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Abstract: Dual-energy X-ray absorptiometry (DEXA) is a non-invasive imaging modality that can
estimate whole-body and regional composition in terms of fat, lean, and bone mass. We examined the
ability of DEXA body composition measures (whole-body, trunk, and limb fat mass and fat-free mass)
to predict mortality in conjunction with basic body measures (anthropometrics), expressed using
body mass index (BMI) and a body shape index (ABSI). We used data from the 1999–2006 United
States National Health and Nutrition Examination Survey (NHANES), with mortality follow-up to
2015. We found that all DEXA-measured masses were highly correlated with each other and with
ABSI and that adjustment for BMI and ABSI reduced these dependencies. Whole-body composition
did not substantially improve mortality prediction compared to basic anthropometrics alone, but
regional composition did, with high trunk fat-free mass and low limb fat-free mass both associated
with elevated mortality risk. These findings illustrate how DEXA body composition could guide
health assessment in conjunction with the more widely employed simple anthropometrics.

Keywords: dual-energy X-ray absorptiometry; obesity; sarcopenia; risk assessment; anthropometry;
body shape

1. Introduction

The basic anthropometrics of height, weight, and waist circumference (WC), and the
derived quantities body mass index (BMI, weight adjusted for height) and a body shape
index (ABSI, WC adjusted for weight and height) are robust predictors of mortality hazard
as well as many health conditions and forms of morbidity [1,2]. However, it is recognized
that these basic body measures do not directly measure body composition—in particular,
the amount, location, and type of fat and muscle tissue [3–6]. A number of imaging methods
are available that provide such information, although all are much less widely used than
basic anthropometrics, and their benefits for prognosis are less well quantified [7].

Of these imaging modalities, dual-energy X-ray absorptiometry (DEXA) scanning is
considered a reference method for the assessment of human body composition, due to its
relative non-invasiveness, good discrimination ability, and low cost compared to other
techniques [8,9]. Originally employed only to monitor bone mass and density for fracture
risk assessment, DEXA was established in the 1990s to also distinguish between fat and lean
tissue in the different body regions [10,11]. DEXA measurements, along with other clinical
and laboratory examinations, were conducted for the 1999–2006 cohorts of the United
States National Health and Nutrition Examination Survey (NHANES), comprising over
10,000 individuals selected to be broadly representative of the national population. These
NHANES measurements were used to develop age-specific body composition reference
values [12,13].

With the availability of follow-up data on mortality of NHANES subjects, a number of
studies have also assessed how body composition correlated with mortality. These studies
focused on whether there was a contrast in the mortality association of fat mass versus
fat-free mass [14–16], with trunk fat being possibly particularly associated with adverse
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cardiometabolic outcomes linked to abdominal obesity, and also whether a protective effect
could be seen of high limb lean tissue mass (which is primarily muscle) [17–20]. However,
while these studies mostly adjusted for BMI, they did not consider the correlation of
DEXA body composition and its association with mortality risk with ABSI, which in some
populations is a more powerful mortality predictor than BMI and which is correlated with
fat percentage and with muscle mass [21–24].

The work presented here analyzes NHANES data to determine (a) the association
between simple anthropometrics (BMI and ABSI) and DEXA-based whole-body and re-
gional (limb, trunk) composition (fat and lean mass), and (b) the association between the
DEXA-based measures and mortality hazard and the extent to which they improve hazard
assessment over using only simple anthropometrics. Our goal is to contribute to defining
the value of DEXA body composition scans for prognosis and to explore how these scans
could be used in conjunction with the more widely employed simple anthropometrics.

2. Methods
2.1. NHANES

NHANES has been sampling the civilian non-institutionalized USA population since
1971 using a cluster approach. Some groups of public health interest (children, the elderly,
black and Mexican-American people) were deliberately oversampled. We analyzed the
1999–2000, 2001–2003, 2003–2004, and 2005–2006 NHANES cohorts, for which body compo-
sition parameters were measured using DEXA. We considered all adults (age 18 and over)
with complete basic anthropometric and DEXA measurements and mortality follow-up.
Mortality outcomes for adult subjects were available from the National Center for Health
Statistics through 2015 (9–16 years of follow-up, median: 12.5 years).

