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Purpose of review

Since 2007, genome-wide association studies (GWAS) have led to the identification of numerous loci of
atherosclerotic cardiovascular disease. The majority of these loci harbor genes previously not known to be
involved in atherogenesis. In this review, we summarize the recent progress in understanding the
pathophysiology of genetic variants in atherosclerosis.

Recent findings

Fifty-eight loci with P<10�7 have been identified in GWAS for coronary heart disease and myocardial
infarction. Of these, 23 loci (40%) overlap with GWAS loci of classical risk factors such as lipids, blood
pressure, and diabetes mellitus, suggesting a potential causal relation. The vast majority of the remaining
35 loci (60%) are at genomic regions where the mechanism in atherogenesis is unclear. Loci most
frequently found in independent GWAS were at Chr9p21.3 (ANRIL/CDKN2B-AS1), Chr6p24.1
(PHACTR1), and Chr1p13.3 (CELSR2, PSRC1, MYBPHL, SORT1). Recent work suggests that Chr9p21.3
exerts its effects through epigenetic regulation of target genes, whereas mechanisms at Chr6p24.1 remain
obscure, and Chr1p13.3 affects plasma LDL cholesterol.

Summary

Novel GWAS loci indicate that our understanding of atherosclerosis is limited and implicate a role of
hitherto unknown mechanisms, such as epigenetic gene regulation in atherogenesis.
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INTRODUCTION

Findings from genome-wide association studies
(GWAS) are a treasure trove for our understanding
of the pathophysiology of atherosclerosis. The first
GWAS in 2007 identified a locus on chromosome
9p21.3 (Chr9p21.3), which is the strongest genetic
factor of atherosclerosis known today [1–4]. Since
then, additional loci have been constantly added,
resulting in over 50 loci. The majority is completely
novel and the current challenge in the ‘post GWAS
era’ is to identify the responsible genes and integrate
them into our understanding of the pathophysiol-
ogy of this frequent disease.

Here, we focus on the most robust loci identified
by GWAS and review some of the approaches
recently used to tease out their complex pathophysi-
ology. These approaches include expression quan-
titative trait loci (eQTL) and functional studies in
tissues from patients with defined genotypes, which
are essential to single-out the culprit gene at loci
usually containing multiple transcripts. Moreover,
overlap with GWAS hits of cardiovascular risk
iams & Wilkins. Unautho
factors and seemingly unrelated phenotypes gives
hints to potentially causal relations. Finally, cell
culture studies and mouse models using knockout
and overexpression strategies are essential, in
particular at loci involving completely novel path-
ophysiology. Understanding the mechanisms of
these loci in atherogenesis is a prerequisite for later
therapeutic targeting.
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KEY POINTS

� GWAS have identified 58 loci of CHD and MI.

� Forty percent overlap with genomic loci for classical
risk factors, whereas mechanisms at the remaining 60%
are unclear.

� The three most frequently found loci are at Chr9p21.3,
Chr6p24.1, and Chr1p13.3.

� Recent work suggests a role of epigenetic gene
regulation by a noncoding RNA as a novel mechanism
of atherogenesis at Chr9p21.3.

� Mechanisms at Chr6p24.1 are unclear, and
Chr1p13.3 likely works through affecting plasma
LDL-cholesterol.

From genotype to phenotype in atherosclerosis Holdt and Teupser
Atherosclerosis is a disease affecting arterial
blood vessels, leading to different disease pheno-
types depending on the anatomical location and
stage of the disease process. Most GWAS have been
performed for the phenotype of coronary heart
disease (CHD), which includes a broad spectrum
of patients with stable and unstable coronary
disease, myocardial infarction (MI) survivors
and patients undergoing coronary angiography
(Table 1) [3–8,9

