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Battery health prognosis and monitoring require the information of the available battery capacity that Tian
et al. (2021) proposes to acquire from a partial 10-min charging curve via a deep neural network.
The widespread use of battery-powered

vehicles is critical to reducing environ-

mental impact. The societal and regulato-

ry changes are trending the development

of carbon-emissions-free transport sys-

tems where lithium-ion (Li-ion) battery

technologies are dominating as the

main energy storage system. However,

concern like battery health is still one of

the challenging aspects to be addressed

to eradicate range anxiety. To predict
Figure 1. Overview of the quick charging curve

This is an o
and monitor the state of health (SoH) of

a battery is identified usually by health in-

dicators extracted from a constant cur-

rent charge and/or discharge curves that

require a break of operation. In a real-life

application, it is highly unlikely to get

a full-fledged charging curve due to

the fact that batteries are charged fast

following different charging strategies.

Thus, partial charging is usually what is

available from the battery management
prediction work by Tian et al.
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system (BMS) to be considered for the

SoH determination. In the June 16, 2021,

issue of Joule, Tian et al. have proposed

a deep neural network (DNN) that can pre-

dict the full charging curve from a 10-min

partial constant-current (CC) curve and

showcased a high accuracy through

transfer learning as well.1 The estimated

full charging curve provides information

on the maximum available capacity and

can be utilized for battery-state estima-

tions and lifetime prediction.2

It is a common practice to use partial

segments of a full charging curve and/or

discharged curve to extract health indica-

tors parameterizing the estimation

methods. For example, Feng et al. used

a 15-min section from a full charging

curve to estimate the SoH,3 Zheng et al.

estimated battery capacity from charging

curve sections,4 and the partial voltage-

time data from the charge-discharge

curve was employed by Richardson

et al.5 However, a research gap is found

when a quick charging scenario comes

to play, and Tian et al. have demonstrated

that it is good enough to predict the full

curve with a DNN. Further, the research

work trains and tests the developed

model with several datasets showing the

robustness and adaptability to an un-

known set of inputs as well. Figure 1 dis-

plays the complete overview at a glance.

The use of complex DNNs is becoming

popular in the battery field as it executes

automatic featuring and optimal tuning

and has flexible adaption to new prob-

lems compromising computational cost

and complexity. Battery states can be

derived quite precisely using deep net-

works.6,7 In the focused work,1 Adam’s

algorithm is used to train the voltage

sampling points to restore the entire

charging curve by a developed DNN.
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The estimated curve is then used to pre-

dict the maximum capacity with around

4% maximum absolute estimation error

and can also be used to construct an in-

cremental capacity (IC) curve for battery-

state estimation. The publicly available

NASA dataset is used to train the network,

while three more datasets are used to

verify the performance showing capability

of transfer learning.

The developed methodology paves a

promising way of battery-state estimation

that can be integrated into the BMS,

enabling cloud simulation being in line

with the real-life situation.8 However, the

gathered knowledge still lacks variability,

especially when so many battery technol-

ogies are available in the market. The

trained DNN model would work for the

different Li-ion chemistries in the same

way or not that is yet to be seen. The

different state of charge (SoC) regions

may also yield prediction challenges,

especially when temperature etc. domi-

nate the open-circuit voltage. Further

temperature and current rate variation

may increase the robustness of the
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trained model. Moreover, a training data-

set consisting of dynamic load variations

draws more attention than lab-level con-

stant current cycling results. Last but not

the least, integration of the physics-

informed degradation parameters is

another viable prospect that can make

the research work powerful and optimal.

Nevertheless, Tian et al. have already

successfully showcased several of the

challenging aspects of a full charging

curve prediction. Overcoming the re-

maining challenges can only improve

the existing work and results in a more

robust and accurate simulation. The

powerful tool can be implemented in

the BMS to monitor the battery degrada-

tion receiving inputs from high-speed

cloud simulation.
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