DEXA scans in NHANES used the QDR 4500A fan beam densitometer (Hologic,
Inc., Bedford, MA, USA) and Hologic Discovery software version 12.1. People who were
taller than 196 cm, heavier than 136 kg, or pregnant were not scanned. We also excluded
individuals with any missing data due to limb amputations, prosthetics or implants,
or other factors that affected scan quality (which were particularly common at higher BMI
levels and older ages) [25]. Therefore, the cohort studied cannot be taken as representative
of the entire adult population but only of those whose whole-body DEXA scans would
yield complete and valid results.

The protocol for NHANES has been approved by the National Center for Health Statis-
tics Research Ethics Review Board as consistent with the Declaration of Helsinki. Ethics
approval was not needed for the current study because only anonymized, public-use data
(https://www.cdc.gov/nchs/nhanes/index.htm, accessed on 1 June 2021) is employed.

2.2. Indices and Standardization

Anthropometric indices were calculated as follows [26,27]:

BMI ≡W ·H−2, (1)

ABSI ≡WC ·H5/6 ·W−2/3, (2)

where W designates weight, H height, and WC waist circumference.
Similar to BMI, the mass estimated by DEXA is divided by the square of measured

height to construct body composition indices [28,29]. Thus, fat mass index (FMI) is total
fat mass divided by H2, fat-free mass index (FFMI) is total non-fat mass divided by H2,
and similarly for the trunk and limbs (limb fat mass index LFMI, limb fat-free mass index
LFFMI, trunk fat mass index TFMI, trunk fat-free mass index TFFMI).

The anthropometric or body composition index values are converted to Z scores
by subtracting the smoothed age and sex-specific mean and dividing by the standard
deviation [23], thus following the general formula:

Z-score ≡ value−mean
std. dev.

. (3)

https://www.cdc.gov/nchs/nhanes/index.htm
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To better understand the interrelation of basic anthropometrics and body composition,
correlations were calculated between the Z scores of the different indices listed above. ABSI
and BMI are defined so that the correlation between them is close to zero [27]. Following the
same approach, allometrically adjusted forms of the body composition indices can be found
that have close to zero correlation with BMI and ABSI by first finding the least-squares
coefficients for the linear regression

log index ∼ intercept + α log H + β, log BMI + γ log ABSI + σ sex (4)

where sex is set to 1 for females and 0 for males, and then adjusting for anthropometrics
accordingly:

adjusted-index =
index(

H
〈H〉

)α( BMI
〈BMI〉

)β( ABSI
〈ABSI〉

)γ
. (5)

Here, 〈H〉 = 166 cm, 〈BMI〉 = 26 kg m−2, and 〈ABSI〉 = 0.0803 m11/6 kg−2/3 are
median values from NHANES III, used to normalize the body composition measures to a
standard height, weight, and WC. This makes the adjusted indices approximately indepen-
dent of BMI and ABSI as well as height [23]. The adjusted indices are then transformed to
Z scores, as before, which standardizes variability due to age and sex.

2.3. Statistical Modeling of Association with Mortality

Cox proportional hazard modeling [30] was used to assess the impact of body compo-
sition indices, with or without anthropometrics on death rate (mortality hazard) over the
follow-up period, helping determine which aspects of body composition could be related
to mortality risk and what forms these relationships took. All mortality hazard models
were compared to a baseline model, which included only age (used as the timescale in the
Cox model), sex (male/female), and race (black/nonblack) as predictors [23,27,31].

As in previous studies [23,32,33], the main measure of relative model performance
was the Akaike information criterion (AIC), which was expressed as a difference from the
baseline model:

∆model m ≡ AICbaseline −AICmodel m. (6)

Lower AIC (higher ∆) indicates models that perform better as mortality predictors for
the sampled population. The expected likelihood of each model given the NHANES data is
proportional to e∆/2, so that a difference of 6 is the approximate threshold for significance
at the 95% confidence level (since e−6/2 ≈ 5%) [34].