&

,10
&&

,11–17,18
&&

,19–21]. A smaller
number of GWAS has specifically dealt with the
phenotype MI, which overlaps with CHD because
CHD almost always precedes MI. However, MI
clearly involves additional mechanisms, such as
thrombosis. In this review, we are not covering
stroke, which requires differentiation into several
subtypes of ischemic and hemorrhagic stroke with
different underlying pathophysiology [22]. We are
also not explicitely covering peripheral atheroscle-
rosis and its surrogate marker ankle brachial index,
where until now GWAS have only revealed the
Chr9p21.3 locus with genome-wide significance
in a study of more than 40 000 individuals [23].
GWAS LOCI OF CORONARY HEART
DISEASE AND MYOCARDIAL INFARCTION

Searching the GWAS catalogue (www.genome.gov/
gwastudies; accessed May 2013; [21]) with a strin-
gent cutoff (P<10�7), we have assembled 58 loci
from 18 publications for the phenotypes of CHD
and MI (Table 1) reporting the best P values (includ-
ing combined analyses with replication) [1,3–8,9

&

,
10

&&

,11–17,18
&&

,19,20]. A predominant number of
these variants has been identified by the CARDIo-
GRAM consortium [10

&&

]. A total of 6220 single-
nucleotide polymorphisms (SNPs) with P<0.01
from this analysis were followed-up in the
Copyright © Lippincott Williams & Wilkins. Unau
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CARDIoGRAMplusC4D consortium in 63 746 cor-
onary artery disease cases and 130 681 controls,
adding 15 additional loci to the list [18

&&

]. Whereas
earlier GWAS were mainly performed in cohorts of
European decent, a number of novel loci were
recently identified in Asian and Middle Eastern
populations [13,15–17,20] (Table 1).

The Chr9p21.3 (CDKN2B-AS1) locus, which is
the strongest genetic marker of human atheroscle-
rosis and which is generally considered the ‘gold
standard’ for any association study of atherosclero-
sis-related traits, is listed in 12 independent GWAS
publications (Table 1) [1,3,4,9

&

,10
&&

,11–13,16,17,
18

&&

,19]. Chr9p21.3 stands out because of its rela-
tively large effect size [odds ratio (OR) 1.3 per allele],
and its allele frequency of �50%. The second most
frequently identified GWAS locus is on Chr6p24.1
(PHACTR1), which has been described in six publi-
cations (Table 1, OR 1.10) [9

&

,10
&&

,15,17,18
&&

,19].
The third most often found locus is on Chr1p13.3
(Table 1, OR 1.11) [3,9

&

,10
&&

,18
&&

,19]. Despite har-
boring at least four transcripts, SORT1 is currently
considered the prime candidate gene at Chr1p13.3
and was investigated in several functional studies
[24–26,27

&

]. The current advances in understanding
the pathophysiology at each of these three major
loci identified so far will be discussed later in this
review.
UNDERSTANDING FUNCTION BY
CO-SEGREGATION ANALYSIS WITH
OTHER TRAITS

A promising strategy for inferring function from a
locus is to search for overlap with GWAS loci for
other traits. We systematically screened the 58 loci
in Table 1 for overlap with GWAS hits for classical
risk factors of CHD or MI (lipids, blood pressure/
hypertension, diabetes-related phenotypes) and
added information from the CARDIoGRAMplusC4D
consortium [18

&&

], which also tested for overlap with
genetic variants for established risk factors (Table 1).
As summarized in Fig. 1, we found that GWAS loci
for CHD and MI overlap with 14 loci for lipids (24%
of all risk loci), six loci for blood pressure/hyper-
tension (10%), one locus for diabetes mellitus (2%),
and two loci with at least two risk factors (4%).
Thirty-five (60%) loci did not co-segregate with loci
of classical risk factors but out of these, six over-
lapped with loci from seemingly unrelated GWAS
(Table 1; Supplementary material).

