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Abstract: This article presents the results of tests aimed at determining the effect of slide burnishing
parameters on the surface roughness of shafts made of 42CrMo4 heat-treatable steel. The burnishing
process was carried out using tools with polycrystalline diamond and cemented carbide tips. Before
burnishing, the samples were turned on a turning lathe to produce samples with an average surface
roughness Ra = 2.6 µm. The investigations were carried out according to three-leveled Hartley’s
poly selective quasi D (PS/DS-P: Ha3) plan, which enables a regression equation in the form of a
second-order polynomial to be defined. Artificial neural network models were also used to predict
the roughness of the surface of the shafts after slide burnishing. The input parameters of the process
that were taken into account included the values of pressure, burnishing speed and feed rate. Overall,
the burnishing process examined leads to a reduction in the value of the surface roughness described
by the Ra parameter. The artificial neural networks with the best regression statistics predicted an
average surface roughness of the shafts with R2 = 0.987. The lowest root-mean-square error and
mean absolute error were obtained with all the network structures analysed that were trained with
the quasi Newton algorithm.

Keywords: average surface roughness; plastic working; slide burnishing; steel shaft; surface topography

1. Introduction

Slide burnishing (SB) is a finishing method that consists in local plastic deformation
of the material as a result of static or kinetic interaction of the tool surface with the work-
piece surface. Burnishing treatment provides the required dimensions and shape of the
elements, but it is not very advantageous from the point of view of ensuring satisfactory
the stereometric surface structure in the final stage of the production of the element [1].
Due to the small dimensions of the tool tips, the plastic deformation zone of the burnished
parts is very small. Depending on the purpose of the processing, slide burnishing can
be divided into hardening, smoothing or dimensional burnishing [2]. SB is a method of
precision machining that is used to improve mechanical properties, corrosion resistance,
surface roughness, wear resistance and fatigue strength [3]. Slide burnishing creates a
deep hardened layer in which a state of compressive stresses is generated [4]. Due to the
small radius of the tool, SB is characterized by weak forces, which permits the machining
of parts with low rigidity [5]. The burnishing process allows the following benefits to
be achieved [6]: increase in surface hardness, increase in fatigue resistance, possibility of
processing surfaces with a large radius corner, possibility of processing surfaces with a
low coefficient of friction, ability to produce a high degree of smoothness on a surface,
minimal heating of the surface layer during processing, possibility of using burnishing
tools mounted on universal lathes, high process efficiency and low energy consumption of
the SB process.
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In recent years, many authors have carried out studies on the influence of the parame-
ters of the burnishing process on the properties of the surface layer using various research
techniques. Korzyński et al. [7] carried out sliding burnishing on 42CrMo4 alloy steel with
a cylindrical sliding element made of polycrystalline diamond. After treatment, the surface
layer was shown to have increased microhardness and internal compressive stresses. The
influence of the input parameters of the SB on the surface roughness and residual stresses
of the 42CrMo4 steel surface was also investigated by Dzierwa and Markopoulos [8]. The
tests confirmed that the value of the root mean square roughness parameter of the treated
surface decreased from 0.522 to 0.051 µm. The wear resistance of the treated surface has
also been improved. The research conducted by Świrad [9] proved that the roughness
of the surface of workpieces made of 42CrMo4 steel can be significantly reduced thanks
to an SB process carried out with a Ti3SiC2-based composite polycrystalline diamond
tool. Gharbi et al. [10] applied the Taguchi method to evaluate and optimize the influ-
ence of burnishing parameters on the roughness and hardness of surfaces subjected to
SB. The mean roughness of AISI 1010 hot rolled sheets was improved from Ra = 2.48 to
1.75 µm, while the hardness increased from 59 to 65.5 HRB. Luo et al. [11] analysed SB of
copper alloys using a polycrystalline diamond sliding tool. The results showed that a low
value of the roughness parameter does not mean a low surface roughness or waviness,
and that optimal burnishing parameters can be obtained with various combinations of
processing parameters. Shiou and Cheng [12] used the Taguchi L18 orthogonal plan to
analyse the ball burnishing process of a NAK80 tool steel mould surface. Due to the use
of optimal burnishing parameters, the mean roughness Ra of the part surfaces decreased
from about 1.0 to 0.020 µm. Maximov et al. [13] analysed the influence of the parameters of
the slide burnishing process of AISI316Ti steel on the value of residual stresses and wear
resistance of the treated surfaces. The higher burnishing speed increased the burnishing
productivity, but on the other hand this speed decreased the value of the residual stresses.
El-Tayeb et al. [14] applied the burnishing process to the surface treatment of shafts made
of 6061 aluminium alloy. It was found that the appropriate burnishing speed can improve
surface roughness by up to 40%. Burnishing allowed for an almost 46% reduction in the
coefficient of friction in relation to the untreated surface. Silva-Alvarez et al. [15] proposed
the use of the ball burnishing process in order to improve the surface properties of a cobalt-
chromium-molybdenum (CoCrMo) alloy. A 32-factor experimental design was carried out
to understand the relationship between surface hardness, surface roughness and impact
force and the number of tool passes. Statistical analysis showed that the burnishing force
is the most important factor changing the surface properties. After applying the optimal
processing parameters hardness increased by 41.4%, and roughness decreased by 72.7%.
A comprehensive literature review of publications on slide burnishing is presented by
Maximov et al. [16].