Two additional measures of model mortality-prediction performance were also com-
puted and considered. One was the R2 statistic, defined as a proportion of variation in
mortality explained by the predictors of each model, so that higher R2 suggests a model
with greater explanatory power [35]. The other measure computed was concordance (C),
defined as the fraction of pairs of individuals in the sample for which the one modeled
to be at greater risk actually died sooner [36]. Concordance ranges from 0 to 1, with 0.5
the expected value for models with no skill and higher values indicating models that are
more skillful at explaining variation in survival. Concordance is a generalization of the
area under the receiver operating characteristic curve (AUC), which can also range from 0
to 1 and which can be interpreted as the fraction of pairs of individuals where the one who
died had the higher predictor value. AUC in its basic form is not a suitable measure here
because it does not straightforwardly account for the time to death and because it assumes
the hazard to be a monotone function of the predictor, which we expected to generally not
be the case [37,38].

The anthropometric and body composition Z scores, used as predictors, could enter
into the mortality hazard models either linearly or nonlinearly. For a linear predictor, each
unit increase in its Z score would increase or decrease the logarithm of mortality hazard by
a constant amount. For a nonlinear predictor, the logarithm of mortality hazard would be
shifted by an arbitrary smooth function of the Z score, expressed using a penalized spline
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basis, with corrected AIC being used to choose the function’s complexity [27,36,39]. Of the
anthropometric and body composition predictors considered here, ABSI was entered into
each model as a linear predictor, since it has previously been shown that the logarithm
of mortality hazard has a near-linear dependence on the ABSI Z score [2,27], while BMI
and the body composition indices were entered as nonlinear predictors to allow for the
possibility of, for example, U-shaped associations with mortality risk.

All analyses were conducted in the R programming language, version 4.0.4 [40].
The implementation of Cox proportional hazard modeling in the coxph function of the
survival package, version 3.2.7, was used [36,41].

3. Results
3.1. Sample Characteristics and Correlations

Basic demographics of the NHANES sample are given in Table 1. The average age is a
slight underestimate because, to ensure privacy, those 85 years old and over were all listed
as 85 in the released NHANES data and formed 1.5% of the sample. Adjusting for H, W,
WC reduced the variance of body composition measures substantially, with the limb fat
mass remaining with the highest coefficient of variation.

Table 1. NHANES 1999–2006 sample characteristics.

Valid DEXA Scans All Adults

Number 14,064 19,959
Deaths 2140 3478

% female 48 52
Ethnicity Mexican: 25% 24%

Other Hispanic: 4% 4%
White: 47% 47%
Black: 20% 21%
Other: 4% 4%

Age (y) 43 ± 19 46 ± 20
Height (cm) 168 ± 10 167 ± 10
Weight (kg) 76 ± 17 79 ± 20

BMI (kg m−2) 27.1 ± 5.1 28.1 ± 6.3
WC (cm) 94 ± 14 96 ± 16

ABSI (10−2 m11/6 kg−2/3) 8.04 ± 0.52 8.10 ± 0.54
FMI (kg m−2) 9.2 ± 3.8 [8.6 ± 2.0]

FFMI (kg m−2) 18.1 ± 2.8 [17.9 ± 1.8]
TFMI (kg m−2) 4.5 ± 2.1 [4.1 ± 0.9]

TFFMI (kg m−2) 8.8 ± 1.3 [8.8 ± 0.9]
LFMI (kg m−2) 4.3 ± 1.9 [4.1 ± 1.3]

LFFMI (kg m−2) 8.0 ± 1.5 [7.8 ± 1.0]
Basic demographics and body measurements (mean ± standard deviation) for adults in the NHANES 1999–2006
cohorts, both for those with valid DEXA scans (studied here) and for the entire cohort. Quantities in square
brackets are after adjustment to a standard height, weight, and waist circumference. NHANES = National
Health and Nutrition Examination Survey; DEXA = dual-energy X-ray absorptiometry; BMI = body mass index;
WC = waist circumference; ABSI = a body shape index; FMI = fat mass index (from DEXA scan); FFMI = fat-free
mass index; TFMI = trunk fat mass index; TFFMI = trunk fat-free mass index; LFMI = limb fat mass index;
LFFMI = limb fat-free mass index.