Another approach to get insights into function
is to investigate the effects of the genotype on
mRNA expression of genes at GWAS loci and to
map eQTLs. This might be particularly helpful to
identify the culprit gene(s) at loci harboring many
thorized reproduction of this article is prohibited.
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Table 1. Summary of 58 GWAS loci for CHD and MI with P<1�10�7 as of May 2013
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Cohorts E E E E E E EAE E E J E M C K E E E J
# of loci 1 4 1 1 1 2 8 24 2 4 2 2 1 7 3 45 1 9 1 16 8 2 15 33
1p13.3 SORT1, PSRC1, CELSR2 rs599839 -A 0.78 3 x 10–10 1.11 [10 , 19 ] 4 5
1p32.2 PPAP2B rs17114036 -A 0.91 4 x 10–19 1.17 [10 ] 2 2
1p32.3 PCSK9 rs11206510 -T 0.82 9 x 10–8 1.08 [10 , 19 ] 2 3
1q21.3 IL6R rs4845625 -T 0.47 4 x 10–10 1.06 [18 ] 1 1
1q41 MIA3 rs17465637 -C 0.74 1 x 10–8 1.14 [10 , 19 ] 2 3
2p21 ABCG5/8 rs6544713 -T 0.30 2x 10–9 1.06 [18 ] 1 1 A
2p24.1 TTC32, WDR35 rs2123536 -T 0.39 7 x 10–11 1.12 [16 ] 1 1
2p24.1 ABOB rs515135 -G 0.83 3 x 10–10 1.07 [18 ] 1 1
2q22.3 ZEB2 -ACO74093.1 rs22526 41 -G 0.46 5 x 10–8 1.06 [18 ] 1 1
2q31.1 VAMP5/8-GGCX rs1561198 -A 0.45 1 x 10–10 1.06 [18 ] 1 1
2q33.2 WDR12, NBEAL1 rs6725887 -C 0.15 1 x 10–9 1.14 [10 , 19 ] 2 3
3q22.3 MRAS rs2306374 -C 0.18 3 x 10–8 1.12 [10 ] 3 3
3q26 .1 Intergenic TSH1 4 x 10–10 NR [12 ] 1 1
4p16.2 STK32B TSH2 2 x 10–11 NR [12 ] 1 1
4q31.23 EDNRA rs1878406 -T 0.15 3 x 10–8 1.10 [18 ] 1 1 B
4q32.1 GUCY1A3 rs1842896 -T 0.76 1 x 10–11 1.14 [16 , 18 ] 2 2
5p15.33 IRX1, ADAMTS16 rs117 48327 -? NR 5 x 10–13 1.25 [20 ] 0 1
5q31.1 SLC22A4 -SLC22A5 rs273909 -A 0.14 1 x 10–9 1.07 [18 ] 1 1
6p21.1 VEGFA -C6orf223 rs6905288 -T NR 7 x 10 -8 1.23 [14 ] 1 1 C
6p21.2 KCNK5 rs10947789 -T 0.76 1 x 10–8 1.07 [18 ] 1 1
6p21.31 ANKS1A rs17609940 -G 0.75 1 x 10–8 1.07 [10 ] 2 2 D
6p21.32 C6orf10, BTNL2 rs9268402 -G 0.59 3 x 10–15 1.16 [16 ] 1 1 1 E
6p21.33 HCG27, HLA -C rs3869109 -G NR 1 x 10–9 1.14 [14 ] 1 1 1
6p24.1 PHACTR1 rs12526453 -C 0.67 1 x 10–9 1.1 [10 , 19 ] 1 1 5 6 F
6q23.2 TCF21 rs12190287 -C 0.62 1 x 10–12 1.08 [10 ] 2 2
