of detecting metabolites for which the
native and labeled analogues differ by ≥4 u. Therefore, it is
mainly suited to study the secondary metabolism of a biological
system of interest rather than to support the elucidation of
primary metabolism. Moreover, the use of nonoverlapping
isotope patterns enables determining the exact number of
incorporated carbon atoms of the employed tracer in the
respective biotransformation product and thus improves sum
formula and metabolite annotation. At a less advanced stage,
the presented concept has already been used successfully to
study the metabolic fate of the mycotoxin deoxynivalenol
(DON) in wheat (Triticum aestivum, Kluger et al.13) and the
fate of the aromatic amino acid phenylalanine in grape berries
(Vitis vinifera, Chassy et al.14). Here, our approach is presented
with the metabolism of the endogenous amino acid phenyl-
alanine in wheat cell suspension cultures in the presence or
absence of the Fusarium virulence factor DON. Phenylalanine
was chosen as a tracer because it serves as precursor for the
biosynthesis of hydroxycinnamic acids, phenylpropanoids, and
flavonoids in plants, many of which are known to be involved in
the defense against fungal pathogens such as Fusarium.15

■ MATERIALS AND METHODS

Chemicals. Acetonitrile (ACN, HiPerSolv Chromanorm,
HPLC gradient grade) was purchased from VWR (Vienna,
Austria), methanol (MeOH, LiChrosolv, LC gradient grade)
was purchased from Merck (Darmstadt, Germany), and formic
acid (FA, MS grade) was obtained from Sigma-Aldrich (Vienna,
Austria). Water was purified successively by reverse osmosis
and an ELGA Purelab Ultra-AN-MK2 system (Veolia Water,
Vienna, Austria). U-13C9 phenylalanine (U-13C9 Phe; 99.1%
13C) was purchased from Euriso-top (Saarbrücken, Germany).

Biological Experiment (Figure 1, Step 1). Aliquots (3.6
mL) of T. aestivum (Tae) cell suspension cultures in B5
medium (Supporting Information S1.1) were incubated with
400 μL of aqueous solutions differing in composition according
to the three tested conditions (3 replicates per condition).
Thus, each culture sample resulted in a final volume of 4 mL.
For the condition “control”, 200 μL of U-13C9 Phe stock
solution (final concentration in culture: 25 mg/L) and 200 μL
of H2O dist. were added to the culture. For cocultivation with
DON (condition “treatment”), 200 μL of U-13C9 Phe stock
solution (final concentration in culture: 25 mg/L) and 200 μL
of DON stock solution (final concentration in culture: 90 mg/
L) were added. For the condition “blank” 400 μL of H2O dist.
was added to 3.6 mL of cell suspension culture. All Tae cell
suspension cultures were grown in 25 mL Erlenmeyer flasks for
8 days at 20 °C in the light with shaking (100 rpm). In
addition, two medium blanks without cell suspension cultures
were prepared in parallel.

Sample Preparation. After cultivation, 2 mL of each
sample was transferred into savelock Eppendorf tubes and
centrifuged for 5 min at 5000g. The weight of each cell pellet
was determined, and 350 μL MeOH and 2 × 5 mm steel balls

Figure 1. Illustration of the workflow for SIL-assisted tracer
metabolism studies, including LC−ESI-HRMS fast polarity switching.
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were added prior to wet milling with a ball mill (MM 301
Retsch, Haan, Germany). Samples were homogenized for 2 min
at 30 Hz, and the suspension was transferred to new Eppendorf
tubes and centrifuged for 5 min at 20 000g. From the resulting
extract, 200 μL was mixed with 200 μL of H2O dist. and
centrifuged for 10 min at 20 000g again. An aliquot of 300 μL of
this sample solution was transferred to an HPLC vial and
stored at −80 °C until further analysis.
LC−HRMS Analysis (Figure 1, Step 2). All samples were