All the body composition indices showed very high positive correlations with BMI
(ranging from 0.81 for LFFMI to 0.94 for FMI), since, as weight increases, the amount of
mass in each compartment also increases, and also had high positive correlations with
one another (upper right half of Figure 1). Some of the indices were also correlated with
height, suggesting that these masses did not scale exactly with height2. Furthermore,
ABSI correlated positively with TFMI (r = 0.24) and negatively with LFFMI (r = −0.25),
confirming that high WC for given height and weight is associated with relatively more
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trunk fat and less limb lean mass. As expected from its derivation based on allometric
scaling theory [27], ABSI showed almost zero correlation with BMI (r = 0.02).

Figure 1. Correlation coefficients for anthropometrics and DEXA-derived body composition indices (Z scores relative to age-
and sex-specific means) among NHANES 1999–2006 adults. Red squares denote positive correlations and blue negative
ones; larger size indicates larger correlation magnitude. The upper right half of the correlation matrix shows correlations
of the unadjusted indices, while for the lower left half, the body composition indices were adjusted to a standard height,
weight, and waist circumference using power law scaling. NHANES = National Health and Nutrition Examination Survey;
DEXA = dual-energy X-ray absorptiometry; BMI = body mass index; WC = waist circumference; ABSI = a body shape
index; FMI = fat mass index; FFMI = fat-free mass index; TFMI = trunk fat mass index; TFFMI = trunk fat-free mass index;
LFMI = limb fat mass index; LFFMI = limb fat-free mass index.

After adjusting for anthropometrics, the correlations of body composition indices with
BMI were greatly attenuated (|r| < 0.08; lower left half of Figure 1). After adjustment,
the fat-free mass indices were positively correlated with one another and negatively corre-
lated with the fat mass indices, suggesting a differentiation between people with more fat
throughout their body at a given height, weight, and waist circumference versus people
with more lean tissue.

The regression coefficients in Table 2 (α, β, γ in Equation (4)) confirm the correlations
seen between body composition indices and anthropometrics. Taller people have relatively
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less fat mass (particularly trunk fat) and more fat-free mass (particularly limb fat-free mass)
at a given BMI. The different indices are not proportional to BMI (which would correspond
to β = 1) but rather show power-law scaling: as BMI increases, fat mass increases much
faster than linearly, while lean mass increases slower than linearly. Finally, at a given height
and BMI, high ABSI is correlated with relatively more fat, particularly trunk fat, and less
limb fat-free mass. Overall, as indicated by the coefficients of determination R2, over 90%
of the variance in DEXA-measured adult whole-body composition indices, and over 85%
of the variance in regional (trunk and limb) composition, is predictable from sex and basic
anthropometrics (Table 2).

Table 2. Regression coefficients for body composition indices from DEXA versus simple anthropo-
metric indices.

Index Height BMI ABSI R2

FMI −0.362 1.830 1.246 0.930
FFMI 0.140 0.611 −0.364 0.912
TFMI −0.867 2.183 2.354 0.918

TFFMI 0.013 0.600 −0.011 0.863
LFMI 0.202 1.666 0.423 0.882

LFFMI 0.491 0.672 −0.764 0.879
Regression coefficients for body composition indices versus the anthropometrics height, BMI, and ABSI
(Equation (4)), plus the regression coefficient of determination R2. BMI = body mass index; WC = waist cir-
cumference; ABSI = a body shape index; FMI = fat mass index; FFMI = fat-free mass index; TFMI = trunk fat mass
index; TFFMI = trunk fat-free mass index; LFMI = limb fat mass index; LFFMI = limb fat-free mass index.