6q25.1 MTHFD1L rs6922269 -A 0.25 3 x 10–8 1.23 [3] 1 1
6q25.3 SLC22A3 -LPAL2 -LPA rs3798220 -C 0.02 3 x 10–11 1.51 [10 ] 3 3 G
6q26 PLG rs4252120 -T 0.73 5 x 10–10 1.07 [18 ] 1 1 H
7p21.1 HDAC9 rs2023938 -G 0.10 5 x 10–8 1.08 [18 ] 1 1
7q22.3 BCAP29 rs10953541 -C 0.8 3 x 10–8 1.08 [9] 2 2
7q32.2 ZC3HC1 rs11556924 -C 0.62 9 x 10–18 1.09 [10 ] 2 2
8q24.13 TRIB rs2954029 -A 0.55 5 x 10–9 1.06 [18 ] 1 1
9p21.3 CDKN2B-AS1 rs4977574 -G 0.46 1 x 10–22 1.29 [10 , 19 ] 1 1 1 1 1 1 1 10 12
9q34.2 ABO rs579459 -C 0.21 4 x 10–14 1.10 [10 ] 1 1 3 3 I
8p21.3 LPL rs264 -G 0.86 3 x 10–9 1.11 [18 ] 1 1
10p11.23 KIAA1462 rs2505083 -C 0.38 4 x 10–8 1.07 [9] 1 1 3 3
10q11.21 CXCL12 rs1746048 -C 0.87 3 x 10–10 1.09 [10 , 19 ] 1 3 4
10q23.31 LIPA rs1412444 -T 0.42 3 x 10–13 1.09 [9] 1 1 3 3
10q24.32 CYP17A1,CNNM2, NT5C2 rs12413409 -G 0.89 1 x 10–9 1.12 [10 ] 1 2 2
11q22.3 PDGFD rs974819 -T 0.32 2 x 10–9 1.07 [9] 1 2 2
11q23.3 ZNF259 -APOA5-APOA1 rs964184 -G 0.13 1 x 10–17 1.13 [10 ] 1 2 2
12q21.33 ATP2B1 rs7136259 -T 0.39 6 x 10–10 1.11 [16 ] 1 1 1
12q23.3 HSP90B1 TSH3 3 x 10–9 NR [12 ] 1 1 1
12q24.11 MYL2 rs3782889 -C 0.21 4 x 10–14 1.26 [17 ] 1 1 1
12q24.12 ACAD10, ALDH2 rs11066015 -A NR 5 x 10–11 1.41 [17 ] 1 1 2 2 J
12q24.12 SH2B3 rs3184504 -T 0.40 5 x 10–11 1.07 [18 ] 1 1 K
12q24.13 C12orf51 rs11066280 -A 0.17 2 x 10–11 1.19 [16 ] 1 1 1 L
13q12.3 FLT1 rs9319428 -A 0.32 7 x 10–11 1.06 [18 ] 1 1
13q34 COL4A1, COL4A2 rs4773144 -G 0.44 4 x 10–9 1.07 [10 ] 1 2 2 M
14q32.2 HHIPL1 rs2895811 -C 0.43 1 x 10–10 1.07 [10 ] 1 2 2
15q25.1 ADAMTS7 rs3825807 -A 0.57 1 x 10–12 1.08 [10 ] 1 1 1 4 4
15 q26.1 FURIN-FES rs17514846 -A 0.44 9 x 10–11 1.07 [18 ] 1 1
17p11.2 RAI1- PEMT- RASD1 rs12936587 -G 0.56 4 x 10–10 1.07 [10 ] 1 2 2 N
17p13.3 SMG6, SRR rs1231206 -A 0.37 9 x 10–10 1.07 [10 ] 1 2 2
17q21.32 UBE2Z, GIP, ATP5G1, SNF8 rs46522 -T 0.53 2 x 10–8 1.06 [10 ] 1 2 2 O
19p13.2 SMARCA4, LDLR rs1122608 -G 0.77 1 x 10–8 1.14 [10 , 19 ] 2 3
19q13.32 ApoE-ApoC1 rs2075650 -G 0.14 6 x 10–11 1.11 [18 ] 1 1
21q22.11 MRPS6, SLC5A3, KCNE2 rs9982601 -T 0.15 4 x 10–10 1.18 [10 , 19 ] 2 3