Recently, with the development of burnishing technology, Low Plasticity Burnishing
(LPB®) has been proposed. LPB® is Lambda Technologies Group’s (Cincinnati, Ohio,
OH, USA) most popular method of introducing designed compressive residual stresses to
improve component performance [17]. LPB imparts a designed residual stress field into the
surface of components to produce a stable layer of beneficial residual compression. In LPB
processes, the most distinctive feature is that a ceramic ball or a carbide alloy is stimulated
by the high-pressure liquid. As a result, a deeper residual compressive stress and better
Ra were obtained [18]. The LPB process can efficiently improve the micro-hardness of the
surface, corrosion resistance, ultimate tensile strength, surface finish, low- and high-cycle
fatigue strength and wear resistance [19,20]. A comprehensive review of the LPB, ball
burnishing and roller burnishing processes and the work carried out by various researchers
in these areas has been provided by Priyadarsini et al. [21]. Prevéy and Jayaraman [22]
presented a brief overview of the improved damage tolerance achievable with LPB for
various materials and damage mechanisms.

Ball burnishing can be applied to improve the mechanical and surface properties
after the friction stir welding (FSW) process [23]. This technique is a potential solution
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that can enhance the surface properties by deforming the welding area that commonly
presents different thermomechanically affected zones [24]. In particular, Prevey et al. [25]
investigated the fatigue improvement of aluminium alloys first welded by FSW and later
low plasticity burnished as a final surface treatment. It was found that the burnishing
process induces residual compression stresses which tend to improve the fatigue behaviour
of the component. López de Lacalle [26] found that a higher pressure in the burnishing
process promotes the appearance of grooves on the surface of Inconel 718 due to the
ductility of this alloy. In another study [27], they found that ball burnishing is an effective
surface treatment in reducing the time of finishing the operation. Ball burnishing is
considered to be an interesting technology to reinforce the strength of the welding area that
has suffered a thermal softening due to the FSW process [24].

Machine shafts, including those made of 42CrMo4 steel, work in heavy-duty condi-
tions and with high loads and rotational speeds. The quality and duration of their work
largely depend on the technology used in their production. The exploitation properties,
including abrasion resistance, fatigue life and corrosion resistance depend on the accu-
racy and properties of the surface layer. Slide burnishing has many advantages, such as
securing increased hardness, corrosion resistance, and fatigue life as a result of producing
compressive residual stresses in surface layer of shafts made of heat-treatable alloy steel,
i.e., 42CrMo4. Surface roughness affects the fatigue life of burnished surfaces in a great
extent. Due to the fact that the surfaces after burnishing have several times greater radii
of asperities rounding, the corrosion resistance increases by about 20% [28]. Appropriate
selection of the parameters of the burnishing process related to the mutual interactions of
many parameters is the most important aspect in assessing good performance in service.
Thus, controlling of the burnishing conditions in such a way as to produce roughness that
is as smallest as surface could lead to considerable improvement in component life.