3.2. Associations with Mortality Hazard

First, we considered each anthropometric or body composition index as a single
mortality predictor added to the baseline model with age, sex, and race. The performance
of each of these is shown in Table 3 and Figure 2. ABSI was the best single mortality
predictor, with significantly higher ∆ than models with any of the other indices; log
mortality hazard rose linearly as ABSI Z score increased (Figure 2b). BMI showed increased
risk at below-average values but little sign of increased risk at above-average values
(Figure 2a). This is different from earlier studies with NHANES populations, which found
a U-shaped association between BMI and mortality, with significantly increased risk also at
the high end of the BMI range [23,27]. The difference is likely due to people with morbid
obesity being underrepresented in the subpopulation with valid DEXA scans, which was
studied here.

Table 3. The association of each body measure with mortality hazard.

Predictor ∆ R2 C

Baseline 0 0.031 0.567
BMI 79.3 0.056 0.581
ABSI 115.1 0.064 0.602
FMI 72.0 0.055 0.582

FFMI 46.8 0.047 0.585
TFMI 47.6 0.047 0.579

TFFMI 31.1 0.043 0.583
LFMI 80.3 0.057 0.586

LFFMI 99.7 0.061 0.598
Results of Cox proportional hazard modeling for mortality risk in NHANES 1999–2006 with anthropometric
or DEXA body composition index z scores taken as predictors. The baseline model only included as predic-
tors age, sex, and race, which the other models also all included. NHANES = National Health and Nutrition
Examination Survey; DEXA = dual-energy X-ray absorptiometry; BMI = body mass index; WC = waist cir-
cumference; ABSI = a body shape index; FMI = fat mass index; FFMI = fat-free mass index; TFMI = trunk fat
mass index; TFFMI = trunk fat-free mass index; LFMI = limb fat mass index; LFFMI = limb fat-free mass in-
dex; ∆ = Akaike information criterion score reduction relative to the baseline model; R2 = measure of explained
variation; C = concordance.
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The profiles for mortality risk as a function of both FMI and FFMI (Figure 2c), as well
as TFFMI, LFMI, and LFFMI (not shown) were very similar to each other and to that for
BMI (Figure 2a), consistent with their very high positive correlations. They all featured
increased risk at low values, and lowest risk at near- and above-mean values. TFMI showed
somewhat different behavior, with increased risk at values both substantially below and
substantially above the population mean (Figure 2d).

Figure 2. Estimated mortality hazard ratios in NHANES 1999–2006 as nonlinear (penalized spline) functions of (a) BMI,
(b) ABSI, (c) FMI (red) and FFMI (blue), (d) TFFMI. Dashed lines indicate 95% confidence intervals. NHANES = National
Health and Nutrition Examination Survey; BMI = body mass index; ABSI = a body shape index; FMI = fat mass index;
FFMI = fat-free mass index; TFFMI = trunk fat-free mass index.

Given that ABSI outperformed all the body composition indices as a linear predictor,
we next investigated whether adding adjusted body composition indices to a model that
also contained ABSI and BMI as predictors resulted in improved prediction over only using
BMI and ABSI. These results are shown in Table 4 and Figure 3. As found in previous
studies, the combination of BMI and ABSI results in a powerful predictive model for
mortality. Their statistical independence helps explain why the increases in ∆, R2, C in the
combined model over baseline were very similar to the sum of the incremental increases for
the models with just BMI and just ABSI. Adding body composition indices to this model
resulted in changes in ∆ that were either not statistically significant (for FMI and LFMI),
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suggesting that these indices offered no usable mortality prediction improvement over
simple anthropometrics, or only marginally statistically significant (for FFMI and TFMI).
The two exceptions were TFFMI and LFFMI, which both substantially improved mortality
prediction when added to BMI and ABSI. Above-average trunk lean mass (high adjusted
TFFMI) was associated with increased mortality hazard, as was below-average limb lean
mass (low adjusted LFFMI) (Figure 3). Because adjusted TFFMI and LFFMI bore a positive
correlation, these opposite tendencies were better expressed when both were added to
the prediction model simultaneously, leading to the combined model (last line in Table 4)
showing even more improvement than the sum of that incrementally found in the models
that included TFFMI and LFFMI individually.

Table 4. The association of each body composition measure with mortality hazard when considered
alongside simple anthropometrics.