Loci are from the GWAS catalogue (www.genome.gov/gwastudies; accessed May 2013; [21]). Overlap with loci for risk factors of atherosclerosis was added.
Black – loci for CHD from GWAS catalogue, dark grey – loci for MI from GWAS catalogue; grey – loci for risk factors of atherosclerosis (lipids, blood pressure/
hypertension, diabetes) and other phenotypes from GWAS catalogue, light blue – loci for risk factors and other phenotypes reported in [18

&&

], dark blue – loci
for risk factors and other phenotypes reported both in GWAS catalogue and in [18

&&

]. Notes A–O with information of co-segregating GWAS hits (P<10�5) can
be found in the Supplementary material. C, Chinese cohort; CHD, coronary heart disease; E, European cohort; EA, European and South-Asian cohorts; FRA,
frequency of risk allele; GWAS, genome-wide association studies; J, Japanese cohort; K, Korean cohort; M, Middle Eastern cohort; MI, myocardial infarction; NR,
not reported. Loci with two-SNP haplotypes (TSH) [12]: TSH1 – rs11924705, rs6789378 (risk alleles C,A); TSH2 – rs7697839, rs7673097 (risk alleles G,G);
TSH3 – rs1165668, rs1165669 (risk alleles G,C). Loci for MI [19]: Chr1p13.3 – rs646776-T, FRA 0.81, P value 8�10�12, OR 1.19; Chr1p32.3 – FRA 0.81,
P value 1�10�8, OR 1.15; Chr1q41 – FRA 0.72, P value 1�10�9, OR 1.14; Chr9p21.3 – FRA 0.56, P value 3�10�44, OR 1.29; Chr10q11.21 – FRA
0.84, P value 7�10�9, OR 1.17; Chr19p13.2 – FRA 0.75, P value 2�10�9, OR 1.15; Chr21q22.11 – FRA 0.13, P value 6�10�11, OR 1.2.
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FIGURE 1. Overlap between atherosclerosis loci and loci
for common risk factors. Out of 58 loci for coronary heart
disease (CHD) and myocardial infarction (MI), 24%
overlapped with lipid loci (LDL cholesterol, HDL cholesterol,
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inner circle shows additional overlap with genome-wide
association studies hits for other nonrisk factor-associated
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FIGURE 2. Haplotype analysis (HapMap CEU) and
annotated genes at the three most frequently identified loci
for coronary heart disease (CHD) and myocardial infarction
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genes. Testing cis-regulation of a genetic variant at a
genome-wide level requires large cohorts where
transcriptome-wide mRNA expression has been
assayed in each individual and where genome-wide
SNP data are also available. Folkersen et al. [28] have
systematically tested lead SNPs from GWAS of CHD
and MI and found evidence for cis-regulation at five
loci in different vascular tissues and liver samples
(Chr1p13.3: SORT1, PSRC1, CELSR2; Chr2q33.2:
NBEAL1; Chr3q22.3: MRAS; Chr6q25.1: MTHFD1L;
Chr21q22.11: SLC5A3). Wild et al. [11] performed
a comparable analysis using mRNA expression
data from monocytes of 1494 individuals from
a population-based study [29] and found three
eQTLs (Chr1p13.3: PSRC1; Chr2q33.2: WDR12;
Chr10q23.31: LIPA). Results at Chr2q33.2 are
particularly interesting since expression analysis
in different tissues apparently led to different find-
ings. A similar approach was taken by the C4D
consortium, which systematically tested for eQTLs
at newly identified loci [9

&

]. A current limitation of
this very promising approach is the limited avail-
ability of large cohorts with tissue collections for
transcriptome-wide expression analysis.
(MI). Single-nucleotide polymorphisms with strongest signals
of the respective phenotype and corresponding references
are given. (a) Chr9p21.3 CHD and MI locus and adjacent
hits for cancer, diabetes, and other traits. (b) Chr6p24.1
CHD and MI locus overlapping with migraine. Significance
of pulse pressure and femoral neck width loci is unclear.
(c) Chr1p13.3 CHD and MI locus co-segregating with
genome-wide association studies (GWAS) hits for lipids.
Chr9P21.3 (ANRIL): ROLE OF A LONG
NONCODING RNA (ncRNA) IN
ATHEROGENESIS

Chr9p21.3 is the most replicated locus of human
atherosclerosis (reviewed in [30,31]). The locus lacks
associations with common cardiovascular risk
Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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mark the promoters of ANRIL target genes and are mirrored
in ANRIL RNA, suggesting an Alu-mediated RNA-DNA
interaction as effector mechanism.
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factors suggesting that it exerts its effect through an
alternative mechanism. The core risk haplotype
spans approximately 50 kb [10