ANN (Artificial neural networks) are computing systems for the analysis of linear and
non-linear complex regression problems, as well as for real-time supervision of machining
processes [29]. Artificial neural networks (ANN) have been widely employed for predicting
the behaviour of distinct processes with regard to cutting forces, residual stresses, as well as
machined surface roughness. There are many ANN structures used to model the relation-
ship between input and output parameters [30,31]. The neural network consists of at least
two layers, input and output, and an arbitrary number of intermediate layers, called hidden
layers [32]. The number of neurons in the input and output layers is determined by the
number of input and output parameters. The majority of the investigations existing in the
literature on the effect of burnishing parameters on the burnished surface has been experi-
mented in nature [33]. Very few analitycal models are available in literature [34–36]. The
use of artificial neural network is purely based on expert knowledge and does not depend
on complicated analytical systems. Due to exitence of many links in their structure, ANNs
are more effective compared to multiple regression analysis [37], Taguchi’s method [38]
and multi-response optimization [39,40]. Based on abductive modeling techniques, the
neural networks represent sophisticated and uncertain relationship between input and
output variables. Accordingly, the network can solve complex nonlinear problems using
historical and current data.

Investigations on the effect of SB parameters on the quality of the treated surfaces have
been carried out using artificial neural networks (ANN) which, with the selection of the
appropriate structure, are able to model any non-linear relationships between the input and
output parameters. In recent years, several general studies have been conducted [41,42].
Therefore the process of ANN application to analyse the burnishing process still requires
improvement. The influence of the SB process on the surface topography of 42CrMo4
steel shafts was investigated in this study. The burnishing process was performed with
the use of two tool tip materials, i.e., polycrystalline diamond and cemented carbide. The
investigations were carried out on the basis of Hartley’s PS/DS-P:Ha3 plan, which enables
the definition of a regression equation in the form of a second-order polynomial. The
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multi-layer perceptron was also used to investigate the correlation between the processing
parameters and the surface roughness of the specimens.

2. Material and Methods
2.1. Material

The test materials were shafts with a diameter of 50 mm made of 42CrMo4 alloy
steel (Cognor S.A., Stalowa Wola, Poland) with a hardness of 21–22 HRC. This 42CrMo4
heat-treatable steel is a commonly used high hardenability chromium molybdenum steel
that is typically used after quenching and tempering. Examples of applications for this steel
are crankshafts, heavily loaded bolts, gears, axles and discs. The chemical composition of
the tested steel (42CrMo4) specified in [43] is: C (0.18–0.45), Mn (0.40–0.70), Si (0.17–0.37),
P (max. 0.035), S (max. 0.035), Cr (0.9–1.2), Ni (max. 0.3), Mo (0.15–0.25), W (max. 0.2),
V (max. 0.05), Cu (max. 0.25). The basic mechanical properties are presented in Table 1.

Table 1. Basic mechanical properties of 42CrMo4 steel.

Yield Stress
Rp0.2, MPa

Ultimate Tensile
Stress Rm, MPa

Elongation,
% Hardness HB Toughness

KV, J

650 900–1100 12 265–325 min. 35 at 20 ◦C

2.2. Methods

The shafts were turned in such a way as to obtain the surface roughness defined as the
average surface roughness Ra = 2.6 µm. The slide burnishing was performed on an LZ 360
universal lathe (Zakłady Mechaniczne, Tarnów, Poland), which is adapted to the precise
production of medium-sized parts in accordance with the accuracy specified in DIN8605.
The SB process was carried out on a test stand (Figure 1a) using a DB-3 burnishing tool
(Figure 1b, Cogsdill-Nuneaton Ltd, Nuneaton, England). This study used a tool tip made
of polycrystalline diamond and cemented carbide.

Figure 1. View of the test stand (a) and burnishing tool (b).