Predictor ∆ R2 C

BMI + ABSI 195.2 0.088 0.615
+FMI 200.6 0.096 0.618

+FFMI 207.5 0.097 0.620
+TFMI 202.0 0.094 0.618

+TFFMI 255.6 0.110 0.627
+LFMI 200.9 0.097 0.620

+LFFMI 222.4 0.100 0.619
+TFFMI + LFFMI 317.6 0.130 0.635

As in Table 3, but for models including both BMI and ABSI as predictors, and with the body composition indices
adjusted to remove correlation with BMI and ABSI. NHANES = National Health and Nutrition Examination
Survey; BMI = body mass index; WC = waist circumference; ABSI = a body shape index; FMI = fat mass index;
FFMI = fat-free mass index; TFMI = trunk fat mass index; TFFMI = trunk fat-free mass index; LFMI = limb fat
mass index; LFFMI = limb fat-free mass index; ∆ = Akaike information criterion score reduction relative to the
baseline model; R2 = measure of explained variation; C = concordance.

Figure 3. Estimated mortality hazard ratios in NHANES 1999–2006 as nonlinear (penalized spline) functions of adjusted
(a) TFFMI, (b) LFFMI in models that also include as predictors BMI and ABSI. Dashed lines indicate 95% confidence intervals.
NHANES = National Health and Nutrition Examination Survey; BMI = body mass index; ABSI = a body shape index;
FMI = fat mass index; TFFMI = trunk fat-free mass index; LFFMI = limb fat-free mass index.

4. Discussion

DEXA body composition has been rated the gold standard for reasons of precision and
low radiation exposure for inferring composition across the three tissue types (bone, lean,
fat) from total body or regional (trunk, limbs) areal projections [8]. Over the last 30 years,
DEXA densitometers have become a part of routine screening, assessment and monitoring
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of osteoporosis. Many of these same instruments can perform total body scanning and thus
provide widespread but unrealized access to body composition measurements. Factors
for underutilization have included lack of insurance coverage and normative values.
The latter concern has been successfully addressed, largely by the NHANES population
data. However, only DEXA bone densitometry is a covered service and performed routinely.
Moreover, the low utilization may be most attributable to the failure to establish the clinical
utility of DEXA body composition for diagnostic or risk assessment [42].

BMI and ABSI are allometric anthropometric indices that respectively correct body
weight for height and waist circumference for BMI. ABSI was derived to meet allometric
criteria of statistical independence from height and BMI [43,44]. In this study, we extended
the adjustment of DEXA mass measurements beyond height and BMI to include ABSI.
In fact, we found that a power-law dependence on height, BMI, and ABSI can estimate the
whole-body DEXA body composition to rather high accuracy, comparable to that reported
for other methods for measuring fat mass such as bioelectrical impedance analysis [45].
Anthropometric corrected DEXA body composition values will be independent of BMI and
ABSI and may therefore better identify mortality associations with body composition that
cannot be inferred from BMI and ABSI alone.

While body size and body composition are conceptually distinct, they are also closely
connected. Obesity, as categorized by BMI, is usually associated with relatively more fat
tissue, particularly in the trunk, as compared to lean tissue. WC is mostly predictable
from height, weight, age, and sex [46], but variability in standardized WC, expressible
using ABSI, has considerable diagnostic value, and also correlates with body composition,
with higher ABSI associated with more trunk fat and less limb lean tissue. The ratio of
height to WC has been used as a proxy for relative fat mass, with threshold values for
elevated mortality risk determined using NHANES data [15].

After adjusting for BMI and ABSI, both DEXA measured total fat mass and trunk
fat mass showed little correlation with mortality risk. This may reflect the acknowledged
inability of conventional DEXA to isolate the most harmful fat depots, such as abdominal
visceral fat, as compared to other trunk depots such as superficial subcutaneous fat that are
not particularly harmful [7,47–49]. Our finding is consistent with [14], who found that in
NHANES 1999–2006 trunk fat percentage was not significantly associated with mortality
risk, although it was associated with cardiovascular disease mortality.