analyzed on a UHPLC system (UltiMate 3000, Dionex)
coupled to an Orbitrap Exactive Plus (Thermo Fisher
Scientific) equipped with a heated electrospray ionization
(ESI) source. A Dionex autosampler was used for the injection
of 10 μL per sample for chromatographic separation at 25 °C
on a reversed-phase XBridge C18 150 × 2.1 mm i.d., 3.5 μm
column (Waters, Milford, MA, USA) preceded by a C18 4 × 3
mm i.d. security cartridge (Phenomenex, Torrance, CA, USA).
At a constant flow rate of 250 μL/min, a linear gradient
program with water containing 0.1% FA (v/v) (eluent A) and
MeOH containing 0.1% FA (v/v) was employed;12 the initial
mobile phase composition (10% eluent B) was held constant
for 2 min, followed by a linear gradient to 100% eluent B within
30 min. After a hold time of 5 min, the column was re-
equilibrated for 8 min at 10% eluent B.
The heated ESI interface was operated in fast polarity-

switching mode using the following settings for both polarities:
sheath gas, 50 au; auxiliary gas, 5 au; capillary voltage, 3 kV;
capillary temperature, 350 °C. FT-Orbitrap was operated in
profile mode (scan range, m/z 100−1000) with a resolving
power of 70 000 fwhm (at m/z 200) and automatic gain control
setting of 3 × 106 with a maximum injection time of 200 ms.
SIL-Assisted Data Processing (Figure 1, Steps 3 and

4). The SIL-assisted data processing for metabolite detection in
full metabolome labeling experiments described earlier12 was
extended to support the detection of tracer-derived metabolites.
It is part of a software package that is currently under
development and will comprise three different data processing
workflows for SIL-assisted metabolomics approaches. In the
meantime, the software module facilitating data processing
according to the presented workflow is accessible via the
corresponding author.
Each of the following data processing steps for metabolic

feature detection is carried out independently for the positive
and negative ionization mode: First, every MS scan is inspected
for pairs of two mass peaks, M, which corresponds to a native
metabolization product, and M′, which denotes the same
metabolization product but contains the labeled tracer molecule
or a part of it, with an m/z difference proportional to the
number of tracer-derived heavy isotope atoms (here, 13C)
present in the labeled metabolite ion (step 3a). A peak pair is
accepted if the observed mass difference is within a preset
maximum mass tolerance window of that calculated for the
algorithm-predicted number of heavy isotopes. Optionally, for
exogenous tracers, the intensity ratio IM:IM′ is compared with
that of the concentration ratio of native and labeled tracer used
for sample incubation (step 3b).
Next, the observed isotopolog ratio IM′−1/IM′ is compared

with its theoretical ratio expected from the number of labeling
isotopes contained in the inspected metabolite ion (step 3a).
The corrected intensity ratio of the isotopologs IM+1/IM −
IM′+1/IM′, which accounts for any carbon atom in the
nonlabeled moiety, is compared with its theoretical ratio as
determined for the number of labeling isotopes of the

respective M and M′ ion pair. All intensity ratio checks are
passed if the relative deviation between the expected and the
observed ion intensity ratios are within preset error windows.
Then, all such detected M and M′ pairs from different scans are
combined with hierarchical clustering using the assigned
number of heavy isotopes per metabolite ion and the m/z
value of M. Clusters showing a maximum relative mass
deviation between their highest and lowest m/z value of less
than a preset threshold in parts per million are not further split.
Next, for each M and M′ ion cluster, chromatographic peaks

in the corresponding 12C/13C EICs are extracted with the
wavelet algorithm of Du et al.16(step 3c). Only those EIC peaks
that are found for both 12C and corresponding 13C m/z traces
closely coelute and have a high Pearson correlation coefficient
remain for further data processing. Incorrectly detected M and
M′ pairs that originate from carbon isotopologs (e.g., M + 1
instead of M or M′ − 1 instead of M′) are removed from the
data (step 3d). Correctly assigned chromatographic peak pairs
are finally listed as metabolic features, each consisting of a 12C
monoisotopic m/z for M, a retention time (tR), feature areas
determined for the EIC peaks of M and M′, and the number of
heavy isotopes originating from the tracer.
Following metabolic feature detection, all features found in

positive or negative ionization mode are combined across both
ionization polarities to generate feature groups, each of which
represents a distinct metabolite (step 3e). To this end, the
Pearson correlation coefficient is calculated pairwise for closely
coeluting metabolic features. All metabolic features with a
correlation coefficient above a preset threshold are put into the
same feature group.
Subsequently, each determined feature group is annotated