&&

,19,22,32–47]
(Fig. 2a) and does not contain protein-coding genes
but the 30end of the long ncRNA antisense noncoding
RNA in the INK4 locus (ANRIL). The synonyms
CDKN2B antisense RNA 1 (CDKN2B-AS1) and
CDKN2BAS are used for ANRIL and refer to its anti-
sense orientation to cyclin-dependent kinase inhibitor
2B (CDKN2B), which is located proximal to the core
CHD region. Together with CDKN2A, which is
located further proximal of ANRIL, this region
depicts a GWAS hotspot for different tumor entities
[30,34–37] and other phenotypes [32,33], which is
in line with loss of function of these genes in many
human cancers (Fig. 2a) [48]. In an adjacent
haplotype block, an independent locus for diabetes
was identified [41]. Despite their expression in
human plaques [49], several lines of evidence argue
against a role of CDKN2A and CDKN2B as major
Chr9p21.3 effector genes. First, SNPs within these
genes are not in linkage disequilibrium with the lead
CHD SNPs (Fig. 2a). Second, cis-regulation of these
genes is lacking in the majority of human studies
(reviewed in [30]). Third, mouse models speak
against a causal role of CDKN2B in atherogenesis
[50

&

,51] and yielded conflicting results for CDKN2A
[50

&

,52–54].
In contrast, there is growing evidence for a role

of ANRIL in modulating atherosclerosis suscepti-
bility at Chr9p21.3. ANRIL expression is tightly
regulated by the Chr9p21.3 genotype [55–58,59

&

,
60–62] (for review see [30]). In addition, a positive
correlation of ANRIL expression with atherosclerosis
severity has been described [58]. Transcription of
ANRIL is complex and more than 20 linear and
several circular isoforms are known today
[55,57,59

&

]. As a mechanism for differential expres-
sion, Harismendy et al. [63] proposed that ANRIL
expression in Chr9p21.3 risk allele carriers was
induced by disruption of an inhibitory STAT1-
binding site. Functional studies in mammalian cells
revealed that ANRIL knock-down led to decreased
proliferation [64–67]. Recent work has extended
these findings, showing that ANRIL overexpression
not only led to accelerated proliferation but also
increased adhesion and decreased apoptosis [59

&

].
These are key mechanisms of atherogenesis and the
direction of effects would be in line with the pro-
atherogenic role of ANRIL suggested from expres-
sion studies (Fig. 3) [59

&

].
But how does ANRIL exert these effects at

the molecular level? ANRIL belongs to the group of
large noncoding RNAs which have been shown to
regulate gene expression through RNA–RNA, RNA–
DNA, or RNA–protein interactions [68–70]. For
opyright © Lippincott Williams & Wilkins. Unautho
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ANRIL, binding to epigenetic silencer Polycomb
repressive complexes 1 and 2 (PRC1 and PRC2)
[59

&

,66,67] and to PRC-associated activating proteins
RYBP and YY1 [71,72] has been demonstrated (Fig. 3)
[59

&

]. In accordance, modulation of ANRIL expres-
sion led to the epigenetic regulation of target genes
expression in cis [66,67] and in trans [59

&

,64,73]. We
have recently shown that trans-regulation was
dependent on an Alu-DEIN motif [74,75], which
marked the promoters of ANRIL target genes and
was mirrored in ANRIL RNA transcripts (Fig. 3). The
functional relevance of Alu motifs in ANRIL was
confirmed by deletion and mutagenesis, reversing
trans-regulation and restoring normal cellular func-
tions [59

&

]. Recent work by Jeck et al. has also dem-
onstrated that Alu motifs are preferably incorporated
in noncoding RNA lariats, which might represent
inactive isoforms and were also shown to exist for
ANRIL [55,76]. Whether integration of Alu motifs in
ncRNA lariats leads to silencing of the effector
sequences remains to be determined.
rized reproduction of this article is prohibited.
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In summary, the robust association of ANRIL
with the risk genotype, its correlation with athero-
sclerosis severity, and functional data strongly
support ANRIL as Chr9p21.3 effector gene. Recent
work has not only broadened our understanding
of ANRIL’s function but also suggested a novel
molecular mechanism for long ncRNA-mediated
trans-regulation.