The experimental investigations were carried out in accordance with Hartley’s PS/DS-
P:Ha3 static plan. This is a three-level experimental design that requires the establishment
of input factors on three equally spaced levels. The process input parameters considered
include the impact force, burnishing speed and feed rate. The matrix plan of experiments
is presented in Table 2. Surface roughness measurements of the samples were carried out
using a Taylor-Hobson Surtronic 2 profilometer (Taylor Hobson Ltd, Leicester, England)
according to [44]. The average surface roughness Ra, the main parameter of the surface
roughness, was chosen to describe the tribological properties of the burnished surfaces. As
a result of the experiments carried out in accordance with the Hartley’s plan, the regression
equation obtained for the SB process was:

y = b0 + ∑ bkxk + ∑ bkkx2
k + ∑ bkjxkxj (1)

where bk, bkk, bkj are the coefficients in the regression equation, xk and xj are the input variables.



Materials 2021, 14, 1175 5 of 15

Table 2. Matrix plan of experiments.

Number of Experiment Feed Rate f, mm/rev. Impact Force P, N Burnishing Speed v, rpm

1 0.094 130 360
2 0.094 30 180
3 0.032 130 180
4 0.032 30 360
5 0.094 80 270
6 0.032 80 270
7 0.063 130 270
8 0.063 30 270
9 0.063 80 360

10 0.063 80 180
11 0.063 80 270

2.3. Modelling Using Artificial Neural Networks

The Statistica program was used to model the effect of the burnishing process parame-
ters on the value of the average surface roughness Ra using ANN. A multilayer network
(multilayer perceptron) with an appropriate number of hidden layers and neurons in these
layers is capable of analysing and predicting any non-linear function. The hyperbolic
tangent function was used to calculate the output value of neurons. The network learning
process was carried out using three algorithms: a commonly used multi-layer network
learning algorithm—back propagation (BP), the Levenberg-Marquardt (LM) algorithm
used to train unidirectional networks, and the quasi Newton (qN) method. In the investi-
gations the back propagation algorithm with a value of the learning coefficient of 0.1 was
used for ANN training and 20% of the data included in the training set was assigned to
the verification set. As a result of the training process, the ANN acquires prediction of
the output signal based on the sequence of input signals and the corresponding output
signals. In these investigations, the quality of the network was assessed on the basis of
three parameters [41,42,45]:

(a) root mean square error RMSE:

RMSE =

√
1
n

n

∑
i = 1

∣∣aj − pj
∣∣2 (2)

(b) coefficient of determination R2:

R2 = 1−
(

∑n
i = 1

(
aj − pj

)2

∑n
i = 1

(
pj
)2

)
(3)

(c) mean absolute error MAE:

MAE =
1
n

n

∑
i = 1

∣∣aj − pj
∣∣ (4)

where p is the predicted value, a is the actual value, and n is the number of training sets.
The input data was normalized using the min − max function, which transforms the

raw (original) data values into a new interval (Nmin, Nmax) using a linear function:

D′ =
(D−min)
max−min

(Nmax − Nmin) + Nmin (5)

where (min, max) is the interval in which the original data are contained, D—value of the
variable subjected to normalization.
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3. Results and Discussion
3.1. Hartley’s PS/DS-P:Ha3 Plan

The process of slide burnishing with a diamond tool has led to a significant reduction
in the average surface roughness Ra of the shafts (Table 3). The greatest reduction of the Ra
parameter was found after burnishing with a feed rate of f = 0.032 mm/rev., impact force
P = 130 N and a burnishing speed v = 180 rpm. The greatest surface roughness of the shaft
was observed after sliding burnishing with f = 0.063 mm/rev., P = 30 N and v = 270 rpm
(Table 3). It can be concluded that the best surface roughness was obtained in experiment
no. 3, and the worst in experiment no. 2 (Table 4). However, in each SB experiment the
roughness Ra decreased. The difference between the Ra parameter values measured on two
surfaces of shafts subjected to burnishing with the two tool tip materials used was very
similar. This confirms the high repeatability of the burnishing process. The assessment
of the significance of the coefficients in the regression equation was performed using the
Student’s t-test, comparing them with the calculated test values (Tables 5 and 6).

Table 3. Average surface roughness Ra of shafts burnished using a diamond tool.