On the other hand, above-average adjusted trunk fat-free mass was associated with
higher mortality risk, a linkage that, to our knowledge, has not been previously reported
for DEXA body composition. One potential mechanism is that excess trunk lean tissue may
tend to correspond to enlarged internal organs (organomegaly). For example, enlarged
hearts correlate to worse prognosis of patients with cardiac disease [50]. In patients with
autosomal dominant polycystic kidney disease, enlarged livers and kidneys indicated a
much higher risk of malnutrition [51]. In newly diagnosed patients with symptomatic
Waldenstrom macroglobulinemia, enlarged livers and spleens were associated with worse
survival [52]. Mice with targeted expression of an Igf2 transgene in smooth muscle cells
showed enlarged hearts and shortened lifespan, which was discussed as potentially rele-
vant to the progression of human cardiac diseases [53].

While adjusted trunk fat-free mass was associated with higher mortality, adjusted
limb fat-free mass was associated with lower mortality. This is consistent with low muscle
mass being a risk factor for death and disability. About 75% of skeletal muscle mass is
in the limbs, and therefore limb measurements using DEXA “can be considered as the
reference standard for measuring muscle mass” [54]. Mortality associations using total
body composition will be confounded as total body lean tissue includes visceral organs,
body fluids and soft tissue calcifications and is only about 50% muscle [54].

Our findings with regard to trunk and limb fat-free mass could also be explored in
relation to the capacity-load model of disease risk [55]. In this model, metabolic capacity
is lower for people with low birthweight or childhood stunting, as evinced by less limb
muscle mass and smaller internal organs. Metabolic load is imposed by stressors such as
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unhealthy food and exposure to pathogens and toxic pollutants. Lower metabolic capacity
reduces the ability to tolerate metabolic load and hence increases vulnerability to disease
in later life.

One limitation of our study is that obese people were disproportionately likely not
to have valid DEXA scans, which would have led them to be excluded from our analyses.
The limitation of DEXA scanners in imaging people with obesity [10] has been mitigated
in recent years with newer detectors and software, along with half-body scans for those
too large to be completely scanned [5]. To apply the body composition normals and risk
profiles inferred from NHANES also requires attention to the properties of different DEXA
machines and software.

Another limitation of the present work is that we considered associations in the
entire NHANES population with valid data and did not study whether they vary between
subgroups defined by factors such as sex, age, or ethnicity. Gene variants associated with
high ABSI, for example, were found to differ between women and men [56]. Follow-up
work could address this, although inference for subgroups will be limited by smaller
sample sizes.

Sarcopenia has come to complement abdominal obesity as a recognized marker of ill
health, especially in the elderly, and has been extensively studied [57–59]. Most studies
involving anthropometrics or body composition modalities focus on the most conceptually
associated measurements. Appendicular muscle (limb lean) mass is used in the definition
of sarcopenia, while trunk fat mass is considered an indicator of abdominal obesity and
visceral fat. In both NHANES and in the South Korean population, ABSI was found to
be a good indicator of the sarcopenia criterion of DEXA-measured low limb lean mass
among people with above-threshold waist circumference [60]. However, functional testing
of strength and mobility is likely superior to muscle mass for assessing morbidity and
mortality attributable to sarcopenia [61,62].

5. Conclusions

We report that DEXA-derived whole-body composition (fat or fat-free mass indices),
both before and after anthropometric adjustment, adds little skill to mortality prediction
compared to anthropometrics alone. For regional DEXA body composition, limb lean and
trunk lean do seem to improve on just BMI and ABSI. Thus, based on the present analysis
from NHANES data, mortality prediction using DEXA body composition indices may offer
little advantage for mortality prediction over basic anthropometrics. WWAnthropometrics-
adjusted DEXA, however, suggests added value from some body regions. The association
between adjusted limb fat-free mass and mortality is consistent with the well-known
association of sarcopenia with low appendicular muscle mass. The predictive value of
adjusted trunk fat-free mass is a novel finding and perhaps reflects the adverse mortality
implication of organomegaly.
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