Chr6P24.1 (PHACTR1): FREQUENTLY
REPLICATED BUT POORLY UNDERSTOOD
Chr6p24.1 is the second most often identified
GWAS hit for CHD and MI. The locus was found
in European, Asian, and Middle Eastern populations
and therefore appears to be relevant across ethnic-
ities [9

&

,10
&&

,15,16,18
&&

,19]. Chr6p24.1 is also associ-
ated with coronary calcification [40]. Until now,
virtually nothing is known about the mechanism
of Chr6p24.1 in atherogenesis. The region contains
a single gene, protein phosphatase and actin regulator 1
(PHACTR1), spanning a very large genomic distance
of �500 kb, and extending over three haplotype
blocks (Fig. 2b). Lead SNPs for CHD and MI are in
the proximal haplotype block and the same SNPs
were independently identified in a GWAS for
migraine [42]. Intriguingly, alleles conferring
migraine susceptibility were also associated with risk
for CHD suggesting a common pathophysiology. The
distal haplotype block of PHACTR1 also contains hits
in the GWAS catalogue (www.genome. gov/gwastu-
dies; accessed May 2013; [21]), originating from a
100k GWAS for femoral neck width in females of the
Framingham Heart Study [43] and a linkage study for
pulse pressure in 63 Chinese sib-pairs [44] (Fig. 2b).
However, these findings have not been firmly repli-
cated and their significance is still unclear. In
addition, these SNPs are �300-kb apart and seem-
ingly unrelated to the lead atherosclerosis SNPs,
speaking against a causal relation.

PHACTR1 is highest expressed in human heart
and brain [77] and is a member of a family of
proteins that bind actin and interact with protein
phosphatase 1 (PP1) [78]. PP1 is an ubiquitous
enzyme, regulating essential cellular processes such
as cell cycle progression, protein synthesis, muscle
contraction, carbohydrate metabolism, transcrip-
tion, and neuronal signaling (reviewed in [79]).
For PHACTR1, a role in cell migration, motility
and invasiveness of breast cancer, and melanoma
tumor cells was described [80,81]. Moreover,
PHACTR1 is expressed in endothelial cells and
involved in regulation of endothelial tubulogenesis
and apoptosis [82,83]. In summary, even though
PHACTR1 is an obvious candidate gene at
Chr6p24.1, current data on its function is scarce
and its mechanism in atherogenesis is still unclear.
Copyright © Lippincott Williams & Wilkins. Unau
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Chr1p13.3 (PSRC1/CELSR2/MYBPHL/
SORT1): LIPIDS AND CORONARY HEART
DISEASE
The Chr1p13.3 locus has been discovered in the first
surge of GWAS for CHD even before it was also
identified as one of the top GWAS hits for plasma
LDL cholesterol concentrations [84–86]. Genetic
variation at the locus is associated with reduced
plasma LDL-cholesterol and reduced risk of coron-
ary artery disease [10

&&

,25,45] suggesting that
Chr1p13.3 exerts its effect on atherosclerosis by
modulating LDL-cholesterol levels. The lead SNPs
of CHD and LDL-cholesterol are located in a
haplotype block encoding three genes, cadherin
EGF LAG seven-pass G-type receptor 2 (CELSR2),
proline/serine-rich coiled-coil 1 (PSRC1), and myosin
binding protein H-like (MYBPHL) (Fig. 2c). Wild
et al. found differential expression of PSRC1 in
monocytes at the locus [11]. The majority of func-
tional work, however, has focused on sortilin 1
(SORT1), which is located in a haplotype block distal
of PSRC1, CELSR2, and MYBPHL (Fig. 2c) containing
GWAS hits for major depressive disorder [46] and
chronic kidney disease [47]. Schadt et al. [87] and
Folkersen et al. [28] found that mRNA expression of
CELSR2, PSRC1, and SORT1 were all strongly associ-
ated with Chr1p13.3 in liver. Although SORT1 was
highly expressed in many tissues, genotype-depend-
ent differential regulation was only seen in liver
[28]. Musunuru et al. [26] identified a SNP in linkage
disequilibrium with the lead SNP, creating a C/EBP
transcription factor binding site in the 3’ UTR of
CELSR2 and altering expression of SORT1. These
data suggested that SORT1 expression might be
affected by cis-regulation through the neighboring
haplotype block [26].