Experiment No.
Average Surface Roughness Ra Error Variance

S2Measurement 1 Measurement 2 Mean

1 0.145 0.148 0.1465 0.000045
2 0.216 0.207 0.2115 0.000405
3 0.143 0.131 0.137 0.00072
4 0.217 0.223 0.220 0.00018
5 0.205 0.207 0.206 0.00002
6 0.191 0.197 0.194 0.00018
7 0.169 0.163 0.166 0.00018
8 0.226 0.224 0.225 0.00002
9 0.216 0.202 0.209 0.00098
10 0.204 0.205 0.2045 0.000005
11 0.208 0.214 0.211 0.00018

Table 4. Average surface roughness Ra of shafts burnished using a cemented carbide tool.

Experiment No.
Average Surface Roughness Ra Error Variance

S2Measurement 1 Measurement 2 Mean

1 0.209 0.202 0.2055 0.00002
2 0.271 0.258 0.2645 0.00008
3 0.0936 0.0914 0.0925 0.000002
4 0.156 0.153 0.1545 0.000005
5 0.217 0.190 0.2035 0.0004
6 0.107 0.114 0.1105 0.00002
7 0.110 0.0966 0.1033 0.00009
8 0.178 0.193 0.1855 0.0001
9 0.125 0.120 0.1225 0.00001
10 0.130 0.142 0.136 0.00007
11 0.133 0.143 0.138 0.00005
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Table 5. The significance of parameters in the regression equation describing SB with a diamond tool.

Coefficient |Value| Relationship Critical Value Significance

bo |2.117| > 0.0442 significant
b1 |0.0217| < 0.03271 not significant
b2 |−0.345| > 0.03271 significant
b3 |0.0375| > 0.03271 significant
b11 |−0.116118| > 0.051492 significant
b22 |−0.1611253| > 0.051492 significant
b33 |−0.04862| < 0.051492 not significant
b12 |0.045| > 0.04006 significant
b13 |−0.37| > 0.04006 significant
b23 |0.0025| < 0.04006 not significant

Table 6. The significance of parameters in the regression equation describing SB with a cemented
carbide tool.

Coefficient |Value| Relationship Critical Value Significance

bo |0.1296| > 0.007454849 significant
b1 |0.0527| > 0.0527 significant
b2 |−0.03387| > 0.0527 significant
b3 |−0.00175| < 0.0527 not significant
b11 |0.029725| > 0.008684493 significant
b22 |0.01712| > 0.008684493 significant
b33 |0.00196901| < 0.008684493 not significant
b12 |0.00075| < 0.006756254 not significant
b13 |−0.03025| > 0.006756254 significant
b23 |0.05575| > 0.006756254 significant

The adequacy of the regression equation obtained for diamond tool burnishing:

Ra = 2.117− 0.345× P−80
50 + 0.0375× v−270

90 − 0.116118× ( f−0.063
0.031 )

2

−0.1611253× ( P−80
50 )

2
+ 0, 045× f−0.063

0.031 ×
P−80

50 − 0, 37× f−0.063
0.031

× v−270
90

(6)

has been verified based on the adequacy test of Fisher-Snedecor’s variance F:

F =
S2

ad
S2 (7)

where S2 is the variance of measurement errors, S2
ad is the adequacy variance calculated

using the following formula:

S2
ad =

r ∑11
i = 1(yi − ŷi)

2

n− k− 1
(8)

where yi is the mean value of the process coefficient in the i-th experiment, ŷi—value of the
process coefficient calculated based on the regression equation for the levels of the input
and output factors of the i-th experiment, r is the number of repetitions, k is the number of
factors in the regression equation, and n is the number of experiments.

The coefficient F calculated from the Equation (7) was compared with the critical value
Fkr for the adopted level of significance α = 0.05:

Fkr = F(α; f1; f2)
= F(0.05;7;11) = 3.0123 (9)
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The values of the coefficients in the regression equation and their critical values are
presented in Table 5. Finally, after simplification, the regression equation takes the form:

Ra = −0.42042− 22.915× f + 0.00157× P + 0.00882× v− 120.83× f2

−0.00006× P2 − 0.133× f× v + 0.029× P× f
(10)

The results of Hartley’s plan show that the random factor F obtained did not exceed
the critical value Fkr for the adopted level of significance α = 0.05. Therefore, the regression
Equation (6) can be considered adequate. Hartley’s function reaches a minimum when
Ra = 0.1042 µm (Figure 2), which corresponds to the experimental burnishing parameters
ensuring the lowest value of the shaft surface roughness. In experiments no. 1–4, the
relative error ranges from 18–24%, while in the remaining tests the error value does not
exceed 3%.