(step 4). For this, all features of a feature group are inspected
pairwise for m/z differences corresponding to predicted ion
species frequently found for the respective ionization mode. For
metabolic features without a valid adduct pairing, neutral losses
are calculated according to the Seven Golden Rules.17

LC−HRMS data derived from wheat cell suspension culture
samples were processed as described above with the following
parameter settings: (step 3a) Isotopic carbon enrichment,
98.9% 12C; 99.1% 13C9-Phe; Δ m/z 12C/13C, 1.00335 u; atom
counts, 6−9; minimum intensity threshold of putative M and
M′ signals, 50 000 counts; maximum mass deviation between
M and putatively corresponding M′ signals, ±3 ppm; maximum
isotopolog ratio error, 20%. (step 3c) EIC m/z width, ± 5 ppm;
minimum correlation coefficients between EIC peaks of M and
M′, 0.75 for peak picking and 0.9 for feature grouping (step
3e). (step 4) Adducts used for feature annotation, [M + H]+,
[M + Na]+, [M + NH4]

+, [M + K]+, [M − e]+, [M − H]−, [M
+ FA − H]−, [M + Na − 2H]−, [M + Cl]−, [M + K − 2H]−,
[M + Br]−, [M − e − 2H]−. The accurate m/z values of all
detected metabolites were searched against a custom wheat
metabolite database containing 1145 entries (max m/z
difference ≤ 5 ppm). Statistical evaluation of the experiment
is described in Supporting Information S1.3.

■ RESULTS AND DISCUSSION
In a biological system, native and 13C-enriched substances are
metabolized by the same biological transformations and to a
nearly equal extent.6 As a result, all metabolites derived from a
mixture of native and 13C-labeled tracer contain either the
entire native or the enriched tracer or just a part of it. In LC−
HRMS, native metabolites and their corresponding 13C
isotopologs perfectly coelute with highly similar chromato-
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graphic peak shapes but can be easily distinguished by MS
because of their differing m/z values. The observed m/z shift
between the native and the partly tracer-labeled biotransforma-
tion product is proportional to the number of atoms of the
labeling isotope in the remaining part of the tracer of the
inspected metabolite ion. The presented workflow automati-
cally searches for these unique isotope patterns and returns a
comprehensive list of metabolic features, each corresponding to
an ion of a metabolite derived from the studied tracer. As long
as the isotope patterns of the tracer(s) incorporated in the
respective metabolite can be separated, the algorithm can detect
all metabolic feature pairs of a biotransformation product,
including those isotopologs originating from the incorporation
of different tracer moieties. The SIL-derived isotope patterns
provide a high certainty that the detected metabolites are truly
derived from the studied tracer.
To demonstrate the workflow, the metabolic fate of the

amino acid phenylalanine (Phe) was studied in Tae cell
suspensions cultured in the presence of U-13C9 Phe in the

culture medium. Processing of the acquired raw data resulted in
a total of 341 metabolic features, which were convoluted to 139
feature groups, each of which is representing a metabolite.
Figure 2a shows two mass spectra containing a metabolism
product with eight tracer-derived carbon atoms (native M) and
its partly 13C-labeled analog M′. The presence of the M′ + 1
mass peaks indicate that the moiety conjugated to the tracer
also contains several carbon atoms.
Two medium blanks and Tae cell suspension cultures (no

U-13C9 Phe added) were processed as described above. Only
1−2 of incorrectly detected metabolic features were found per
sample, which during manual curation showed to be Fourier
transformation artifacts with low abundances and noisy
chromatographic peak shapes. This very low number of false
positives confirms the high selectivity of the presented SIL
assisted approach.