SORT1 is a member of the VSP10P receptor
family of sorting receptors, which have been inten-
sively studied in neuroscience and direct proteins
through secretory and endocytic pathways of the
cell (for review see [88,89]). In 2010, three independ-
ent groups published first mechanistic work on the
role of SORT1 in LDL-metabolism with in part para-
doxical results: The first study overexpressed SORT1
in HEK293 cells, resulting in increased uptake of
LDL and LDL-receptor-related protein [25]. A second
article used viral overexpression in mouse liver,
demonstrating that increased SORT1 decreased
plasma LDL-cholesterol and VLDL levels by reduc-
ing hepatic VLDL secretion [26]. Inverse results were
seen after SORT1 knock-down [26]. Both studies
were well in line with the observation that increased
expression of SORT1 mRNA in human liver was
correlated with decreased LDL-cholesterol [26],
even though the proposed mechanisms would be
either through increased LDL uptake [25] or reduced
thorized reproduction of this article is prohibited.
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VLDL secretion [26]. Results of a third article,
published virtually at the same time, were seemingly
at odds with the two previous articles. Using mice
on the Ldlr�/� background, these authors demon-
strated that complete Sort1 deficiency ameliorated
hypercholesterolemia and atherosclerosis [24].
Additional studies on the subcellular level indicated
that SORT1 interacts with apoB100 in the Golgi
apparatus, thereby facilitating formation and
hepatic export of apolipoprotein B containing
lipoproteins [24].

Recent work [27
&

] has reconciled the divergent
hypotheses on the function of SORT1 in lipoprotein
metabolism. These authors proposed a model in
which hepatic SORT1 binds intracellular apoB100
containing particles in the Golgi as well as extra-
cellular LDL at the plasma membrane and traffics
them to lysosomal degradation. They suggested a
hyperbolic relationship in which complete lack as
well as increased SORT1 would both lead to a
reduction in apoB and VLDL secretion, whereas
intermediate SORT1 expression would increase
secretion [27

&

]. Although common variants in
SORT1 have subtle effects on LDL-cholesterol, a
recent publication provided data speaking against
a role of SORT1 missense mutations in autosomal
dominant hypercholesterolemia [90].

Until now, the majority of work on the molecu-
lar mechanism at Chr1p13.3 has clearly focused on
SORT1. Very little is known about the functions of
PSRC1, CELSR2, and MYBPHL, which are closer to
the lead Chr1p13.3 SNPs. More work is clearly war-
ranted to establish or firmly exclude a role of these
genes in lipid metabolism and atherogenesis.
CONCLUSION

Current GWAS have added additional loci to the
‘genomic landscape’ of CHD and MI bringing the
total count to 58 at a significance cutoff of P<10�7.
Recent advances in functional characterization of
some loci promise the discovery of hitherto
unknown pathways influencing atherosclerosis risk.
One such example is the most replicated locus on
Chr9p21.3, which might influence atherogenesis
through epigenetic chromatin modification by the
long ncRNA ANRIL. Nevertheless, our current
understanding of potential causal variants and
mechanisms at most GWAS loci of atherosclerotic
cardiovascular disease is very limited. Although
some of these loci co-segregate with known risk
factors suggesting a potential causal relation, the
majority is still ‘terra incognita’. This is exemplified
by the second most frequently found locus on
Chr6p24.1, where virtually nothing is known about
its function in atherogenesis. Owing to their small
opyright © Lippincott Williams & Wilkins. Unautho
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effect size, the utility of genetic variants for diag-
nostic purposes is limited. The major promise of
identified GWAS loci therefore lies in understanding
their function in atherogenesis as a prerequisite for
later therapeutic targeting.
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