Figure 2. Comparison of the experimental value of the average surface roughness Ra of the shafts
with the value resulting from Hartley’s plan.

The regression equation for SB with a cemented carbide tool is as follows:

Ra = 0.1296 + 0.527× f−0.063
0.031 − 0.3387× P−80

50 + 0.29725

×( f−0.063
0.031 )

2
+ 0.01712× (P−80

50 )
2 − 0.03025

× f−0.063
0.031 ×

v−270
90 + 0.05575× P−80

50 ×
v−270

90

(11)

Equation (12), after simplification, takes the form:

Ra = 0.3265192 + 0.73082× f− 0.005× P− 0.00032× v + 30.93× f2

+0.000006848× P2 − 0.0108× f × v + 0.0000012× P× v
(12)

The regression function 12 determined for the cemented carbide tool reaches a min-
imum of Ra = 0.063 µm for the following parameters: f = 0.032 mm/rev., P = 130 N,
v = 180 rpm. (Table 6). In most cases, the values obtained experimentally differ only slightly
from the values obtained in Hartley’s model, and the relative error is several percent. The
highest error value equal to 33% was obtained for the set of burnishing parameters no. 3.
Comparing the average values of the Ra obtained experimentally and using the regression
Equation (12), it can be seen that for both samples the lowest values of Ra were achieved
during experiment no. 3. The calculated factor F (Equation (7)) significantly exceeded Fkr
for the previously adopted significance level α = 0.05. Therefore, the Equation (12) for the
cemented carbide tool cannot be considered adequate.
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3.2. ANN Modelling

Due to the relatively small number of training sets for modelling the effect of burnish-
ing parameters on the surface roughness of the shafts, networks with one hidden layer and
a different number of neurons in this layer, i.e., 4, 8 and 13, were selected for the analysis of
predictive possibility. It was initially assumed that if networks with these structures do not
bring the expected results, their structure will be expanded. Too extensive a structure of
the neural network to model a given problem may lead to its overfitting, and thus loss of
the ability to generalize data. The analysis was based on data for a diamond tool whose
Hartley’s model, determined by Equation (7), was statistically adequate.

During the training of neural networks, it was observed that the variable-metric
algorithm provided the fastest convergence of the learning algorithm (Figure 3). The error
level of 0.0005 with training network 3:3-13-1:1 was reached after 55 epochs, while the
same error rate for the network with the smallest number of neurons in the hidden layer
under consideration, i.e., 3:3-4-1:1 was reached after 159 learning epochs. The same error in
learning the network with the Levenberg-Marquardt algorithm was obtained after 302, 206
and 82 learning epochs for networks 3:3-4-1:1, 3:3-8-1:1, 3:3-13-1:1 (Figure 4), respectively.

Figure 3. The network training error vs. number of epochs during the learning process with the
variable-metric algorithm.

Figure 4. The network training error vs. number of epochs during the learning process with the
Levenberga-Marquardt algorithm.

The number of learning epochs necessary to achieve the assumed error level for
the network trained with the variable-metric and Levenberg-Marquardt algorithms is
comparable, except that there are periodic fluctuations in the process of minimizing the
network error by the LM learning algorithm (Figure 4). This is due to the fact that the LM
algorithm works without having to compute the Hessian matrix [46]. The Hessian matrix is



Materials 2021, 14, 1175 10 of 15

approximated by the Jacobian matrix containing first derivatives of the network errors with
respect to the weights and biases. In these conditions the learning algorithm convergence
depends on the vector of network errors [47]. The step size of the gradient descent in each
epoch is selected automatically by the LM algorithm in order to achieve global convergence.
With a small ratio of the number of pieces of training data to the number of neurons in the
network, the LM algorithm is susceptible to reach a local minimum, however, due to the
fact that the Hessian matrix is not computed, it can maintain directional stability.