Fast Polarity Switching. The presented workflow supports
fully automated processing of LC−ESI-HRMS data employing
fast polarity switching. The cycle time for two successive MS

Figure 2. (a, b) Illustration of two metabolic feature pairs detected for the same metabolite. (a) Two mass spectra derived from positive and negative
ionization mode for the respective native and corresponding 13C8-labeled features derived from phenylalanine. (b) EIC profiles of the respective
metabolic features shown in part a. (c) m/z versus retention time plot of all 13C9-Phe-derived features detected in the positive and negative ionization
mode and (d) their convolution into a feature group. The red dots represent selected metabolic features from three of the either annotated or
identified metabolites. For details, see Supporting Information S1.2.
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scans (positive and negative ionization mode) was ∼1 s, which
is sufficient to acquire 10−25 scans per chromatographic peak.
As shown in Figure 2b, the chromatographic peak shapes are
very similar for all four depicted mass traces (of Mp, Mp′, Mn,
Mn′); thus, even features originating from the same metabolite
but recorded in different ionization modes can be convoluted
automatically into a single feature group.
In the presented experiment, 150 and 191 metabolic features

were detected in the positive and negative ionization modes,
respectively (Figure 2c). Furthermore, feature grouping across
the two ion polarity modes was carried out successfully and
resulted in a total of 139 distinct feature groups (i.e.,
metabolites). Of those, 32 were exclusively found in the
positive mode, and 58 metabolites were detected in the
negative ionization mode only. In addition, 49 metabolites
exhibited at least one metabolic feature in each of the both
ionization modes (Figure 2d). These findings underline the
significant benefit that has been gained with respect to
metabolite coverage by integrating positive and negative
mode data.
Metabolite Annotation. The presented workflow results

in a list of metabolic features, each corresponding to a certain
ion species (e.g., adduct, deprotonated molecule, or in-source
fragment) of a metabolite. For 19 of the 49 detected
phenylalanine-derived metabolites with complementary adducts
from both ionization modes, annotation of their intact neutral
molecule and, thus, the corresponding molecular weight was
achieved only by integration of ion species related information
from the respective opposite ionization mode. This further
demonstrates the power of fast polarity switching for
complementary metabolite annotation.
The database search revealed that 50 of the detected

metabolites, several with the same molecular mass, were
putatively annotated. Although metabolite annotation was not
always unambiguous, the metabolites could be assigned to
phenylpropanoids (n = 14), phenylpropanoid amides (n = 9),
and flavonoids (n = 10), which are partly known to have
antagonistic effects against Fusarium infection (Supporting
Information S1.2). Detailed metabolite annotation and bio-
logical interpretation of results will be published elsewhere.
DON Treatment. After data processing with the developed

workflow, hierarchical clustering analysis (HCA) showed two
distinct clusters for the two conditions “control” and “treat-
ment”. Furthermore, the heatmap illustration indicates that the
abundance of many metabolites is either increased or decreased
in the DON-treated samples. This confirms that the DON
treatment had a severe impact on the cells metabolic
composition (Supporting Information S1.3).

■ CONCLUSION
In recent years, SIL has been increasingly used in many fields of
targeted and untargeted metabolomics research. The presented
SIL-assisted LC−HRMS-based workflow is well suited to study
the metabolic fate of both endogenous and exogenous tracer
substances. All metabolites derived from the studied native and
13C-labeled tracers show unique isotope patterns, which enable
their untargeted detection and provide high confidence that the
detected metabolites are truly derived from the studied tracer
substance. The presented approach is particularly suited for the
investigation of secondary metabolism and can be applied to
virtually any biological system without the need for extra
equipment other than the labeled tracer compound(s). As
demonstrated for wheat cell suspension cultures, the use of ESI

in combination with fast polarity switching, the study of
endogenous plant secondary metabolite precursors (for
example, phenylalanine) directly results in a large number of
complementary Phe-related metabolic features, which can be
assigned to various structure classes. In conclusion, our data
demonstrate the great potential of SIL-assisted workflows for
the comprehensive and highly selective untargeted screening
and annotation of metabolites truly derived from the studied
tracer. The workflow supports valuable applications across
many different fields of metabolomics research, such as drug,
pesticide, toxin, or any other secondary metabolite precursor-
related conversion. A software tool and technical assistance
enabling the fully automated processing according to the
presented strategy are available from the corresponding author.
Moreover, this software tool will be published and made freely
available as part of an even more comprehensive software
package for the evaluation of SIL-derived metabolomics data in
the near future.

■ ASSOCIATED CONTENT
*S Supporting Information
Additional information as noted in the text. This material is
available free of charge via the Internet at http://pubs.acs.org

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: rainer.schuhmacher@boku.ac.at.
Author Contributions
¶B.K. and C.B. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Denise Schöfbeck, Sylvia Lehner, and
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