Due to the very high tendency of the back propagation algorithm, it is recommended
that the learning algorithm be stopped when the network error decreases no further [48].
Training of network 3:3-13-1:1 was stopped after 1180 epochs at the network error level
of 0.0059 (Figure 5). The asymptotic nature of the course of changes in the value of the
network training error proves that the minimum error value was reached. The training
of the remaining networks was stopped at the same error value, although the course of
the changes in network error during learning tends to further minimize the error. The
increase in the number of neurons in the input layer, by introducing additional interneural
connections, ensured faster convergence of the learning algorithms that were analysed.
The observation of changes in the network learning error is a response to a possible
network overtraining. Apart from the network training error, very important parameters
indicating the network approximation abilities are the root mean square error, coefficient
of determination and mean absolute error.

Figure 5. The network training error vs. number of epochs of the learning process with the BP algo-
rithm.

For all networks, the value of the coefficient of determination was at least R2 = 0.7505
accurate to three significant figures (Table 7). The lowest value of the RMSE and MAE for
all the networks examined was assured by the qN algorithm. It should be considered that
the best network for modelling the effect of slide burnishing parameters on the average
surface roughness value of the treated surface is the multilayer perceptron 3:3-8-1:1 trained
with the variable-metric algorithm, due to the high value of the determination coefficient
R2, and simultaneously, to the lowest of both the RMSE and MAE errors for the training set.
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Table 7. Parameters of the training process of the networks examined.

Network Training Algorithm
Training Set Verification Set

R2
RMSE MAE RMSE MAE

3:3-4-1:1
BP 0.02316 0.01388 0.04760 0.03942 0.7896
qN 0.02091 0.02091 0.00737 0.00607 0.8704
LM 0.02682 0.01827 0.01007 0.00910 0.7898

3:3-8-1:1
BP 0.01456 0.01259 0.01446 0.01313 0.9661
qN 0.00305 0.00250 0.00303 0.00260 0.9971
LM 0.00607 0.00505 0.00357 0.00254 0.9876

3:3-13-1:1
BP 0.02855 0.01966 0.00247 0.00228 0.8946
qN 0.02612 0.01855 0.00200 0.00189 0.8826
LM 0.02806 0.01992 0.00316 0.00282 0.7505

The regression response of network 3:3-8-1:1 is presented in Table 8. The value of
the network error does not exceed 0.0022 µm in any of the experiments conducted. Thus,
taking into account the error values resulting from the response of Hartley’s model shown
in Figure 4, neural modelling is a more effective alternative. Despite the small number of
training sets, the neural model trained with different methods provided a better prediction
of the arithmetic mean value of the profile ordinates than Hartley’s model. It suggests
that a strong dependence exists between SB parameters and the shaft surface. So, the
experimental training data were not strongly noised.

Table 8. Comparison of the average surface roughness Ra obtained experimentally with the results of
the 3:3-8-1:1 neural network model trained with the variable-metric algorithm (results for experiments
included in the training set).

Experiment No.
Average Surface Roughness Ra, µm

Error
Experiment ANN 3:3-8-1:1

1 0.1465 0.168572 0.022072
3 0.137 0.159752 0.022752
4 0.22 0.233345 0.013345
5 0.206 0.218104 0.012104
6 0.194 0.213618 0.019618
7 0.166 0.165331 −0.00067
9 0.209 0.220224 0.011224
10 0.2045 0.210982 0.006482
11 0.211 0.216063 0.005063

The increase in the pressure of the burnishing tool, under the same feed values, causes
a decrease in the surface roughness of the shafts (Figure 6a). This conclusion is in agreement
with the results of Dzierwa and Markopoulos [8] who machined 42CrMo4 steel surfaces
and Shiou et al. [49] who processed SUS420J2 stainless steel shafts. Plastic deformation is
caused by the forces causing surface pressures exceeding the value of the yield stress of
the processed material [10]. Pressure exerted through a very hard and very smooth roller
or ball on a surface generates a flattening of surface asperities and work hardening of the
buried impurity layer [14]. As a result of this process, the surface roughness decreases, and
the surface layer strengthens [4,18,50]. The mean values of the burnishing pressure and
speed can be employed to enhance the quality of machining [51]. The effect of displacing
the surface asperities is a reduction in the roughness of the treated surface. After the prior
turning operation, deformations produced by sliding on the peak zone cause the valleys to
remain unfilled, and for traces to remain on the surface in the form of recesses [52]. During
burnishing, the soft material is not only deformed on the surface, but also to a significant
depth in the surface layer. Too high a value can lead to peeling, which is accompanied by a
rapid increase in roughness [53]. Too much pressure of the burnishing tool can worsen the
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quality of the treated surface due to the possibility of the appearance of surface defects and
the presence of stress corrosion [53].

Figure 6. Response surfaces of the neural network 3:3-8-1:1 trained with the qN algorithm showing
the influence of (a) feed rate and impact force, (b) feed rate and burnishing speed, and (c) impact
force and burnishing speed on the average surface roughness Ra.

In general, reducing the feed rate at low burnishing speed decreases the Ra pa-
rameter of the shaft surface (Figure 6b). Reducing the impact force of the burnishing
tool at a constant value of burnishing speed ensures a reduced roughness of the shaft
surface (Figure 6c). At small values of the impact force of the burnishing tool, the in-
crease in the burnishing tool led to a slight increase in the surface roughness parameter
Ra. At high values of impact force there is the opposite relationship between burnishing
speed and surface roughness. However, there are complex interactions between feed rate
and burnishing speed. Higher values of the Ra parameter occur with a combination of
high feed rate and low burnishing speed. The increase of the feed rate in the range of
180–200 mm/min while maintaining a constant burnishing speed initially led to an increase
in the distance between the burnishing passes and therefore surface roughness increases. A
further increase in burnishing speed causes a closeness of adjacent burnishing passes and,
as a result, average surface roughness Ra decreases. This phenomenon was also observed
by Ibrahim [51] and Dwivedi et al. [54]. Higher roller burnishing speed increases the
surface temperature of a workpiece [54,55] and the material forming the asperities is more
susceptible to plastic deformation.
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One of the main limitations of the neural network model used is the ability to predict
the value of the average surface roughness of the treated surface for the range of values of SB
parameters used in the network training process. In this paper only one parameter (Ra) in
the network output was considered due to the limited amount of training data. It is possible
to include many parameters in the output of the network. Any measurable parameters may
be included in the network. However, with the addition of a new parameter for network
input and/or output, the data size requirements for the training set increase exponentially.

4. Conclusions

The article describes the effect of the parameters of the slide burnishing of 42CrMo4
steel shafts on their surface roughness using both Hartley’s plan and artificial neural
networks. Although the training set contained only 11 measurement data, neural networks
trained with three different algorithms provided the possibility of predicting the value of
the average surface roughness of the shaft profile at the R2 level of at least 0.7505. The
ANN with the best regression statistics predicted the average surface roughness of shafts
with R2 = 0.987. The variable-metric algorithm ensured a high efficiency of the training
process determined by the network error. The lowest values of RMSE and MAE errors
were obtained in all of the network structures analysed that were trained with the quasi-
Newton algorithm: 3:3-4-1:1, 3:3-8-1:1, 3:3-13-1:1. The regression statistics and the errors in
predicting the average surface roughness of the shafts with 3:3-8-1:1 are much better than
the results obtained with Hartley’s plan.

The neural model clearly shows the dependence in which an increase in the impact
force results in a decrease of the surface roughness of the shaft surface. The coeffect of
burnishing speed and feed rate is more complex and is represented by a “saddle” response
surface. Low feed rate with low burnishing speed leads to a small value of the Ra parameter.
However high values of the feed rate with small values of the burnishing speed produces
the highest values of surface roughness.

In future research, slide burnishing of the shafts should be carried out with a wide
range of changes in machining parameters. The next task will be to take into account the
influence of tool roughness and lubrication conditions on the surface roughness of the
shafts at the input of the neural network. By increasing the range of values of the input
parameter and the number of training sets, it will be possible to gain network forecasting
ability beyond a certain range of data used in the training process.
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